Siamese Convolutional Neural Network-Based Twin Structure Model for Independent Offline Signature Verification
One of the toughest biometrics and document forensics problems is confirming a signature’s authenticity and legal identity. A forgery may vary from a genuine signature by specific distortions. Therefore, it is necessary to continuously monitor crucial distinctions between real and forged signatures...
Ausführliche Beschreibung
Autor*in: |
Neha Sharma [verfasserIn] Sheifali Gupta [verfasserIn] Heba G. Mohamed [verfasserIn] Divya Anand [verfasserIn] Juan Luis Vidal Mazón [verfasserIn] Deepali Gupta [verfasserIn] Nitin Goyal [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Sustainability - MDPI AG, 2009, 14(2022), 18, p 11484 |
---|---|
Übergeordnetes Werk: |
volume:14 ; year:2022 ; number:18, p 11484 |
Links: |
---|
DOI / URN: |
10.3390/su141811484 |
---|
Katalog-ID: |
DOAJ084790385 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ084790385 | ||
003 | DE-627 | ||
005 | 20240414191230.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/su141811484 |2 doi | |
035 | |a (DE-627)DOAJ084790385 | ||
035 | |a (DE-599)DOAJa73d281ada1d457aa5e211e948fa609d | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TD194-195 | |
050 | 0 | |a TJ807-830 | |
050 | 0 | |a GE1-350 | |
100 | 0 | |a Neha Sharma |e verfasserin |4 aut | |
245 | 1 | 0 | |a Siamese Convolutional Neural Network-Based Twin Structure Model for Independent Offline Signature Verification |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a One of the toughest biometrics and document forensics problems is confirming a signature’s authenticity and legal identity. A forgery may vary from a genuine signature by specific distortions. Therefore, it is necessary to continuously monitor crucial distinctions between real and forged signatures for secure work and economic growth, but this is particularly difficult in writer-independent tasks. We thus propose an innovative and sustainable writer-independent approach based on a Siamese neural network for offline signature verification. The Siamese network is a twin-like structure with shared weights and parameters. Similar and dissimilar images are exposed to this network, and the Euclidean distances between them are calculated. The distance is reduced for identical signatures, and the distance is increased for different signatures. Three datasets, namely GPDS, BHsig260 Hindi, and BHsig260 Bengali datasets, were tested in this work. The proposed model was analyzed by comparing the results of different parameters such as optimizers, batch size, and the number of epochs on all three datasets. The proposed Siamese neural network outperforms the GPDS synthetic dataset in the English language, with an accuracy of 92%. It also performs well for the Hindi and Bengali datasets while considering skilled forgeries. | ||
650 | 4 | |a signature verification | |
650 | 4 | |a two-channel | |
650 | 4 | |a Siamese network | |
650 | 4 | |a convolutional neural network | |
650 | 4 | |a deep learning | |
653 | 0 | |a Environmental effects of industries and plants | |
653 | 0 | |a Renewable energy sources | |
653 | 0 | |a Environmental sciences | |
700 | 0 | |a Sheifali Gupta |e verfasserin |4 aut | |
700 | 0 | |a Heba G. Mohamed |e verfasserin |4 aut | |
700 | 0 | |a Divya Anand |e verfasserin |4 aut | |
700 | 0 | |a Juan Luis Vidal Mazón |e verfasserin |4 aut | |
700 | 0 | |a Deepali Gupta |e verfasserin |4 aut | |
700 | 0 | |a Nitin Goyal |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Sustainability |d MDPI AG, 2009 |g 14(2022), 18, p 11484 |w (DE-627)610604120 |w (DE-600)2518383-7 |x 20711050 |7 nnns |
773 | 1 | 8 | |g volume:14 |g year:2022 |g number:18, p 11484 |
856 | 4 | 0 | |u https://doi.org/10.3390/su141811484 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/a73d281ada1d457aa5e211e948fa609d |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2071-1050/14/18/11484 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2071-1050 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 14 |j 2022 |e 18, p 11484 |
author_variant |
n s ns s g sg h g m hgm d a da j l v m jlvm d g dg n g ng |
---|---|
matchkey_str |
article:20711050:2022----::imscnouinlerlewrbsdwntutrmdloidpnetf |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TD |
publishDate |
2022 |
allfields |
10.3390/su141811484 doi (DE-627)DOAJ084790385 (DE-599)DOAJa73d281ada1d457aa5e211e948fa609d DE-627 ger DE-627 rakwb eng TD194-195 TJ807-830 GE1-350 Neha Sharma verfasserin aut Siamese Convolutional Neural Network-Based Twin Structure Model for Independent Offline Signature Verification 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier One of the toughest biometrics and document forensics problems is confirming a signature’s authenticity and legal identity. A forgery may vary from a genuine signature by specific distortions. Therefore, it is necessary to continuously monitor crucial distinctions between real and forged signatures for secure work and economic growth, but this is particularly difficult in writer-independent tasks. We thus propose an innovative and sustainable writer-independent approach based on a Siamese neural network for offline signature verification. The Siamese network is a twin-like structure with shared weights and parameters. Similar and dissimilar images are exposed to this network, and the Euclidean distances between them are calculated. The distance is reduced for identical signatures, and the distance is increased for different signatures. Three datasets, namely GPDS, BHsig260 Hindi, and BHsig260 Bengali datasets, were tested in this work. The proposed model was analyzed by comparing the results of different parameters such as optimizers, batch size, and the number of epochs on all three datasets. The proposed Siamese neural network outperforms the GPDS synthetic dataset in the English language, with an accuracy of 92%. It also performs well for the Hindi and Bengali datasets while considering skilled forgeries. signature verification two-channel Siamese network convolutional neural network deep learning Environmental effects of industries and plants Renewable energy sources Environmental sciences Sheifali Gupta verfasserin aut Heba G. Mohamed verfasserin aut Divya Anand verfasserin aut Juan Luis Vidal Mazón verfasserin aut Deepali Gupta verfasserin aut Nitin Goyal verfasserin aut In Sustainability MDPI AG, 2009 14(2022), 18, p 11484 (DE-627)610604120 (DE-600)2518383-7 20711050 nnns volume:14 year:2022 number:18, p 11484 https://doi.org/10.3390/su141811484 kostenfrei https://doaj.org/article/a73d281ada1d457aa5e211e948fa609d kostenfrei https://www.mdpi.com/2071-1050/14/18/11484 kostenfrei https://doaj.org/toc/2071-1050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 14 2022 18, p 11484 |
spelling |
10.3390/su141811484 doi (DE-627)DOAJ084790385 (DE-599)DOAJa73d281ada1d457aa5e211e948fa609d DE-627 ger DE-627 rakwb eng TD194-195 TJ807-830 GE1-350 Neha Sharma verfasserin aut Siamese Convolutional Neural Network-Based Twin Structure Model for Independent Offline Signature Verification 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier One of the toughest biometrics and document forensics problems is confirming a signature’s authenticity and legal identity. A forgery may vary from a genuine signature by specific distortions. Therefore, it is necessary to continuously monitor crucial distinctions between real and forged signatures for secure work and economic growth, but this is particularly difficult in writer-independent tasks. We thus propose an innovative and sustainable writer-independent approach based on a Siamese neural network for offline signature verification. The Siamese network is a twin-like structure with shared weights and parameters. Similar and dissimilar images are exposed to this network, and the Euclidean distances between them are calculated. The distance is reduced for identical signatures, and the distance is increased for different signatures. Three datasets, namely GPDS, BHsig260 Hindi, and BHsig260 Bengali datasets, were tested in this work. The proposed model was analyzed by comparing the results of different parameters such as optimizers, batch size, and the number of epochs on all three datasets. The proposed Siamese neural network outperforms the GPDS synthetic dataset in the English language, with an accuracy of 92%. It also performs well for the Hindi and Bengali datasets while considering skilled forgeries. signature verification two-channel Siamese network convolutional neural network deep learning Environmental effects of industries and plants Renewable energy sources Environmental sciences Sheifali Gupta verfasserin aut Heba G. Mohamed verfasserin aut Divya Anand verfasserin aut Juan Luis Vidal Mazón verfasserin aut Deepali Gupta verfasserin aut Nitin Goyal verfasserin aut In Sustainability MDPI AG, 2009 14(2022), 18, p 11484 (DE-627)610604120 (DE-600)2518383-7 20711050 nnns volume:14 year:2022 number:18, p 11484 https://doi.org/10.3390/su141811484 kostenfrei https://doaj.org/article/a73d281ada1d457aa5e211e948fa609d kostenfrei https://www.mdpi.com/2071-1050/14/18/11484 kostenfrei https://doaj.org/toc/2071-1050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 14 2022 18, p 11484 |
allfields_unstemmed |
10.3390/su141811484 doi (DE-627)DOAJ084790385 (DE-599)DOAJa73d281ada1d457aa5e211e948fa609d DE-627 ger DE-627 rakwb eng TD194-195 TJ807-830 GE1-350 Neha Sharma verfasserin aut Siamese Convolutional Neural Network-Based Twin Structure Model for Independent Offline Signature Verification 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier One of the toughest biometrics and document forensics problems is confirming a signature’s authenticity and legal identity. A forgery may vary from a genuine signature by specific distortions. Therefore, it is necessary to continuously monitor crucial distinctions between real and forged signatures for secure work and economic growth, but this is particularly difficult in writer-independent tasks. We thus propose an innovative and sustainable writer-independent approach based on a Siamese neural network for offline signature verification. The Siamese network is a twin-like structure with shared weights and parameters. Similar and dissimilar images are exposed to this network, and the Euclidean distances between them are calculated. The distance is reduced for identical signatures, and the distance is increased for different signatures. Three datasets, namely GPDS, BHsig260 Hindi, and BHsig260 Bengali datasets, were tested in this work. The proposed model was analyzed by comparing the results of different parameters such as optimizers, batch size, and the number of epochs on all three datasets. The proposed Siamese neural network outperforms the GPDS synthetic dataset in the English language, with an accuracy of 92%. It also performs well for the Hindi and Bengali datasets while considering skilled forgeries. signature verification two-channel Siamese network convolutional neural network deep learning Environmental effects of industries and plants Renewable energy sources Environmental sciences Sheifali Gupta verfasserin aut Heba G. Mohamed verfasserin aut Divya Anand verfasserin aut Juan Luis Vidal Mazón verfasserin aut Deepali Gupta verfasserin aut Nitin Goyal verfasserin aut In Sustainability MDPI AG, 2009 14(2022), 18, p 11484 (DE-627)610604120 (DE-600)2518383-7 20711050 nnns volume:14 year:2022 number:18, p 11484 https://doi.org/10.3390/su141811484 kostenfrei https://doaj.org/article/a73d281ada1d457aa5e211e948fa609d kostenfrei https://www.mdpi.com/2071-1050/14/18/11484 kostenfrei https://doaj.org/toc/2071-1050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 14 2022 18, p 11484 |
allfieldsGer |
10.3390/su141811484 doi (DE-627)DOAJ084790385 (DE-599)DOAJa73d281ada1d457aa5e211e948fa609d DE-627 ger DE-627 rakwb eng TD194-195 TJ807-830 GE1-350 Neha Sharma verfasserin aut Siamese Convolutional Neural Network-Based Twin Structure Model for Independent Offline Signature Verification 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier One of the toughest biometrics and document forensics problems is confirming a signature’s authenticity and legal identity. A forgery may vary from a genuine signature by specific distortions. Therefore, it is necessary to continuously monitor crucial distinctions between real and forged signatures for secure work and economic growth, but this is particularly difficult in writer-independent tasks. We thus propose an innovative and sustainable writer-independent approach based on a Siamese neural network for offline signature verification. The Siamese network is a twin-like structure with shared weights and parameters. Similar and dissimilar images are exposed to this network, and the Euclidean distances between them are calculated. The distance is reduced for identical signatures, and the distance is increased for different signatures. Three datasets, namely GPDS, BHsig260 Hindi, and BHsig260 Bengali datasets, were tested in this work. The proposed model was analyzed by comparing the results of different parameters such as optimizers, batch size, and the number of epochs on all three datasets. The proposed Siamese neural network outperforms the GPDS synthetic dataset in the English language, with an accuracy of 92%. It also performs well for the Hindi and Bengali datasets while considering skilled forgeries. signature verification two-channel Siamese network convolutional neural network deep learning Environmental effects of industries and plants Renewable energy sources Environmental sciences Sheifali Gupta verfasserin aut Heba G. Mohamed verfasserin aut Divya Anand verfasserin aut Juan Luis Vidal Mazón verfasserin aut Deepali Gupta verfasserin aut Nitin Goyal verfasserin aut In Sustainability MDPI AG, 2009 14(2022), 18, p 11484 (DE-627)610604120 (DE-600)2518383-7 20711050 nnns volume:14 year:2022 number:18, p 11484 https://doi.org/10.3390/su141811484 kostenfrei https://doaj.org/article/a73d281ada1d457aa5e211e948fa609d kostenfrei https://www.mdpi.com/2071-1050/14/18/11484 kostenfrei https://doaj.org/toc/2071-1050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 14 2022 18, p 11484 |
allfieldsSound |
10.3390/su141811484 doi (DE-627)DOAJ084790385 (DE-599)DOAJa73d281ada1d457aa5e211e948fa609d DE-627 ger DE-627 rakwb eng TD194-195 TJ807-830 GE1-350 Neha Sharma verfasserin aut Siamese Convolutional Neural Network-Based Twin Structure Model for Independent Offline Signature Verification 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier One of the toughest biometrics and document forensics problems is confirming a signature’s authenticity and legal identity. A forgery may vary from a genuine signature by specific distortions. Therefore, it is necessary to continuously monitor crucial distinctions between real and forged signatures for secure work and economic growth, but this is particularly difficult in writer-independent tasks. We thus propose an innovative and sustainable writer-independent approach based on a Siamese neural network for offline signature verification. The Siamese network is a twin-like structure with shared weights and parameters. Similar and dissimilar images are exposed to this network, and the Euclidean distances between them are calculated. The distance is reduced for identical signatures, and the distance is increased for different signatures. Three datasets, namely GPDS, BHsig260 Hindi, and BHsig260 Bengali datasets, were tested in this work. The proposed model was analyzed by comparing the results of different parameters such as optimizers, batch size, and the number of epochs on all three datasets. The proposed Siamese neural network outperforms the GPDS synthetic dataset in the English language, with an accuracy of 92%. It also performs well for the Hindi and Bengali datasets while considering skilled forgeries. signature verification two-channel Siamese network convolutional neural network deep learning Environmental effects of industries and plants Renewable energy sources Environmental sciences Sheifali Gupta verfasserin aut Heba G. Mohamed verfasserin aut Divya Anand verfasserin aut Juan Luis Vidal Mazón verfasserin aut Deepali Gupta verfasserin aut Nitin Goyal verfasserin aut In Sustainability MDPI AG, 2009 14(2022), 18, p 11484 (DE-627)610604120 (DE-600)2518383-7 20711050 nnns volume:14 year:2022 number:18, p 11484 https://doi.org/10.3390/su141811484 kostenfrei https://doaj.org/article/a73d281ada1d457aa5e211e948fa609d kostenfrei https://www.mdpi.com/2071-1050/14/18/11484 kostenfrei https://doaj.org/toc/2071-1050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 14 2022 18, p 11484 |
language |
English |
source |
In Sustainability 14(2022), 18, p 11484 volume:14 year:2022 number:18, p 11484 |
sourceStr |
In Sustainability 14(2022), 18, p 11484 volume:14 year:2022 number:18, p 11484 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
signature verification two-channel Siamese network convolutional neural network deep learning Environmental effects of industries and plants Renewable energy sources Environmental sciences |
isfreeaccess_bool |
true |
container_title |
Sustainability |
authorswithroles_txt_mv |
Neha Sharma @@aut@@ Sheifali Gupta @@aut@@ Heba G. Mohamed @@aut@@ Divya Anand @@aut@@ Juan Luis Vidal Mazón @@aut@@ Deepali Gupta @@aut@@ Nitin Goyal @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
610604120 |
id |
DOAJ084790385 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ084790385</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414191230.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/su141811484</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ084790385</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa73d281ada1d457aa5e211e948fa609d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD194-195</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ807-830</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Neha Sharma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Siamese Convolutional Neural Network-Based Twin Structure Model for Independent Offline Signature Verification</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">One of the toughest biometrics and document forensics problems is confirming a signature’s authenticity and legal identity. A forgery may vary from a genuine signature by specific distortions. Therefore, it is necessary to continuously monitor crucial distinctions between real and forged signatures for secure work and economic growth, but this is particularly difficult in writer-independent tasks. We thus propose an innovative and sustainable writer-independent approach based on a Siamese neural network for offline signature verification. The Siamese network is a twin-like structure with shared weights and parameters. Similar and dissimilar images are exposed to this network, and the Euclidean distances between them are calculated. The distance is reduced for identical signatures, and the distance is increased for different signatures. Three datasets, namely GPDS, BHsig260 Hindi, and BHsig260 Bengali datasets, were tested in this work. The proposed model was analyzed by comparing the results of different parameters such as optimizers, batch size, and the number of epochs on all three datasets. The proposed Siamese neural network outperforms the GPDS synthetic dataset in the English language, with an accuracy of 92%. It also performs well for the Hindi and Bengali datasets while considering skilled forgeries.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">signature verification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">two-channel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Siamese network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">convolutional neural network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deep learning</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental effects of industries and plants</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Renewable energy sources</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sheifali Gupta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Heba G. Mohamed</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Divya Anand</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Juan Luis Vidal Mazón</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Deepali Gupta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nitin Goyal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sustainability</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">14(2022), 18, p 11484</subfield><subfield code="w">(DE-627)610604120</subfield><subfield code="w">(DE-600)2518383-7</subfield><subfield code="x">20711050</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:18, p 11484</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/su141811484</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a73d281ada1d457aa5e211e948fa609d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2071-1050/14/18/11484</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2071-1050</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2022</subfield><subfield code="e">18, p 11484</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Neha Sharma |
spellingShingle |
Neha Sharma misc TD194-195 misc TJ807-830 misc GE1-350 misc signature verification misc two-channel misc Siamese network misc convolutional neural network misc deep learning misc Environmental effects of industries and plants misc Renewable energy sources misc Environmental sciences Siamese Convolutional Neural Network-Based Twin Structure Model for Independent Offline Signature Verification |
authorStr |
Neha Sharma |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)610604120 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TD194-195 |
illustrated |
Not Illustrated |
issn |
20711050 |
topic_title |
TD194-195 TJ807-830 GE1-350 Siamese Convolutional Neural Network-Based Twin Structure Model for Independent Offline Signature Verification signature verification two-channel Siamese network convolutional neural network deep learning |
topic |
misc TD194-195 misc TJ807-830 misc GE1-350 misc signature verification misc two-channel misc Siamese network misc convolutional neural network misc deep learning misc Environmental effects of industries and plants misc Renewable energy sources misc Environmental sciences |
topic_unstemmed |
misc TD194-195 misc TJ807-830 misc GE1-350 misc signature verification misc two-channel misc Siamese network misc convolutional neural network misc deep learning misc Environmental effects of industries and plants misc Renewable energy sources misc Environmental sciences |
topic_browse |
misc TD194-195 misc TJ807-830 misc GE1-350 misc signature verification misc two-channel misc Siamese network misc convolutional neural network misc deep learning misc Environmental effects of industries and plants misc Renewable energy sources misc Environmental sciences |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Sustainability |
hierarchy_parent_id |
610604120 |
hierarchy_top_title |
Sustainability |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)610604120 (DE-600)2518383-7 |
title |
Siamese Convolutional Neural Network-Based Twin Structure Model for Independent Offline Signature Verification |
ctrlnum |
(DE-627)DOAJ084790385 (DE-599)DOAJa73d281ada1d457aa5e211e948fa609d |
title_full |
Siamese Convolutional Neural Network-Based Twin Structure Model for Independent Offline Signature Verification |
author_sort |
Neha Sharma |
journal |
Sustainability |
journalStr |
Sustainability |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Neha Sharma Sheifali Gupta Heba G. Mohamed Divya Anand Juan Luis Vidal Mazón Deepali Gupta Nitin Goyal |
container_volume |
14 |
class |
TD194-195 TJ807-830 GE1-350 |
format_se |
Elektronische Aufsätze |
author-letter |
Neha Sharma |
doi_str_mv |
10.3390/su141811484 |
author2-role |
verfasserin |
title_sort |
siamese convolutional neural network-based twin structure model for independent offline signature verification |
callnumber |
TD194-195 |
title_auth |
Siamese Convolutional Neural Network-Based Twin Structure Model for Independent Offline Signature Verification |
abstract |
One of the toughest biometrics and document forensics problems is confirming a signature’s authenticity and legal identity. A forgery may vary from a genuine signature by specific distortions. Therefore, it is necessary to continuously monitor crucial distinctions between real and forged signatures for secure work and economic growth, but this is particularly difficult in writer-independent tasks. We thus propose an innovative and sustainable writer-independent approach based on a Siamese neural network for offline signature verification. The Siamese network is a twin-like structure with shared weights and parameters. Similar and dissimilar images are exposed to this network, and the Euclidean distances between them are calculated. The distance is reduced for identical signatures, and the distance is increased for different signatures. Three datasets, namely GPDS, BHsig260 Hindi, and BHsig260 Bengali datasets, were tested in this work. The proposed model was analyzed by comparing the results of different parameters such as optimizers, batch size, and the number of epochs on all three datasets. The proposed Siamese neural network outperforms the GPDS synthetic dataset in the English language, with an accuracy of 92%. It also performs well for the Hindi and Bengali datasets while considering skilled forgeries. |
abstractGer |
One of the toughest biometrics and document forensics problems is confirming a signature’s authenticity and legal identity. A forgery may vary from a genuine signature by specific distortions. Therefore, it is necessary to continuously monitor crucial distinctions between real and forged signatures for secure work and economic growth, but this is particularly difficult in writer-independent tasks. We thus propose an innovative and sustainable writer-independent approach based on a Siamese neural network for offline signature verification. The Siamese network is a twin-like structure with shared weights and parameters. Similar and dissimilar images are exposed to this network, and the Euclidean distances between them are calculated. The distance is reduced for identical signatures, and the distance is increased for different signatures. Three datasets, namely GPDS, BHsig260 Hindi, and BHsig260 Bengali datasets, were tested in this work. The proposed model was analyzed by comparing the results of different parameters such as optimizers, batch size, and the number of epochs on all three datasets. The proposed Siamese neural network outperforms the GPDS synthetic dataset in the English language, with an accuracy of 92%. It also performs well for the Hindi and Bengali datasets while considering skilled forgeries. |
abstract_unstemmed |
One of the toughest biometrics and document forensics problems is confirming a signature’s authenticity and legal identity. A forgery may vary from a genuine signature by specific distortions. Therefore, it is necessary to continuously monitor crucial distinctions between real and forged signatures for secure work and economic growth, but this is particularly difficult in writer-independent tasks. We thus propose an innovative and sustainable writer-independent approach based on a Siamese neural network for offline signature verification. The Siamese network is a twin-like structure with shared weights and parameters. Similar and dissimilar images are exposed to this network, and the Euclidean distances between them are calculated. The distance is reduced for identical signatures, and the distance is increased for different signatures. Three datasets, namely GPDS, BHsig260 Hindi, and BHsig260 Bengali datasets, were tested in this work. The proposed model was analyzed by comparing the results of different parameters such as optimizers, batch size, and the number of epochs on all three datasets. The proposed Siamese neural network outperforms the GPDS synthetic dataset in the English language, with an accuracy of 92%. It also performs well for the Hindi and Bengali datasets while considering skilled forgeries. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
18, p 11484 |
title_short |
Siamese Convolutional Neural Network-Based Twin Structure Model for Independent Offline Signature Verification |
url |
https://doi.org/10.3390/su141811484 https://doaj.org/article/a73d281ada1d457aa5e211e948fa609d https://www.mdpi.com/2071-1050/14/18/11484 https://doaj.org/toc/2071-1050 |
remote_bool |
true |
author2 |
Sheifali Gupta Heba G. Mohamed Divya Anand Juan Luis Vidal Mazón Deepali Gupta Nitin Goyal |
author2Str |
Sheifali Gupta Heba G. Mohamed Divya Anand Juan Luis Vidal Mazón Deepali Gupta Nitin Goyal |
ppnlink |
610604120 |
callnumber-subject |
TD - Environmental Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/su141811484 |
callnumber-a |
TD194-195 |
up_date |
2024-07-04T00:33:23.029Z |
_version_ |
1803606507421433856 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ084790385</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414191230.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/su141811484</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ084790385</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa73d281ada1d457aa5e211e948fa609d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD194-195</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ807-830</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Neha Sharma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Siamese Convolutional Neural Network-Based Twin Structure Model for Independent Offline Signature Verification</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">One of the toughest biometrics and document forensics problems is confirming a signature’s authenticity and legal identity. A forgery may vary from a genuine signature by specific distortions. Therefore, it is necessary to continuously monitor crucial distinctions between real and forged signatures for secure work and economic growth, but this is particularly difficult in writer-independent tasks. We thus propose an innovative and sustainable writer-independent approach based on a Siamese neural network for offline signature verification. The Siamese network is a twin-like structure with shared weights and parameters. Similar and dissimilar images are exposed to this network, and the Euclidean distances between them are calculated. The distance is reduced for identical signatures, and the distance is increased for different signatures. Three datasets, namely GPDS, BHsig260 Hindi, and BHsig260 Bengali datasets, were tested in this work. The proposed model was analyzed by comparing the results of different parameters such as optimizers, batch size, and the number of epochs on all three datasets. The proposed Siamese neural network outperforms the GPDS synthetic dataset in the English language, with an accuracy of 92%. It also performs well for the Hindi and Bengali datasets while considering skilled forgeries.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">signature verification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">two-channel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Siamese network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">convolutional neural network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deep learning</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental effects of industries and plants</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Renewable energy sources</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sheifali Gupta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Heba G. Mohamed</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Divya Anand</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Juan Luis Vidal Mazón</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Deepali Gupta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nitin Goyal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sustainability</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">14(2022), 18, p 11484</subfield><subfield code="w">(DE-627)610604120</subfield><subfield code="w">(DE-600)2518383-7</subfield><subfield code="x">20711050</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:18, p 11484</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/su141811484</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a73d281ada1d457aa5e211e948fa609d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2071-1050/14/18/11484</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2071-1050</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2022</subfield><subfield code="e">18, p 11484</subfield></datafield></record></collection>
|
score |
7.400237 |