Compact Ammonia/Water Absorption Chiller of Different Cycle Configurations: Parametric Analysis Based on Heat Transfer Performance
Ammonia/water absorption chillers are driven by low-grade heat and cover wide refrigeration temperatures. This paper analyses single-stage ammonia/water absorption chillers. A numerical model was developed based on the heat exchanger performance. The model captures variational heat exchanger perform...
Ausführliche Beschreibung
Autor*in: |
Xuan Tao [verfasserIn] Dhinesh Thanganadar [verfasserIn] Kumar Patchigolla [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Energies - MDPI AG, 2008, 15(2022), 18, p 6511 |
---|---|
Übergeordnetes Werk: |
volume:15 ; year:2022 ; number:18, p 6511 |
Links: |
---|
DOI / URN: |
10.3390/en15186511 |
---|
Katalog-ID: |
DOAJ084829591 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ084829591 | ||
003 | DE-627 | ||
005 | 20240414204828.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/en15186511 |2 doi | |
035 | |a (DE-627)DOAJ084829591 | ||
035 | |a (DE-599)DOAJfd4385f3c32d4e34a04957c82275c234 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Xuan Tao |e verfasserin |4 aut | |
245 | 1 | 0 | |a Compact Ammonia/Water Absorption Chiller of Different Cycle Configurations: Parametric Analysis Based on Heat Transfer Performance |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Ammonia/water absorption chillers are driven by low-grade heat and cover wide refrigeration temperatures. This paper analyses single-stage ammonia/water absorption chillers. A numerical model was developed based on the heat exchanger performance. The model captures variational heat exchanger performances and describes the actual cycle with varying boundary conditions. The detrimental effects of refrigerant impurity were analysed quantitatively under different operating conditions. The model was validated with experimental data. A basic cycle and three advanced cycles were analysed for sub-zero refrigeration by comparing the thermodynamic performances. A compression-assisted cycle extended the activation temperature from 80 to 60 °C. At the heat source of 120 °C, when a counter-current desorber or bypassed rich solution was used, the COP increased from 0.51 to 0.58 or 0.57, respectively. The operating parameters included the heat source temperatures, heat sink temperatures, the mass flow rates and mass concentrations of rich solutions. Higher heat source temperatures increase cooling capacity. The increase was around 20 kW for the basic cycle of sub-zero refrigeration. There is an optimum heat source temperature maximising the COP. Higher heat source temperatures increased the refrigerant mass flow rate and reduced the mass concentration. The mass concentration can decrease from 0.999 to 0.960. | ||
650 | 4 | |a ammonia/water | |
650 | 4 | |a cycle configurations | |
650 | 4 | |a temperature glide | |
650 | 4 | |a heat source temperature | |
650 | 4 | |a heat transfer model | |
650 | 4 | |a plate heat exchanger | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
700 | 0 | |a Dhinesh Thanganadar |e verfasserin |4 aut | |
700 | 0 | |a Kumar Patchigolla |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Energies |d MDPI AG, 2008 |g 15(2022), 18, p 6511 |w (DE-627)572083742 |w (DE-600)2437446-5 |x 19961073 |7 nnns |
773 | 1 | 8 | |g volume:15 |g year:2022 |g number:18, p 6511 |
856 | 4 | 0 | |u https://doi.org/10.3390/en15186511 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/fd4385f3c32d4e34a04957c82275c234 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1996-1073/15/18/6511 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1996-1073 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 15 |j 2022 |e 18, p 6511 |
author_variant |
x t xt d t dt k p kp |
---|---|
matchkey_str |
article:19961073:2022----::opcamnaaeasrtocilrfifrncceofgrtosaaercnlss |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.3390/en15186511 doi (DE-627)DOAJ084829591 (DE-599)DOAJfd4385f3c32d4e34a04957c82275c234 DE-627 ger DE-627 rakwb eng Xuan Tao verfasserin aut Compact Ammonia/Water Absorption Chiller of Different Cycle Configurations: Parametric Analysis Based on Heat Transfer Performance 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Ammonia/water absorption chillers are driven by low-grade heat and cover wide refrigeration temperatures. This paper analyses single-stage ammonia/water absorption chillers. A numerical model was developed based on the heat exchanger performance. The model captures variational heat exchanger performances and describes the actual cycle with varying boundary conditions. The detrimental effects of refrigerant impurity were analysed quantitatively under different operating conditions. The model was validated with experimental data. A basic cycle and three advanced cycles were analysed for sub-zero refrigeration by comparing the thermodynamic performances. A compression-assisted cycle extended the activation temperature from 80 to 60 °C. At the heat source of 120 °C, when a counter-current desorber or bypassed rich solution was used, the COP increased from 0.51 to 0.58 or 0.57, respectively. The operating parameters included the heat source temperatures, heat sink temperatures, the mass flow rates and mass concentrations of rich solutions. Higher heat source temperatures increase cooling capacity. The increase was around 20 kW for the basic cycle of sub-zero refrigeration. There is an optimum heat source temperature maximising the COP. Higher heat source temperatures increased the refrigerant mass flow rate and reduced the mass concentration. The mass concentration can decrease from 0.999 to 0.960. ammonia/water cycle configurations temperature glide heat source temperature heat transfer model plate heat exchanger Technology T Dhinesh Thanganadar verfasserin aut Kumar Patchigolla verfasserin aut In Energies MDPI AG, 2008 15(2022), 18, p 6511 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:15 year:2022 number:18, p 6511 https://doi.org/10.3390/en15186511 kostenfrei https://doaj.org/article/fd4385f3c32d4e34a04957c82275c234 kostenfrei https://www.mdpi.com/1996-1073/15/18/6511 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 18, p 6511 |
spelling |
10.3390/en15186511 doi (DE-627)DOAJ084829591 (DE-599)DOAJfd4385f3c32d4e34a04957c82275c234 DE-627 ger DE-627 rakwb eng Xuan Tao verfasserin aut Compact Ammonia/Water Absorption Chiller of Different Cycle Configurations: Parametric Analysis Based on Heat Transfer Performance 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Ammonia/water absorption chillers are driven by low-grade heat and cover wide refrigeration temperatures. This paper analyses single-stage ammonia/water absorption chillers. A numerical model was developed based on the heat exchanger performance. The model captures variational heat exchanger performances and describes the actual cycle with varying boundary conditions. The detrimental effects of refrigerant impurity were analysed quantitatively under different operating conditions. The model was validated with experimental data. A basic cycle and three advanced cycles were analysed for sub-zero refrigeration by comparing the thermodynamic performances. A compression-assisted cycle extended the activation temperature from 80 to 60 °C. At the heat source of 120 °C, when a counter-current desorber or bypassed rich solution was used, the COP increased from 0.51 to 0.58 or 0.57, respectively. The operating parameters included the heat source temperatures, heat sink temperatures, the mass flow rates and mass concentrations of rich solutions. Higher heat source temperatures increase cooling capacity. The increase was around 20 kW for the basic cycle of sub-zero refrigeration. There is an optimum heat source temperature maximising the COP. Higher heat source temperatures increased the refrigerant mass flow rate and reduced the mass concentration. The mass concentration can decrease from 0.999 to 0.960. ammonia/water cycle configurations temperature glide heat source temperature heat transfer model plate heat exchanger Technology T Dhinesh Thanganadar verfasserin aut Kumar Patchigolla verfasserin aut In Energies MDPI AG, 2008 15(2022), 18, p 6511 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:15 year:2022 number:18, p 6511 https://doi.org/10.3390/en15186511 kostenfrei https://doaj.org/article/fd4385f3c32d4e34a04957c82275c234 kostenfrei https://www.mdpi.com/1996-1073/15/18/6511 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 18, p 6511 |
allfields_unstemmed |
10.3390/en15186511 doi (DE-627)DOAJ084829591 (DE-599)DOAJfd4385f3c32d4e34a04957c82275c234 DE-627 ger DE-627 rakwb eng Xuan Tao verfasserin aut Compact Ammonia/Water Absorption Chiller of Different Cycle Configurations: Parametric Analysis Based on Heat Transfer Performance 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Ammonia/water absorption chillers are driven by low-grade heat and cover wide refrigeration temperatures. This paper analyses single-stage ammonia/water absorption chillers. A numerical model was developed based on the heat exchanger performance. The model captures variational heat exchanger performances and describes the actual cycle with varying boundary conditions. The detrimental effects of refrigerant impurity were analysed quantitatively under different operating conditions. The model was validated with experimental data. A basic cycle and three advanced cycles were analysed for sub-zero refrigeration by comparing the thermodynamic performances. A compression-assisted cycle extended the activation temperature from 80 to 60 °C. At the heat source of 120 °C, when a counter-current desorber or bypassed rich solution was used, the COP increased from 0.51 to 0.58 or 0.57, respectively. The operating parameters included the heat source temperatures, heat sink temperatures, the mass flow rates and mass concentrations of rich solutions. Higher heat source temperatures increase cooling capacity. The increase was around 20 kW for the basic cycle of sub-zero refrigeration. There is an optimum heat source temperature maximising the COP. Higher heat source temperatures increased the refrigerant mass flow rate and reduced the mass concentration. The mass concentration can decrease from 0.999 to 0.960. ammonia/water cycle configurations temperature glide heat source temperature heat transfer model plate heat exchanger Technology T Dhinesh Thanganadar verfasserin aut Kumar Patchigolla verfasserin aut In Energies MDPI AG, 2008 15(2022), 18, p 6511 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:15 year:2022 number:18, p 6511 https://doi.org/10.3390/en15186511 kostenfrei https://doaj.org/article/fd4385f3c32d4e34a04957c82275c234 kostenfrei https://www.mdpi.com/1996-1073/15/18/6511 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 18, p 6511 |
allfieldsGer |
10.3390/en15186511 doi (DE-627)DOAJ084829591 (DE-599)DOAJfd4385f3c32d4e34a04957c82275c234 DE-627 ger DE-627 rakwb eng Xuan Tao verfasserin aut Compact Ammonia/Water Absorption Chiller of Different Cycle Configurations: Parametric Analysis Based on Heat Transfer Performance 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Ammonia/water absorption chillers are driven by low-grade heat and cover wide refrigeration temperatures. This paper analyses single-stage ammonia/water absorption chillers. A numerical model was developed based on the heat exchanger performance. The model captures variational heat exchanger performances and describes the actual cycle with varying boundary conditions. The detrimental effects of refrigerant impurity were analysed quantitatively under different operating conditions. The model was validated with experimental data. A basic cycle and three advanced cycles were analysed for sub-zero refrigeration by comparing the thermodynamic performances. A compression-assisted cycle extended the activation temperature from 80 to 60 °C. At the heat source of 120 °C, when a counter-current desorber or bypassed rich solution was used, the COP increased from 0.51 to 0.58 or 0.57, respectively. The operating parameters included the heat source temperatures, heat sink temperatures, the mass flow rates and mass concentrations of rich solutions. Higher heat source temperatures increase cooling capacity. The increase was around 20 kW for the basic cycle of sub-zero refrigeration. There is an optimum heat source temperature maximising the COP. Higher heat source temperatures increased the refrigerant mass flow rate and reduced the mass concentration. The mass concentration can decrease from 0.999 to 0.960. ammonia/water cycle configurations temperature glide heat source temperature heat transfer model plate heat exchanger Technology T Dhinesh Thanganadar verfasserin aut Kumar Patchigolla verfasserin aut In Energies MDPI AG, 2008 15(2022), 18, p 6511 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:15 year:2022 number:18, p 6511 https://doi.org/10.3390/en15186511 kostenfrei https://doaj.org/article/fd4385f3c32d4e34a04957c82275c234 kostenfrei https://www.mdpi.com/1996-1073/15/18/6511 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 18, p 6511 |
allfieldsSound |
10.3390/en15186511 doi (DE-627)DOAJ084829591 (DE-599)DOAJfd4385f3c32d4e34a04957c82275c234 DE-627 ger DE-627 rakwb eng Xuan Tao verfasserin aut Compact Ammonia/Water Absorption Chiller of Different Cycle Configurations: Parametric Analysis Based on Heat Transfer Performance 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Ammonia/water absorption chillers are driven by low-grade heat and cover wide refrigeration temperatures. This paper analyses single-stage ammonia/water absorption chillers. A numerical model was developed based on the heat exchanger performance. The model captures variational heat exchanger performances and describes the actual cycle with varying boundary conditions. The detrimental effects of refrigerant impurity were analysed quantitatively under different operating conditions. The model was validated with experimental data. A basic cycle and three advanced cycles were analysed for sub-zero refrigeration by comparing the thermodynamic performances. A compression-assisted cycle extended the activation temperature from 80 to 60 °C. At the heat source of 120 °C, when a counter-current desorber or bypassed rich solution was used, the COP increased from 0.51 to 0.58 or 0.57, respectively. The operating parameters included the heat source temperatures, heat sink temperatures, the mass flow rates and mass concentrations of rich solutions. Higher heat source temperatures increase cooling capacity. The increase was around 20 kW for the basic cycle of sub-zero refrigeration. There is an optimum heat source temperature maximising the COP. Higher heat source temperatures increased the refrigerant mass flow rate and reduced the mass concentration. The mass concentration can decrease from 0.999 to 0.960. ammonia/water cycle configurations temperature glide heat source temperature heat transfer model plate heat exchanger Technology T Dhinesh Thanganadar verfasserin aut Kumar Patchigolla verfasserin aut In Energies MDPI AG, 2008 15(2022), 18, p 6511 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:15 year:2022 number:18, p 6511 https://doi.org/10.3390/en15186511 kostenfrei https://doaj.org/article/fd4385f3c32d4e34a04957c82275c234 kostenfrei https://www.mdpi.com/1996-1073/15/18/6511 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 18, p 6511 |
language |
English |
source |
In Energies 15(2022), 18, p 6511 volume:15 year:2022 number:18, p 6511 |
sourceStr |
In Energies 15(2022), 18, p 6511 volume:15 year:2022 number:18, p 6511 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
ammonia/water cycle configurations temperature glide heat source temperature heat transfer model plate heat exchanger Technology T |
isfreeaccess_bool |
true |
container_title |
Energies |
authorswithroles_txt_mv |
Xuan Tao @@aut@@ Dhinesh Thanganadar @@aut@@ Kumar Patchigolla @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
572083742 |
id |
DOAJ084829591 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ084829591</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414204828.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/en15186511</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ084829591</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJfd4385f3c32d4e34a04957c82275c234</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xuan Tao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Compact Ammonia/Water Absorption Chiller of Different Cycle Configurations: Parametric Analysis Based on Heat Transfer Performance</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Ammonia/water absorption chillers are driven by low-grade heat and cover wide refrigeration temperatures. This paper analyses single-stage ammonia/water absorption chillers. A numerical model was developed based on the heat exchanger performance. The model captures variational heat exchanger performances and describes the actual cycle with varying boundary conditions. The detrimental effects of refrigerant impurity were analysed quantitatively under different operating conditions. The model was validated with experimental data. A basic cycle and three advanced cycles were analysed for sub-zero refrigeration by comparing the thermodynamic performances. A compression-assisted cycle extended the activation temperature from 80 to 60 °C. At the heat source of 120 °C, when a counter-current desorber or bypassed rich solution was used, the COP increased from 0.51 to 0.58 or 0.57, respectively. The operating parameters included the heat source temperatures, heat sink temperatures, the mass flow rates and mass concentrations of rich solutions. Higher heat source temperatures increase cooling capacity. The increase was around 20 kW for the basic cycle of sub-zero refrigeration. There is an optimum heat source temperature maximising the COP. Higher heat source temperatures increased the refrigerant mass flow rate and reduced the mass concentration. The mass concentration can decrease from 0.999 to 0.960.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ammonia/water</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cycle configurations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">temperature glide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">heat source temperature</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">heat transfer model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">plate heat exchanger</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dhinesh Thanganadar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kumar Patchigolla</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Energies</subfield><subfield code="d">MDPI AG, 2008</subfield><subfield code="g">15(2022), 18, p 6511</subfield><subfield code="w">(DE-627)572083742</subfield><subfield code="w">(DE-600)2437446-5</subfield><subfield code="x">19961073</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:18, p 6511</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/en15186511</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/fd4385f3c32d4e34a04957c82275c234</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1996-1073/15/18/6511</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1996-1073</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2022</subfield><subfield code="e">18, p 6511</subfield></datafield></record></collection>
|
author |
Xuan Tao |
spellingShingle |
Xuan Tao misc ammonia/water misc cycle configurations misc temperature glide misc heat source temperature misc heat transfer model misc plate heat exchanger misc Technology misc T Compact Ammonia/Water Absorption Chiller of Different Cycle Configurations: Parametric Analysis Based on Heat Transfer Performance |
authorStr |
Xuan Tao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)572083742 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
19961073 |
topic_title |
Compact Ammonia/Water Absorption Chiller of Different Cycle Configurations: Parametric Analysis Based on Heat Transfer Performance ammonia/water cycle configurations temperature glide heat source temperature heat transfer model plate heat exchanger |
topic |
misc ammonia/water misc cycle configurations misc temperature glide misc heat source temperature misc heat transfer model misc plate heat exchanger misc Technology misc T |
topic_unstemmed |
misc ammonia/water misc cycle configurations misc temperature glide misc heat source temperature misc heat transfer model misc plate heat exchanger misc Technology misc T |
topic_browse |
misc ammonia/water misc cycle configurations misc temperature glide misc heat source temperature misc heat transfer model misc plate heat exchanger misc Technology misc T |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Energies |
hierarchy_parent_id |
572083742 |
hierarchy_top_title |
Energies |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)572083742 (DE-600)2437446-5 |
title |
Compact Ammonia/Water Absorption Chiller of Different Cycle Configurations: Parametric Analysis Based on Heat Transfer Performance |
ctrlnum |
(DE-627)DOAJ084829591 (DE-599)DOAJfd4385f3c32d4e34a04957c82275c234 |
title_full |
Compact Ammonia/Water Absorption Chiller of Different Cycle Configurations: Parametric Analysis Based on Heat Transfer Performance |
author_sort |
Xuan Tao |
journal |
Energies |
journalStr |
Energies |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Xuan Tao Dhinesh Thanganadar Kumar Patchigolla |
container_volume |
15 |
format_se |
Elektronische Aufsätze |
author-letter |
Xuan Tao |
doi_str_mv |
10.3390/en15186511 |
author2-role |
verfasserin |
title_sort |
compact ammonia/water absorption chiller of different cycle configurations: parametric analysis based on heat transfer performance |
title_auth |
Compact Ammonia/Water Absorption Chiller of Different Cycle Configurations: Parametric Analysis Based on Heat Transfer Performance |
abstract |
Ammonia/water absorption chillers are driven by low-grade heat and cover wide refrigeration temperatures. This paper analyses single-stage ammonia/water absorption chillers. A numerical model was developed based on the heat exchanger performance. The model captures variational heat exchanger performances and describes the actual cycle with varying boundary conditions. The detrimental effects of refrigerant impurity were analysed quantitatively under different operating conditions. The model was validated with experimental data. A basic cycle and three advanced cycles were analysed for sub-zero refrigeration by comparing the thermodynamic performances. A compression-assisted cycle extended the activation temperature from 80 to 60 °C. At the heat source of 120 °C, when a counter-current desorber or bypassed rich solution was used, the COP increased from 0.51 to 0.58 or 0.57, respectively. The operating parameters included the heat source temperatures, heat sink temperatures, the mass flow rates and mass concentrations of rich solutions. Higher heat source temperatures increase cooling capacity. The increase was around 20 kW for the basic cycle of sub-zero refrigeration. There is an optimum heat source temperature maximising the COP. Higher heat source temperatures increased the refrigerant mass flow rate and reduced the mass concentration. The mass concentration can decrease from 0.999 to 0.960. |
abstractGer |
Ammonia/water absorption chillers are driven by low-grade heat and cover wide refrigeration temperatures. This paper analyses single-stage ammonia/water absorption chillers. A numerical model was developed based on the heat exchanger performance. The model captures variational heat exchanger performances and describes the actual cycle with varying boundary conditions. The detrimental effects of refrigerant impurity were analysed quantitatively under different operating conditions. The model was validated with experimental data. A basic cycle and three advanced cycles were analysed for sub-zero refrigeration by comparing the thermodynamic performances. A compression-assisted cycle extended the activation temperature from 80 to 60 °C. At the heat source of 120 °C, when a counter-current desorber or bypassed rich solution was used, the COP increased from 0.51 to 0.58 or 0.57, respectively. The operating parameters included the heat source temperatures, heat sink temperatures, the mass flow rates and mass concentrations of rich solutions. Higher heat source temperatures increase cooling capacity. The increase was around 20 kW for the basic cycle of sub-zero refrigeration. There is an optimum heat source temperature maximising the COP. Higher heat source temperatures increased the refrigerant mass flow rate and reduced the mass concentration. The mass concentration can decrease from 0.999 to 0.960. |
abstract_unstemmed |
Ammonia/water absorption chillers are driven by low-grade heat and cover wide refrigeration temperatures. This paper analyses single-stage ammonia/water absorption chillers. A numerical model was developed based on the heat exchanger performance. The model captures variational heat exchanger performances and describes the actual cycle with varying boundary conditions. The detrimental effects of refrigerant impurity were analysed quantitatively under different operating conditions. The model was validated with experimental data. A basic cycle and three advanced cycles were analysed for sub-zero refrigeration by comparing the thermodynamic performances. A compression-assisted cycle extended the activation temperature from 80 to 60 °C. At the heat source of 120 °C, when a counter-current desorber or bypassed rich solution was used, the COP increased from 0.51 to 0.58 or 0.57, respectively. The operating parameters included the heat source temperatures, heat sink temperatures, the mass flow rates and mass concentrations of rich solutions. Higher heat source temperatures increase cooling capacity. The increase was around 20 kW for the basic cycle of sub-zero refrigeration. There is an optimum heat source temperature maximising the COP. Higher heat source temperatures increased the refrigerant mass flow rate and reduced the mass concentration. The mass concentration can decrease from 0.999 to 0.960. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
18, p 6511 |
title_short |
Compact Ammonia/Water Absorption Chiller of Different Cycle Configurations: Parametric Analysis Based on Heat Transfer Performance |
url |
https://doi.org/10.3390/en15186511 https://doaj.org/article/fd4385f3c32d4e34a04957c82275c234 https://www.mdpi.com/1996-1073/15/18/6511 https://doaj.org/toc/1996-1073 |
remote_bool |
true |
author2 |
Dhinesh Thanganadar Kumar Patchigolla |
author2Str |
Dhinesh Thanganadar Kumar Patchigolla |
ppnlink |
572083742 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/en15186511 |
up_date |
2024-07-04T00:43:46.305Z |
_version_ |
1803607160974737408 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ084829591</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414204828.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/en15186511</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ084829591</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJfd4385f3c32d4e34a04957c82275c234</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xuan Tao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Compact Ammonia/Water Absorption Chiller of Different Cycle Configurations: Parametric Analysis Based on Heat Transfer Performance</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Ammonia/water absorption chillers are driven by low-grade heat and cover wide refrigeration temperatures. This paper analyses single-stage ammonia/water absorption chillers. A numerical model was developed based on the heat exchanger performance. The model captures variational heat exchanger performances and describes the actual cycle with varying boundary conditions. The detrimental effects of refrigerant impurity were analysed quantitatively under different operating conditions. The model was validated with experimental data. A basic cycle and three advanced cycles were analysed for sub-zero refrigeration by comparing the thermodynamic performances. A compression-assisted cycle extended the activation temperature from 80 to 60 °C. At the heat source of 120 °C, when a counter-current desorber or bypassed rich solution was used, the COP increased from 0.51 to 0.58 or 0.57, respectively. The operating parameters included the heat source temperatures, heat sink temperatures, the mass flow rates and mass concentrations of rich solutions. Higher heat source temperatures increase cooling capacity. The increase was around 20 kW for the basic cycle of sub-zero refrigeration. There is an optimum heat source temperature maximising the COP. Higher heat source temperatures increased the refrigerant mass flow rate and reduced the mass concentration. The mass concentration can decrease from 0.999 to 0.960.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ammonia/water</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cycle configurations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">temperature glide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">heat source temperature</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">heat transfer model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">plate heat exchanger</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dhinesh Thanganadar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kumar Patchigolla</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Energies</subfield><subfield code="d">MDPI AG, 2008</subfield><subfield code="g">15(2022), 18, p 6511</subfield><subfield code="w">(DE-627)572083742</subfield><subfield code="w">(DE-600)2437446-5</subfield><subfield code="x">19961073</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:18, p 6511</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/en15186511</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/fd4385f3c32d4e34a04957c82275c234</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1996-1073/15/18/6511</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1996-1073</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2022</subfield><subfield code="e">18, p 6511</subfield></datafield></record></collection>
|
score |
7.4016123 |