On Strain Gradient Theory and Its Application in Bending of Beam
The general strain gradient theory of Mindlin is re-visited on the basis of a new set of higher-order metrics, which includes dilatation gradient, deviatoric stretch gradient, symmetric rotation gradient and curvature. A strain gradient bending theory for plane-strain beams is proposed based on the...
Ausführliche Beschreibung
Autor*in: |
Anqing Li [verfasserIn] Qing Wang [verfasserIn] Ming Song [verfasserIn] Jun Chen [verfasserIn] Weiguang Su [verfasserIn] Shasha Zhou [verfasserIn] Li Wang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Coatings - MDPI AG, 2012, 12(2022), 1304, p 1304 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2022 ; number:1304, p 1304 |
Links: |
---|
DOI / URN: |
10.3390/coatings12091304 |
---|
Katalog-ID: |
DOAJ08483210X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ08483210X | ||
003 | DE-627 | ||
005 | 20230502072627.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/coatings12091304 |2 doi | |
035 | |a (DE-627)DOAJ08483210X | ||
035 | |a (DE-599)DOAJ0a4a2fdbfc7a48f58e09040f5b7569f6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA1-2040 | |
100 | 0 | |a Anqing Li |e verfasserin |4 aut | |
245 | 1 | 0 | |a On Strain Gradient Theory and Its Application in Bending of Beam |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The general strain gradient theory of Mindlin is re-visited on the basis of a new set of higher-order metrics, which includes dilatation gradient, deviatoric stretch gradient, symmetric rotation gradient and curvature. A strain gradient bending theory for plane-strain beams is proposed based on the present strain gradient theory. The stress resultants are re-defined and the corresponding equilibrium equations and boundary conditions are derived for beams. The semi-inverse solution for a pure bending beam is obtained and the influence of the Poisson’s effect and strain gradient components on bending rigidity is investigated. As a contrast, the solution of the Bernoulli–Euler beam is also presented. The results demonstrate that when Poisson’s effect is ignored, the result of the plane-strain beam is consistent with that of the Bernoulli–Euler beam in the couple stress theory. While for the strain gradient theory, the bending rigidity of a plane-strain beam ignoring the Poisson’s effect is smaller than that of the Bernoulli–Euler beam due to the influence of the dilatation gradient and the deviatoric stretch gradient along the thickness direction of the beam. In addition, the influence of a strain gradient along the length direction on a bending rigidity is negligible. | ||
650 | 4 | |a strain gradient theory | |
650 | 4 | |a beam bending | |
650 | 4 | |a size effect | |
650 | 4 | |a plane-strain | |
650 | 4 | |a couple stress theory | |
653 | 0 | |a Engineering (General). Civil engineering (General) | |
700 | 0 | |a Qing Wang |e verfasserin |4 aut | |
700 | 0 | |a Ming Song |e verfasserin |4 aut | |
700 | 0 | |a Jun Chen |e verfasserin |4 aut | |
700 | 0 | |a Weiguang Su |e verfasserin |4 aut | |
700 | 0 | |a Shasha Zhou |e verfasserin |4 aut | |
700 | 0 | |a Li Wang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Coatings |d MDPI AG, 2012 |g 12(2022), 1304, p 1304 |w (DE-627)718627636 |w (DE-600)2662314-6 |x 20796412 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2022 |g number:1304, p 1304 |
856 | 4 | 0 | |u https://doi.org/10.3390/coatings12091304 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/0a4a2fdbfc7a48f58e09040f5b7569f6 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2079-6412/12/9/1304 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2079-6412 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2022 |e 1304, p 1304 |
author_variant |
a l al q w qw m s ms j c jc w s ws s z sz l w lw |
---|---|
matchkey_str |
article:20796412:2022----::ntanrdethoynisplcto |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TA |
publishDate |
2022 |
allfields |
10.3390/coatings12091304 doi (DE-627)DOAJ08483210X (DE-599)DOAJ0a4a2fdbfc7a48f58e09040f5b7569f6 DE-627 ger DE-627 rakwb eng TA1-2040 Anqing Li verfasserin aut On Strain Gradient Theory and Its Application in Bending of Beam 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The general strain gradient theory of Mindlin is re-visited on the basis of a new set of higher-order metrics, which includes dilatation gradient, deviatoric stretch gradient, symmetric rotation gradient and curvature. A strain gradient bending theory for plane-strain beams is proposed based on the present strain gradient theory. The stress resultants are re-defined and the corresponding equilibrium equations and boundary conditions are derived for beams. The semi-inverse solution for a pure bending beam is obtained and the influence of the Poisson’s effect and strain gradient components on bending rigidity is investigated. As a contrast, the solution of the Bernoulli–Euler beam is also presented. The results demonstrate that when Poisson’s effect is ignored, the result of the plane-strain beam is consistent with that of the Bernoulli–Euler beam in the couple stress theory. While for the strain gradient theory, the bending rigidity of a plane-strain beam ignoring the Poisson’s effect is smaller than that of the Bernoulli–Euler beam due to the influence of the dilatation gradient and the deviatoric stretch gradient along the thickness direction of the beam. In addition, the influence of a strain gradient along the length direction on a bending rigidity is negligible. strain gradient theory beam bending size effect plane-strain couple stress theory Engineering (General). Civil engineering (General) Qing Wang verfasserin aut Ming Song verfasserin aut Jun Chen verfasserin aut Weiguang Su verfasserin aut Shasha Zhou verfasserin aut Li Wang verfasserin aut In Coatings MDPI AG, 2012 12(2022), 1304, p 1304 (DE-627)718627636 (DE-600)2662314-6 20796412 nnns volume:12 year:2022 number:1304, p 1304 https://doi.org/10.3390/coatings12091304 kostenfrei https://doaj.org/article/0a4a2fdbfc7a48f58e09040f5b7569f6 kostenfrei https://www.mdpi.com/2079-6412/12/9/1304 kostenfrei https://doaj.org/toc/2079-6412 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 1304, p 1304 |
spelling |
10.3390/coatings12091304 doi (DE-627)DOAJ08483210X (DE-599)DOAJ0a4a2fdbfc7a48f58e09040f5b7569f6 DE-627 ger DE-627 rakwb eng TA1-2040 Anqing Li verfasserin aut On Strain Gradient Theory and Its Application in Bending of Beam 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The general strain gradient theory of Mindlin is re-visited on the basis of a new set of higher-order metrics, which includes dilatation gradient, deviatoric stretch gradient, symmetric rotation gradient and curvature. A strain gradient bending theory for plane-strain beams is proposed based on the present strain gradient theory. The stress resultants are re-defined and the corresponding equilibrium equations and boundary conditions are derived for beams. The semi-inverse solution for a pure bending beam is obtained and the influence of the Poisson’s effect and strain gradient components on bending rigidity is investigated. As a contrast, the solution of the Bernoulli–Euler beam is also presented. The results demonstrate that when Poisson’s effect is ignored, the result of the plane-strain beam is consistent with that of the Bernoulli–Euler beam in the couple stress theory. While for the strain gradient theory, the bending rigidity of a plane-strain beam ignoring the Poisson’s effect is smaller than that of the Bernoulli–Euler beam due to the influence of the dilatation gradient and the deviatoric stretch gradient along the thickness direction of the beam. In addition, the influence of a strain gradient along the length direction on a bending rigidity is negligible. strain gradient theory beam bending size effect plane-strain couple stress theory Engineering (General). Civil engineering (General) Qing Wang verfasserin aut Ming Song verfasserin aut Jun Chen verfasserin aut Weiguang Su verfasserin aut Shasha Zhou verfasserin aut Li Wang verfasserin aut In Coatings MDPI AG, 2012 12(2022), 1304, p 1304 (DE-627)718627636 (DE-600)2662314-6 20796412 nnns volume:12 year:2022 number:1304, p 1304 https://doi.org/10.3390/coatings12091304 kostenfrei https://doaj.org/article/0a4a2fdbfc7a48f58e09040f5b7569f6 kostenfrei https://www.mdpi.com/2079-6412/12/9/1304 kostenfrei https://doaj.org/toc/2079-6412 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 1304, p 1304 |
allfields_unstemmed |
10.3390/coatings12091304 doi (DE-627)DOAJ08483210X (DE-599)DOAJ0a4a2fdbfc7a48f58e09040f5b7569f6 DE-627 ger DE-627 rakwb eng TA1-2040 Anqing Li verfasserin aut On Strain Gradient Theory and Its Application in Bending of Beam 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The general strain gradient theory of Mindlin is re-visited on the basis of a new set of higher-order metrics, which includes dilatation gradient, deviatoric stretch gradient, symmetric rotation gradient and curvature. A strain gradient bending theory for plane-strain beams is proposed based on the present strain gradient theory. The stress resultants are re-defined and the corresponding equilibrium equations and boundary conditions are derived for beams. The semi-inverse solution for a pure bending beam is obtained and the influence of the Poisson’s effect and strain gradient components on bending rigidity is investigated. As a contrast, the solution of the Bernoulli–Euler beam is also presented. The results demonstrate that when Poisson’s effect is ignored, the result of the plane-strain beam is consistent with that of the Bernoulli–Euler beam in the couple stress theory. While for the strain gradient theory, the bending rigidity of a plane-strain beam ignoring the Poisson’s effect is smaller than that of the Bernoulli–Euler beam due to the influence of the dilatation gradient and the deviatoric stretch gradient along the thickness direction of the beam. In addition, the influence of a strain gradient along the length direction on a bending rigidity is negligible. strain gradient theory beam bending size effect plane-strain couple stress theory Engineering (General). Civil engineering (General) Qing Wang verfasserin aut Ming Song verfasserin aut Jun Chen verfasserin aut Weiguang Su verfasserin aut Shasha Zhou verfasserin aut Li Wang verfasserin aut In Coatings MDPI AG, 2012 12(2022), 1304, p 1304 (DE-627)718627636 (DE-600)2662314-6 20796412 nnns volume:12 year:2022 number:1304, p 1304 https://doi.org/10.3390/coatings12091304 kostenfrei https://doaj.org/article/0a4a2fdbfc7a48f58e09040f5b7569f6 kostenfrei https://www.mdpi.com/2079-6412/12/9/1304 kostenfrei https://doaj.org/toc/2079-6412 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 1304, p 1304 |
allfieldsGer |
10.3390/coatings12091304 doi (DE-627)DOAJ08483210X (DE-599)DOAJ0a4a2fdbfc7a48f58e09040f5b7569f6 DE-627 ger DE-627 rakwb eng TA1-2040 Anqing Li verfasserin aut On Strain Gradient Theory and Its Application in Bending of Beam 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The general strain gradient theory of Mindlin is re-visited on the basis of a new set of higher-order metrics, which includes dilatation gradient, deviatoric stretch gradient, symmetric rotation gradient and curvature. A strain gradient bending theory for plane-strain beams is proposed based on the present strain gradient theory. The stress resultants are re-defined and the corresponding equilibrium equations and boundary conditions are derived for beams. The semi-inverse solution for a pure bending beam is obtained and the influence of the Poisson’s effect and strain gradient components on bending rigidity is investigated. As a contrast, the solution of the Bernoulli–Euler beam is also presented. The results demonstrate that when Poisson’s effect is ignored, the result of the plane-strain beam is consistent with that of the Bernoulli–Euler beam in the couple stress theory. While for the strain gradient theory, the bending rigidity of a plane-strain beam ignoring the Poisson’s effect is smaller than that of the Bernoulli–Euler beam due to the influence of the dilatation gradient and the deviatoric stretch gradient along the thickness direction of the beam. In addition, the influence of a strain gradient along the length direction on a bending rigidity is negligible. strain gradient theory beam bending size effect plane-strain couple stress theory Engineering (General). Civil engineering (General) Qing Wang verfasserin aut Ming Song verfasserin aut Jun Chen verfasserin aut Weiguang Su verfasserin aut Shasha Zhou verfasserin aut Li Wang verfasserin aut In Coatings MDPI AG, 2012 12(2022), 1304, p 1304 (DE-627)718627636 (DE-600)2662314-6 20796412 nnns volume:12 year:2022 number:1304, p 1304 https://doi.org/10.3390/coatings12091304 kostenfrei https://doaj.org/article/0a4a2fdbfc7a48f58e09040f5b7569f6 kostenfrei https://www.mdpi.com/2079-6412/12/9/1304 kostenfrei https://doaj.org/toc/2079-6412 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 1304, p 1304 |
allfieldsSound |
10.3390/coatings12091304 doi (DE-627)DOAJ08483210X (DE-599)DOAJ0a4a2fdbfc7a48f58e09040f5b7569f6 DE-627 ger DE-627 rakwb eng TA1-2040 Anqing Li verfasserin aut On Strain Gradient Theory and Its Application in Bending of Beam 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The general strain gradient theory of Mindlin is re-visited on the basis of a new set of higher-order metrics, which includes dilatation gradient, deviatoric stretch gradient, symmetric rotation gradient and curvature. A strain gradient bending theory for plane-strain beams is proposed based on the present strain gradient theory. The stress resultants are re-defined and the corresponding equilibrium equations and boundary conditions are derived for beams. The semi-inverse solution for a pure bending beam is obtained and the influence of the Poisson’s effect and strain gradient components on bending rigidity is investigated. As a contrast, the solution of the Bernoulli–Euler beam is also presented. The results demonstrate that when Poisson’s effect is ignored, the result of the plane-strain beam is consistent with that of the Bernoulli–Euler beam in the couple stress theory. While for the strain gradient theory, the bending rigidity of a plane-strain beam ignoring the Poisson’s effect is smaller than that of the Bernoulli–Euler beam due to the influence of the dilatation gradient and the deviatoric stretch gradient along the thickness direction of the beam. In addition, the influence of a strain gradient along the length direction on a bending rigidity is negligible. strain gradient theory beam bending size effect plane-strain couple stress theory Engineering (General). Civil engineering (General) Qing Wang verfasserin aut Ming Song verfasserin aut Jun Chen verfasserin aut Weiguang Su verfasserin aut Shasha Zhou verfasserin aut Li Wang verfasserin aut In Coatings MDPI AG, 2012 12(2022), 1304, p 1304 (DE-627)718627636 (DE-600)2662314-6 20796412 nnns volume:12 year:2022 number:1304, p 1304 https://doi.org/10.3390/coatings12091304 kostenfrei https://doaj.org/article/0a4a2fdbfc7a48f58e09040f5b7569f6 kostenfrei https://www.mdpi.com/2079-6412/12/9/1304 kostenfrei https://doaj.org/toc/2079-6412 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 1304, p 1304 |
language |
English |
source |
In Coatings 12(2022), 1304, p 1304 volume:12 year:2022 number:1304, p 1304 |
sourceStr |
In Coatings 12(2022), 1304, p 1304 volume:12 year:2022 number:1304, p 1304 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
strain gradient theory beam bending size effect plane-strain couple stress theory Engineering (General). Civil engineering (General) |
isfreeaccess_bool |
true |
container_title |
Coatings |
authorswithroles_txt_mv |
Anqing Li @@aut@@ Qing Wang @@aut@@ Ming Song @@aut@@ Jun Chen @@aut@@ Weiguang Su @@aut@@ Shasha Zhou @@aut@@ Li Wang @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
718627636 |
id |
DOAJ08483210X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ08483210X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502072627.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/coatings12091304</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ08483210X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ0a4a2fdbfc7a48f58e09040f5b7569f6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Anqing Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On Strain Gradient Theory and Its Application in Bending of Beam</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The general strain gradient theory of Mindlin is re-visited on the basis of a new set of higher-order metrics, which includes dilatation gradient, deviatoric stretch gradient, symmetric rotation gradient and curvature. A strain gradient bending theory for plane-strain beams is proposed based on the present strain gradient theory. The stress resultants are re-defined and the corresponding equilibrium equations and boundary conditions are derived for beams. The semi-inverse solution for a pure bending beam is obtained and the influence of the Poisson’s effect and strain gradient components on bending rigidity is investigated. As a contrast, the solution of the Bernoulli–Euler beam is also presented. The results demonstrate that when Poisson’s effect is ignored, the result of the plane-strain beam is consistent with that of the Bernoulli–Euler beam in the couple stress theory. While for the strain gradient theory, the bending rigidity of a plane-strain beam ignoring the Poisson’s effect is smaller than that of the Bernoulli–Euler beam due to the influence of the dilatation gradient and the deviatoric stretch gradient along the thickness direction of the beam. In addition, the influence of a strain gradient along the length direction on a bending rigidity is negligible.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">strain gradient theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">beam bending</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">size effect</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">plane-strain</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">couple stress theory</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qing Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ming Song</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jun Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Weiguang Su</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shasha Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Li Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Coatings</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">12(2022), 1304, p 1304</subfield><subfield code="w">(DE-627)718627636</subfield><subfield code="w">(DE-600)2662314-6</subfield><subfield code="x">20796412</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1304, p 1304</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/coatings12091304</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/0a4a2fdbfc7a48f58e09040f5b7569f6</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2079-6412/12/9/1304</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2079-6412</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="e">1304, p 1304</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Anqing Li |
spellingShingle |
Anqing Li misc TA1-2040 misc strain gradient theory misc beam bending misc size effect misc plane-strain misc couple stress theory misc Engineering (General). Civil engineering (General) On Strain Gradient Theory and Its Application in Bending of Beam |
authorStr |
Anqing Li |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)718627636 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA1-2040 |
illustrated |
Not Illustrated |
issn |
20796412 |
topic_title |
TA1-2040 On Strain Gradient Theory and Its Application in Bending of Beam strain gradient theory beam bending size effect plane-strain couple stress theory |
topic |
misc TA1-2040 misc strain gradient theory misc beam bending misc size effect misc plane-strain misc couple stress theory misc Engineering (General). Civil engineering (General) |
topic_unstemmed |
misc TA1-2040 misc strain gradient theory misc beam bending misc size effect misc plane-strain misc couple stress theory misc Engineering (General). Civil engineering (General) |
topic_browse |
misc TA1-2040 misc strain gradient theory misc beam bending misc size effect misc plane-strain misc couple stress theory misc Engineering (General). Civil engineering (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Coatings |
hierarchy_parent_id |
718627636 |
hierarchy_top_title |
Coatings |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)718627636 (DE-600)2662314-6 |
title |
On Strain Gradient Theory and Its Application in Bending of Beam |
ctrlnum |
(DE-627)DOAJ08483210X (DE-599)DOAJ0a4a2fdbfc7a48f58e09040f5b7569f6 |
title_full |
On Strain Gradient Theory and Its Application in Bending of Beam |
author_sort |
Anqing Li |
journal |
Coatings |
journalStr |
Coatings |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Anqing Li Qing Wang Ming Song Jun Chen Weiguang Su Shasha Zhou Li Wang |
container_volume |
12 |
class |
TA1-2040 |
format_se |
Elektronische Aufsätze |
author-letter |
Anqing Li |
doi_str_mv |
10.3390/coatings12091304 |
author2-role |
verfasserin |
title_sort |
on strain gradient theory and its application in bending of beam |
callnumber |
TA1-2040 |
title_auth |
On Strain Gradient Theory and Its Application in Bending of Beam |
abstract |
The general strain gradient theory of Mindlin is re-visited on the basis of a new set of higher-order metrics, which includes dilatation gradient, deviatoric stretch gradient, symmetric rotation gradient and curvature. A strain gradient bending theory for plane-strain beams is proposed based on the present strain gradient theory. The stress resultants are re-defined and the corresponding equilibrium equations and boundary conditions are derived for beams. The semi-inverse solution for a pure bending beam is obtained and the influence of the Poisson’s effect and strain gradient components on bending rigidity is investigated. As a contrast, the solution of the Bernoulli–Euler beam is also presented. The results demonstrate that when Poisson’s effect is ignored, the result of the plane-strain beam is consistent with that of the Bernoulli–Euler beam in the couple stress theory. While for the strain gradient theory, the bending rigidity of a plane-strain beam ignoring the Poisson’s effect is smaller than that of the Bernoulli–Euler beam due to the influence of the dilatation gradient and the deviatoric stretch gradient along the thickness direction of the beam. In addition, the influence of a strain gradient along the length direction on a bending rigidity is negligible. |
abstractGer |
The general strain gradient theory of Mindlin is re-visited on the basis of a new set of higher-order metrics, which includes dilatation gradient, deviatoric stretch gradient, symmetric rotation gradient and curvature. A strain gradient bending theory for plane-strain beams is proposed based on the present strain gradient theory. The stress resultants are re-defined and the corresponding equilibrium equations and boundary conditions are derived for beams. The semi-inverse solution for a pure bending beam is obtained and the influence of the Poisson’s effect and strain gradient components on bending rigidity is investigated. As a contrast, the solution of the Bernoulli–Euler beam is also presented. The results demonstrate that when Poisson’s effect is ignored, the result of the plane-strain beam is consistent with that of the Bernoulli–Euler beam in the couple stress theory. While for the strain gradient theory, the bending rigidity of a plane-strain beam ignoring the Poisson’s effect is smaller than that of the Bernoulli–Euler beam due to the influence of the dilatation gradient and the deviatoric stretch gradient along the thickness direction of the beam. In addition, the influence of a strain gradient along the length direction on a bending rigidity is negligible. |
abstract_unstemmed |
The general strain gradient theory of Mindlin is re-visited on the basis of a new set of higher-order metrics, which includes dilatation gradient, deviatoric stretch gradient, symmetric rotation gradient and curvature. A strain gradient bending theory for plane-strain beams is proposed based on the present strain gradient theory. The stress resultants are re-defined and the corresponding equilibrium equations and boundary conditions are derived for beams. The semi-inverse solution for a pure bending beam is obtained and the influence of the Poisson’s effect and strain gradient components on bending rigidity is investigated. As a contrast, the solution of the Bernoulli–Euler beam is also presented. The results demonstrate that when Poisson’s effect is ignored, the result of the plane-strain beam is consistent with that of the Bernoulli–Euler beam in the couple stress theory. While for the strain gradient theory, the bending rigidity of a plane-strain beam ignoring the Poisson’s effect is smaller than that of the Bernoulli–Euler beam due to the influence of the dilatation gradient and the deviatoric stretch gradient along the thickness direction of the beam. In addition, the influence of a strain gradient along the length direction on a bending rigidity is negligible. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1304, p 1304 |
title_short |
On Strain Gradient Theory and Its Application in Bending of Beam |
url |
https://doi.org/10.3390/coatings12091304 https://doaj.org/article/0a4a2fdbfc7a48f58e09040f5b7569f6 https://www.mdpi.com/2079-6412/12/9/1304 https://doaj.org/toc/2079-6412 |
remote_bool |
true |
author2 |
Qing Wang Ming Song Jun Chen Weiguang Su Shasha Zhou Li Wang |
author2Str |
Qing Wang Ming Song Jun Chen Weiguang Su Shasha Zhou Li Wang |
ppnlink |
718627636 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/coatings12091304 |
callnumber-a |
TA1-2040 |
up_date |
2024-07-04T00:44:27.642Z |
_version_ |
1803607204317626368 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ08483210X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502072627.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/coatings12091304</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ08483210X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ0a4a2fdbfc7a48f58e09040f5b7569f6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Anqing Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On Strain Gradient Theory and Its Application in Bending of Beam</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The general strain gradient theory of Mindlin is re-visited on the basis of a new set of higher-order metrics, which includes dilatation gradient, deviatoric stretch gradient, symmetric rotation gradient and curvature. A strain gradient bending theory for plane-strain beams is proposed based on the present strain gradient theory. The stress resultants are re-defined and the corresponding equilibrium equations and boundary conditions are derived for beams. The semi-inverse solution for a pure bending beam is obtained and the influence of the Poisson’s effect and strain gradient components on bending rigidity is investigated. As a contrast, the solution of the Bernoulli–Euler beam is also presented. The results demonstrate that when Poisson’s effect is ignored, the result of the plane-strain beam is consistent with that of the Bernoulli–Euler beam in the couple stress theory. While for the strain gradient theory, the bending rigidity of a plane-strain beam ignoring the Poisson’s effect is smaller than that of the Bernoulli–Euler beam due to the influence of the dilatation gradient and the deviatoric stretch gradient along the thickness direction of the beam. In addition, the influence of a strain gradient along the length direction on a bending rigidity is negligible.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">strain gradient theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">beam bending</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">size effect</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">plane-strain</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">couple stress theory</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qing Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ming Song</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jun Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Weiguang Su</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shasha Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Li Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Coatings</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">12(2022), 1304, p 1304</subfield><subfield code="w">(DE-627)718627636</subfield><subfield code="w">(DE-600)2662314-6</subfield><subfield code="x">20796412</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1304, p 1304</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/coatings12091304</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/0a4a2fdbfc7a48f58e09040f5b7569f6</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2079-6412/12/9/1304</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2079-6412</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="e">1304, p 1304</subfield></datafield></record></collection>
|
score |
7.402011 |