Genome-Wide Identification of Polyamine Oxidase (PAO) Family Genes: Roles of <i<CaPAO2</i< and <i<CaPAO4</i< in the Cold Tolerance of Pepper (<i<Capsicum annuum</i< L.)
Polyamine oxidases (PAOs), which are flavin adenine dinucleotide-dependent enzymes, catalyze polyamine (PA) catabolism, producing hydrogen peroxide (H<sub<2</sub<O<sub<2</sub<). Several PAO family members have been identified in plants, but their expression in pepper plants r...
Ausführliche Beschreibung
Autor*in: |
Jianwei Zhang [verfasserIn] Le Liang [verfasserIn] Jiachang Xiao [verfasserIn] Yongdong Xie [verfasserIn] Li Zhu [verfasserIn] Xinru Xue [verfasserIn] Linyu Xu [verfasserIn] Peihan Zhou [verfasserIn] Jianzhao Ran [verfasserIn] Zhi Huang [verfasserIn] Guochao Sun [verfasserIn] Yunsong Lai [verfasserIn] Bo Sun [verfasserIn] Yi Tang [verfasserIn] Huanxiu Li [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: International Journal of Molecular Sciences - MDPI AG, 2003, 23(2022), 17, p 9999 |
---|---|
Übergeordnetes Werk: |
volume:23 ; year:2022 ; number:17, p 9999 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.3390/ijms23179999 |
---|
Katalog-ID: |
DOAJ084936118 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ084936118 | ||
003 | DE-627 | ||
005 | 20240414214008.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/ijms23179999 |2 doi | |
035 | |a (DE-627)DOAJ084936118 | ||
035 | |a (DE-599)DOAJ5b7296aa0f8f4b1991ac471d0c281f34 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QH301-705.5 | |
050 | 0 | |a QD1-999 | |
100 | 0 | |a Jianwei Zhang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Genome-Wide Identification of Polyamine Oxidase (PAO) Family Genes: Roles of <i<CaPAO2</i< and <i<CaPAO4</i< in the Cold Tolerance of Pepper (<i<Capsicum annuum</i< L.) |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Polyamine oxidases (PAOs), which are flavin adenine dinucleotide-dependent enzymes, catalyze polyamine (PA) catabolism, producing hydrogen peroxide (H<sub<2</sub<O<sub<2</sub<). Several PAO family members have been identified in plants, but their expression in pepper plants remains unclear. Here, six PAO genes were identified in the ‘Zunla-1’ pepper genome (named <i<CaPAO1</i<–<i<CaPAO6</i< according to their chromosomal positions). The PAO proteins were divided into four subfamilies according to phylogenetics: CaPAO1 belongs to subfamily I; CaPAO3 and CaPAO5 belong to subfamily III; and CaPAO2, CaPAO4, and CaPAO6 belong to subfamily IV (none belong to subfamily II). <i<CaPAO2</i<, <i<CaPAO4</i<, and <i<CaPAO6</i< were ubiquitously and highly expressed in all tissues, <i<CaPAO1</i< was mainly expressed in flowers, whereas <i<CaPAO3</i< and <i<CaPAO5</i< were expressed at very low levels in all tissues. RNA-seq analysis revealed that <i<CaPAO2</i< and <i<CaPAO4</i< were notably upregulated by cold stress. CaPAO2 and CaPAO4 were localized in the peroxisome, and spermine was the preferred substrate for PA catabolism. <i<CaPAO2</i< and <i<CaPAO4</i< overexpression in <i<Arabidopsis thaliana</i< significantly enhanced freezing-stress tolerance by increasing antioxidant enzyme activity and decreasing malondialdehyde, H<sub<2</sub<O<sub<2</sub<, and superoxide accumulation, accompanied by the upregulation of cold-responsive genes (<i<AtCOR15A</i<, <i<AtRD29A</i<, <i<AtCOR47</i<, and <i<AtKIN1</i<). Thus, we identified candidate PAO genes for breeding cold-stress-tolerant transgenic pepper cultivars. | ||
650 | 4 | |a pepper | |
650 | 4 | |a PAO gene family | |
650 | 4 | |a cold stress | |
650 | 4 | |a overexpression | |
650 | 4 | |a prokaryotic expression | |
653 | 0 | |a Biology (General) | |
653 | 0 | |a Chemistry | |
700 | 0 | |a Le Liang |e verfasserin |4 aut | |
700 | 0 | |a Jiachang Xiao |e verfasserin |4 aut | |
700 | 0 | |a Yongdong Xie |e verfasserin |4 aut | |
700 | 0 | |a Li Zhu |e verfasserin |4 aut | |
700 | 0 | |a Xinru Xue |e verfasserin |4 aut | |
700 | 0 | |a Linyu Xu |e verfasserin |4 aut | |
700 | 0 | |a Peihan Zhou |e verfasserin |4 aut | |
700 | 0 | |a Jianzhao Ran |e verfasserin |4 aut | |
700 | 0 | |a Zhi Huang |e verfasserin |4 aut | |
700 | 0 | |a Guochao Sun |e verfasserin |4 aut | |
700 | 0 | |a Yunsong Lai |e verfasserin |4 aut | |
700 | 0 | |a Bo Sun |e verfasserin |4 aut | |
700 | 0 | |a Yi Tang |e verfasserin |4 aut | |
700 | 0 | |a Huanxiu Li |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t International Journal of Molecular Sciences |d MDPI AG, 2003 |g 23(2022), 17, p 9999 |w (DE-627)316340715 |w (DE-600)2019364-6 |x 14220067 |7 nnns |
773 | 1 | 8 | |g volume:23 |g year:2022 |g number:17, p 9999 |
856 | 4 | 0 | |u https://doi.org/10.3390/ijms23179999 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/5b7296aa0f8f4b1991ac471d0c281f34 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1422-0067/23/17/9999 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1661-6596 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1422-0067 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 23 |j 2022 |e 17, p 9999 |
author_variant |
j z jz l l ll j x jx y x yx l z lz x x xx l x lx p z pz j r jr z h zh g s gs y l yl b s bs y t yt h l hl |
---|---|
matchkey_str |
article:14220067:2022----::eoeiedniiainfoymnoiaeafmlgnsoeoiaa2adcpoinhclt |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
QH |
publishDate |
2022 |
allfields |
10.3390/ijms23179999 doi (DE-627)DOAJ084936118 (DE-599)DOAJ5b7296aa0f8f4b1991ac471d0c281f34 DE-627 ger DE-627 rakwb eng QH301-705.5 QD1-999 Jianwei Zhang verfasserin aut Genome-Wide Identification of Polyamine Oxidase (PAO) Family Genes: Roles of <i<CaPAO2</i< and <i<CaPAO4</i< in the Cold Tolerance of Pepper (<i<Capsicum annuum</i< L.) 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Polyamine oxidases (PAOs), which are flavin adenine dinucleotide-dependent enzymes, catalyze polyamine (PA) catabolism, producing hydrogen peroxide (H<sub<2</sub<O<sub<2</sub<). Several PAO family members have been identified in plants, but their expression in pepper plants remains unclear. Here, six PAO genes were identified in the ‘Zunla-1’ pepper genome (named <i<CaPAO1</i<–<i<CaPAO6</i< according to their chromosomal positions). The PAO proteins were divided into four subfamilies according to phylogenetics: CaPAO1 belongs to subfamily I; CaPAO3 and CaPAO5 belong to subfamily III; and CaPAO2, CaPAO4, and CaPAO6 belong to subfamily IV (none belong to subfamily II). <i<CaPAO2</i<, <i<CaPAO4</i<, and <i<CaPAO6</i< were ubiquitously and highly expressed in all tissues, <i<CaPAO1</i< was mainly expressed in flowers, whereas <i<CaPAO3</i< and <i<CaPAO5</i< were expressed at very low levels in all tissues. RNA-seq analysis revealed that <i<CaPAO2</i< and <i<CaPAO4</i< were notably upregulated by cold stress. CaPAO2 and CaPAO4 were localized in the peroxisome, and spermine was the preferred substrate for PA catabolism. <i<CaPAO2</i< and <i<CaPAO4</i< overexpression in <i<Arabidopsis thaliana</i< significantly enhanced freezing-stress tolerance by increasing antioxidant enzyme activity and decreasing malondialdehyde, H<sub<2</sub<O<sub<2</sub<, and superoxide accumulation, accompanied by the upregulation of cold-responsive genes (<i<AtCOR15A</i<, <i<AtRD29A</i<, <i<AtCOR47</i<, and <i<AtKIN1</i<). Thus, we identified candidate PAO genes for breeding cold-stress-tolerant transgenic pepper cultivars. pepper PAO gene family cold stress overexpression prokaryotic expression Biology (General) Chemistry Le Liang verfasserin aut Jiachang Xiao verfasserin aut Yongdong Xie verfasserin aut Li Zhu verfasserin aut Xinru Xue verfasserin aut Linyu Xu verfasserin aut Peihan Zhou verfasserin aut Jianzhao Ran verfasserin aut Zhi Huang verfasserin aut Guochao Sun verfasserin aut Yunsong Lai verfasserin aut Bo Sun verfasserin aut Yi Tang verfasserin aut Huanxiu Li verfasserin aut In International Journal of Molecular Sciences MDPI AG, 2003 23(2022), 17, p 9999 (DE-627)316340715 (DE-600)2019364-6 14220067 nnns volume:23 year:2022 number:17, p 9999 https://doi.org/10.3390/ijms23179999 kostenfrei https://doaj.org/article/5b7296aa0f8f4b1991ac471d0c281f34 kostenfrei https://www.mdpi.com/1422-0067/23/17/9999 kostenfrei https://doaj.org/toc/1661-6596 Journal toc kostenfrei https://doaj.org/toc/1422-0067 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2022 17, p 9999 |
spelling |
10.3390/ijms23179999 doi (DE-627)DOAJ084936118 (DE-599)DOAJ5b7296aa0f8f4b1991ac471d0c281f34 DE-627 ger DE-627 rakwb eng QH301-705.5 QD1-999 Jianwei Zhang verfasserin aut Genome-Wide Identification of Polyamine Oxidase (PAO) Family Genes: Roles of <i<CaPAO2</i< and <i<CaPAO4</i< in the Cold Tolerance of Pepper (<i<Capsicum annuum</i< L.) 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Polyamine oxidases (PAOs), which are flavin adenine dinucleotide-dependent enzymes, catalyze polyamine (PA) catabolism, producing hydrogen peroxide (H<sub<2</sub<O<sub<2</sub<). Several PAO family members have been identified in plants, but their expression in pepper plants remains unclear. Here, six PAO genes were identified in the ‘Zunla-1’ pepper genome (named <i<CaPAO1</i<–<i<CaPAO6</i< according to their chromosomal positions). The PAO proteins were divided into four subfamilies according to phylogenetics: CaPAO1 belongs to subfamily I; CaPAO3 and CaPAO5 belong to subfamily III; and CaPAO2, CaPAO4, and CaPAO6 belong to subfamily IV (none belong to subfamily II). <i<CaPAO2</i<, <i<CaPAO4</i<, and <i<CaPAO6</i< were ubiquitously and highly expressed in all tissues, <i<CaPAO1</i< was mainly expressed in flowers, whereas <i<CaPAO3</i< and <i<CaPAO5</i< were expressed at very low levels in all tissues. RNA-seq analysis revealed that <i<CaPAO2</i< and <i<CaPAO4</i< were notably upregulated by cold stress. CaPAO2 and CaPAO4 were localized in the peroxisome, and spermine was the preferred substrate for PA catabolism. <i<CaPAO2</i< and <i<CaPAO4</i< overexpression in <i<Arabidopsis thaliana</i< significantly enhanced freezing-stress tolerance by increasing antioxidant enzyme activity and decreasing malondialdehyde, H<sub<2</sub<O<sub<2</sub<, and superoxide accumulation, accompanied by the upregulation of cold-responsive genes (<i<AtCOR15A</i<, <i<AtRD29A</i<, <i<AtCOR47</i<, and <i<AtKIN1</i<). Thus, we identified candidate PAO genes for breeding cold-stress-tolerant transgenic pepper cultivars. pepper PAO gene family cold stress overexpression prokaryotic expression Biology (General) Chemistry Le Liang verfasserin aut Jiachang Xiao verfasserin aut Yongdong Xie verfasserin aut Li Zhu verfasserin aut Xinru Xue verfasserin aut Linyu Xu verfasserin aut Peihan Zhou verfasserin aut Jianzhao Ran verfasserin aut Zhi Huang verfasserin aut Guochao Sun verfasserin aut Yunsong Lai verfasserin aut Bo Sun verfasserin aut Yi Tang verfasserin aut Huanxiu Li verfasserin aut In International Journal of Molecular Sciences MDPI AG, 2003 23(2022), 17, p 9999 (DE-627)316340715 (DE-600)2019364-6 14220067 nnns volume:23 year:2022 number:17, p 9999 https://doi.org/10.3390/ijms23179999 kostenfrei https://doaj.org/article/5b7296aa0f8f4b1991ac471d0c281f34 kostenfrei https://www.mdpi.com/1422-0067/23/17/9999 kostenfrei https://doaj.org/toc/1661-6596 Journal toc kostenfrei https://doaj.org/toc/1422-0067 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2022 17, p 9999 |
allfields_unstemmed |
10.3390/ijms23179999 doi (DE-627)DOAJ084936118 (DE-599)DOAJ5b7296aa0f8f4b1991ac471d0c281f34 DE-627 ger DE-627 rakwb eng QH301-705.5 QD1-999 Jianwei Zhang verfasserin aut Genome-Wide Identification of Polyamine Oxidase (PAO) Family Genes: Roles of <i<CaPAO2</i< and <i<CaPAO4</i< in the Cold Tolerance of Pepper (<i<Capsicum annuum</i< L.) 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Polyamine oxidases (PAOs), which are flavin adenine dinucleotide-dependent enzymes, catalyze polyamine (PA) catabolism, producing hydrogen peroxide (H<sub<2</sub<O<sub<2</sub<). Several PAO family members have been identified in plants, but their expression in pepper plants remains unclear. Here, six PAO genes were identified in the ‘Zunla-1’ pepper genome (named <i<CaPAO1</i<–<i<CaPAO6</i< according to their chromosomal positions). The PAO proteins were divided into four subfamilies according to phylogenetics: CaPAO1 belongs to subfamily I; CaPAO3 and CaPAO5 belong to subfamily III; and CaPAO2, CaPAO4, and CaPAO6 belong to subfamily IV (none belong to subfamily II). <i<CaPAO2</i<, <i<CaPAO4</i<, and <i<CaPAO6</i< were ubiquitously and highly expressed in all tissues, <i<CaPAO1</i< was mainly expressed in flowers, whereas <i<CaPAO3</i< and <i<CaPAO5</i< were expressed at very low levels in all tissues. RNA-seq analysis revealed that <i<CaPAO2</i< and <i<CaPAO4</i< were notably upregulated by cold stress. CaPAO2 and CaPAO4 were localized in the peroxisome, and spermine was the preferred substrate for PA catabolism. <i<CaPAO2</i< and <i<CaPAO4</i< overexpression in <i<Arabidopsis thaliana</i< significantly enhanced freezing-stress tolerance by increasing antioxidant enzyme activity and decreasing malondialdehyde, H<sub<2</sub<O<sub<2</sub<, and superoxide accumulation, accompanied by the upregulation of cold-responsive genes (<i<AtCOR15A</i<, <i<AtRD29A</i<, <i<AtCOR47</i<, and <i<AtKIN1</i<). Thus, we identified candidate PAO genes for breeding cold-stress-tolerant transgenic pepper cultivars. pepper PAO gene family cold stress overexpression prokaryotic expression Biology (General) Chemistry Le Liang verfasserin aut Jiachang Xiao verfasserin aut Yongdong Xie verfasserin aut Li Zhu verfasserin aut Xinru Xue verfasserin aut Linyu Xu verfasserin aut Peihan Zhou verfasserin aut Jianzhao Ran verfasserin aut Zhi Huang verfasserin aut Guochao Sun verfasserin aut Yunsong Lai verfasserin aut Bo Sun verfasserin aut Yi Tang verfasserin aut Huanxiu Li verfasserin aut In International Journal of Molecular Sciences MDPI AG, 2003 23(2022), 17, p 9999 (DE-627)316340715 (DE-600)2019364-6 14220067 nnns volume:23 year:2022 number:17, p 9999 https://doi.org/10.3390/ijms23179999 kostenfrei https://doaj.org/article/5b7296aa0f8f4b1991ac471d0c281f34 kostenfrei https://www.mdpi.com/1422-0067/23/17/9999 kostenfrei https://doaj.org/toc/1661-6596 Journal toc kostenfrei https://doaj.org/toc/1422-0067 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2022 17, p 9999 |
allfieldsGer |
10.3390/ijms23179999 doi (DE-627)DOAJ084936118 (DE-599)DOAJ5b7296aa0f8f4b1991ac471d0c281f34 DE-627 ger DE-627 rakwb eng QH301-705.5 QD1-999 Jianwei Zhang verfasserin aut Genome-Wide Identification of Polyamine Oxidase (PAO) Family Genes: Roles of <i<CaPAO2</i< and <i<CaPAO4</i< in the Cold Tolerance of Pepper (<i<Capsicum annuum</i< L.) 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Polyamine oxidases (PAOs), which are flavin adenine dinucleotide-dependent enzymes, catalyze polyamine (PA) catabolism, producing hydrogen peroxide (H<sub<2</sub<O<sub<2</sub<). Several PAO family members have been identified in plants, but their expression in pepper plants remains unclear. Here, six PAO genes were identified in the ‘Zunla-1’ pepper genome (named <i<CaPAO1</i<–<i<CaPAO6</i< according to their chromosomal positions). The PAO proteins were divided into four subfamilies according to phylogenetics: CaPAO1 belongs to subfamily I; CaPAO3 and CaPAO5 belong to subfamily III; and CaPAO2, CaPAO4, and CaPAO6 belong to subfamily IV (none belong to subfamily II). <i<CaPAO2</i<, <i<CaPAO4</i<, and <i<CaPAO6</i< were ubiquitously and highly expressed in all tissues, <i<CaPAO1</i< was mainly expressed in flowers, whereas <i<CaPAO3</i< and <i<CaPAO5</i< were expressed at very low levels in all tissues. RNA-seq analysis revealed that <i<CaPAO2</i< and <i<CaPAO4</i< were notably upregulated by cold stress. CaPAO2 and CaPAO4 were localized in the peroxisome, and spermine was the preferred substrate for PA catabolism. <i<CaPAO2</i< and <i<CaPAO4</i< overexpression in <i<Arabidopsis thaliana</i< significantly enhanced freezing-stress tolerance by increasing antioxidant enzyme activity and decreasing malondialdehyde, H<sub<2</sub<O<sub<2</sub<, and superoxide accumulation, accompanied by the upregulation of cold-responsive genes (<i<AtCOR15A</i<, <i<AtRD29A</i<, <i<AtCOR47</i<, and <i<AtKIN1</i<). Thus, we identified candidate PAO genes for breeding cold-stress-tolerant transgenic pepper cultivars. pepper PAO gene family cold stress overexpression prokaryotic expression Biology (General) Chemistry Le Liang verfasserin aut Jiachang Xiao verfasserin aut Yongdong Xie verfasserin aut Li Zhu verfasserin aut Xinru Xue verfasserin aut Linyu Xu verfasserin aut Peihan Zhou verfasserin aut Jianzhao Ran verfasserin aut Zhi Huang verfasserin aut Guochao Sun verfasserin aut Yunsong Lai verfasserin aut Bo Sun verfasserin aut Yi Tang verfasserin aut Huanxiu Li verfasserin aut In International Journal of Molecular Sciences MDPI AG, 2003 23(2022), 17, p 9999 (DE-627)316340715 (DE-600)2019364-6 14220067 nnns volume:23 year:2022 number:17, p 9999 https://doi.org/10.3390/ijms23179999 kostenfrei https://doaj.org/article/5b7296aa0f8f4b1991ac471d0c281f34 kostenfrei https://www.mdpi.com/1422-0067/23/17/9999 kostenfrei https://doaj.org/toc/1661-6596 Journal toc kostenfrei https://doaj.org/toc/1422-0067 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2022 17, p 9999 |
allfieldsSound |
10.3390/ijms23179999 doi (DE-627)DOAJ084936118 (DE-599)DOAJ5b7296aa0f8f4b1991ac471d0c281f34 DE-627 ger DE-627 rakwb eng QH301-705.5 QD1-999 Jianwei Zhang verfasserin aut Genome-Wide Identification of Polyamine Oxidase (PAO) Family Genes: Roles of <i<CaPAO2</i< and <i<CaPAO4</i< in the Cold Tolerance of Pepper (<i<Capsicum annuum</i< L.) 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Polyamine oxidases (PAOs), which are flavin adenine dinucleotide-dependent enzymes, catalyze polyamine (PA) catabolism, producing hydrogen peroxide (H<sub<2</sub<O<sub<2</sub<). Several PAO family members have been identified in plants, but their expression in pepper plants remains unclear. Here, six PAO genes were identified in the ‘Zunla-1’ pepper genome (named <i<CaPAO1</i<–<i<CaPAO6</i< according to their chromosomal positions). The PAO proteins were divided into four subfamilies according to phylogenetics: CaPAO1 belongs to subfamily I; CaPAO3 and CaPAO5 belong to subfamily III; and CaPAO2, CaPAO4, and CaPAO6 belong to subfamily IV (none belong to subfamily II). <i<CaPAO2</i<, <i<CaPAO4</i<, and <i<CaPAO6</i< were ubiquitously and highly expressed in all tissues, <i<CaPAO1</i< was mainly expressed in flowers, whereas <i<CaPAO3</i< and <i<CaPAO5</i< were expressed at very low levels in all tissues. RNA-seq analysis revealed that <i<CaPAO2</i< and <i<CaPAO4</i< were notably upregulated by cold stress. CaPAO2 and CaPAO4 were localized in the peroxisome, and spermine was the preferred substrate for PA catabolism. <i<CaPAO2</i< and <i<CaPAO4</i< overexpression in <i<Arabidopsis thaliana</i< significantly enhanced freezing-stress tolerance by increasing antioxidant enzyme activity and decreasing malondialdehyde, H<sub<2</sub<O<sub<2</sub<, and superoxide accumulation, accompanied by the upregulation of cold-responsive genes (<i<AtCOR15A</i<, <i<AtRD29A</i<, <i<AtCOR47</i<, and <i<AtKIN1</i<). Thus, we identified candidate PAO genes for breeding cold-stress-tolerant transgenic pepper cultivars. pepper PAO gene family cold stress overexpression prokaryotic expression Biology (General) Chemistry Le Liang verfasserin aut Jiachang Xiao verfasserin aut Yongdong Xie verfasserin aut Li Zhu verfasserin aut Xinru Xue verfasserin aut Linyu Xu verfasserin aut Peihan Zhou verfasserin aut Jianzhao Ran verfasserin aut Zhi Huang verfasserin aut Guochao Sun verfasserin aut Yunsong Lai verfasserin aut Bo Sun verfasserin aut Yi Tang verfasserin aut Huanxiu Li verfasserin aut In International Journal of Molecular Sciences MDPI AG, 2003 23(2022), 17, p 9999 (DE-627)316340715 (DE-600)2019364-6 14220067 nnns volume:23 year:2022 number:17, p 9999 https://doi.org/10.3390/ijms23179999 kostenfrei https://doaj.org/article/5b7296aa0f8f4b1991ac471d0c281f34 kostenfrei https://www.mdpi.com/1422-0067/23/17/9999 kostenfrei https://doaj.org/toc/1661-6596 Journal toc kostenfrei https://doaj.org/toc/1422-0067 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2022 17, p 9999 |
language |
English |
source |
In International Journal of Molecular Sciences 23(2022), 17, p 9999 volume:23 year:2022 number:17, p 9999 |
sourceStr |
In International Journal of Molecular Sciences 23(2022), 17, p 9999 volume:23 year:2022 number:17, p 9999 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
pepper PAO gene family cold stress overexpression prokaryotic expression Biology (General) Chemistry |
isfreeaccess_bool |
true |
container_title |
International Journal of Molecular Sciences |
authorswithroles_txt_mv |
Jianwei Zhang @@aut@@ Le Liang @@aut@@ Jiachang Xiao @@aut@@ Yongdong Xie @@aut@@ Li Zhu @@aut@@ Xinru Xue @@aut@@ Linyu Xu @@aut@@ Peihan Zhou @@aut@@ Jianzhao Ran @@aut@@ Zhi Huang @@aut@@ Guochao Sun @@aut@@ Yunsong Lai @@aut@@ Bo Sun @@aut@@ Yi Tang @@aut@@ Huanxiu Li @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
316340715 |
id |
DOAJ084936118 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ084936118</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414214008.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/ijms23179999</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ084936118</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5b7296aa0f8f4b1991ac471d0c281f34</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jianwei Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Genome-Wide Identification of Polyamine Oxidase (PAO) Family Genes: Roles of <i<CaPAO2</i< and <i<CaPAO4</i< in the Cold Tolerance of Pepper (<i<Capsicum annuum</i< L.)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Polyamine oxidases (PAOs), which are flavin adenine dinucleotide-dependent enzymes, catalyze polyamine (PA) catabolism, producing hydrogen peroxide (H<sub<2</sub<O<sub<2</sub<). Several PAO family members have been identified in plants, but their expression in pepper plants remains unclear. Here, six PAO genes were identified in the ‘Zunla-1’ pepper genome (named <i<CaPAO1</i<–<i<CaPAO6</i< according to their chromosomal positions). The PAO proteins were divided into four subfamilies according to phylogenetics: CaPAO1 belongs to subfamily I; CaPAO3 and CaPAO5 belong to subfamily III; and CaPAO2, CaPAO4, and CaPAO6 belong to subfamily IV (none belong to subfamily II). <i<CaPAO2</i<, <i<CaPAO4</i<, and <i<CaPAO6</i< were ubiquitously and highly expressed in all tissues, <i<CaPAO1</i< was mainly expressed in flowers, whereas <i<CaPAO3</i< and <i<CaPAO5</i< were expressed at very low levels in all tissues. RNA-seq analysis revealed that <i<CaPAO2</i< and <i<CaPAO4</i< were notably upregulated by cold stress. CaPAO2 and CaPAO4 were localized in the peroxisome, and spermine was the preferred substrate for PA catabolism. <i<CaPAO2</i< and <i<CaPAO4</i< overexpression in <i<Arabidopsis thaliana</i< significantly enhanced freezing-stress tolerance by increasing antioxidant enzyme activity and decreasing malondialdehyde, H<sub<2</sub<O<sub<2</sub<, and superoxide accumulation, accompanied by the upregulation of cold-responsive genes (<i<AtCOR15A</i<, <i<AtRD29A</i<, <i<AtCOR47</i<, and <i<AtKIN1</i<). Thus, we identified candidate PAO genes for breeding cold-stress-tolerant transgenic pepper cultivars.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pepper</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PAO gene family</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cold stress</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">overexpression</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">prokaryotic expression</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Le Liang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiachang Xiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yongdong Xie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Li Zhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xinru Xue</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Linyu Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Peihan Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jianzhao Ran</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhi Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guochao Sun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yunsong Lai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bo Sun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yi Tang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huanxiu Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">International Journal of Molecular Sciences</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">23(2022), 17, p 9999</subfield><subfield code="w">(DE-627)316340715</subfield><subfield code="w">(DE-600)2019364-6</subfield><subfield code="x">14220067</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:17, p 9999</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/ijms23179999</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5b7296aa0f8f4b1991ac471d0c281f34</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1422-0067/23/17/9999</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1661-6596</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1422-0067</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2022</subfield><subfield code="e">17, p 9999</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Jianwei Zhang |
spellingShingle |
Jianwei Zhang misc QH301-705.5 misc QD1-999 misc pepper misc PAO gene family misc cold stress misc overexpression misc prokaryotic expression misc Biology (General) misc Chemistry Genome-Wide Identification of Polyamine Oxidase (PAO) Family Genes: Roles of <i<CaPAO2</i< and <i<CaPAO4</i< in the Cold Tolerance of Pepper (<i<Capsicum annuum</i< L.) |
authorStr |
Jianwei Zhang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)316340715 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QH301-705 |
illustrated |
Not Illustrated |
issn |
14220067 |
topic_title |
QH301-705.5 QD1-999 Genome-Wide Identification of Polyamine Oxidase (PAO) Family Genes: Roles of <i<CaPAO2</i< and <i<CaPAO4</i< in the Cold Tolerance of Pepper (<i<Capsicum annuum</i< L.) pepper PAO gene family cold stress overexpression prokaryotic expression |
topic |
misc QH301-705.5 misc QD1-999 misc pepper misc PAO gene family misc cold stress misc overexpression misc prokaryotic expression misc Biology (General) misc Chemistry |
topic_unstemmed |
misc QH301-705.5 misc QD1-999 misc pepper misc PAO gene family misc cold stress misc overexpression misc prokaryotic expression misc Biology (General) misc Chemistry |
topic_browse |
misc QH301-705.5 misc QD1-999 misc pepper misc PAO gene family misc cold stress misc overexpression misc prokaryotic expression misc Biology (General) misc Chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International Journal of Molecular Sciences |
hierarchy_parent_id |
316340715 |
hierarchy_top_title |
International Journal of Molecular Sciences |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)316340715 (DE-600)2019364-6 |
title |
Genome-Wide Identification of Polyamine Oxidase (PAO) Family Genes: Roles of <i<CaPAO2</i< and <i<CaPAO4</i< in the Cold Tolerance of Pepper (<i<Capsicum annuum</i< L.) |
ctrlnum |
(DE-627)DOAJ084936118 (DE-599)DOAJ5b7296aa0f8f4b1991ac471d0c281f34 |
title_full |
Genome-Wide Identification of Polyamine Oxidase (PAO) Family Genes: Roles of <i<CaPAO2</i< and <i<CaPAO4</i< in the Cold Tolerance of Pepper (<i<Capsicum annuum</i< L.) |
author_sort |
Jianwei Zhang |
journal |
International Journal of Molecular Sciences |
journalStr |
International Journal of Molecular Sciences |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Jianwei Zhang Le Liang Jiachang Xiao Yongdong Xie Li Zhu Xinru Xue Linyu Xu Peihan Zhou Jianzhao Ran Zhi Huang Guochao Sun Yunsong Lai Bo Sun Yi Tang Huanxiu Li |
container_volume |
23 |
class |
QH301-705.5 QD1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Jianwei Zhang |
doi_str_mv |
10.3390/ijms23179999 |
author2-role |
verfasserin |
title_sort |
genome-wide identification of polyamine oxidase (pao) family genes: roles of <i<capao2</i< and <i<capao4</i< in the cold tolerance of pepper (<i<capsicum annuum</i< l.) |
callnumber |
QH301-705.5 |
title_auth |
Genome-Wide Identification of Polyamine Oxidase (PAO) Family Genes: Roles of <i<CaPAO2</i< and <i<CaPAO4</i< in the Cold Tolerance of Pepper (<i<Capsicum annuum</i< L.) |
abstract |
Polyamine oxidases (PAOs), which are flavin adenine dinucleotide-dependent enzymes, catalyze polyamine (PA) catabolism, producing hydrogen peroxide (H<sub<2</sub<O<sub<2</sub<). Several PAO family members have been identified in plants, but their expression in pepper plants remains unclear. Here, six PAO genes were identified in the ‘Zunla-1’ pepper genome (named <i<CaPAO1</i<–<i<CaPAO6</i< according to their chromosomal positions). The PAO proteins were divided into four subfamilies according to phylogenetics: CaPAO1 belongs to subfamily I; CaPAO3 and CaPAO5 belong to subfamily III; and CaPAO2, CaPAO4, and CaPAO6 belong to subfamily IV (none belong to subfamily II). <i<CaPAO2</i<, <i<CaPAO4</i<, and <i<CaPAO6</i< were ubiquitously and highly expressed in all tissues, <i<CaPAO1</i< was mainly expressed in flowers, whereas <i<CaPAO3</i< and <i<CaPAO5</i< were expressed at very low levels in all tissues. RNA-seq analysis revealed that <i<CaPAO2</i< and <i<CaPAO4</i< were notably upregulated by cold stress. CaPAO2 and CaPAO4 were localized in the peroxisome, and spermine was the preferred substrate for PA catabolism. <i<CaPAO2</i< and <i<CaPAO4</i< overexpression in <i<Arabidopsis thaliana</i< significantly enhanced freezing-stress tolerance by increasing antioxidant enzyme activity and decreasing malondialdehyde, H<sub<2</sub<O<sub<2</sub<, and superoxide accumulation, accompanied by the upregulation of cold-responsive genes (<i<AtCOR15A</i<, <i<AtRD29A</i<, <i<AtCOR47</i<, and <i<AtKIN1</i<). Thus, we identified candidate PAO genes for breeding cold-stress-tolerant transgenic pepper cultivars. |
abstractGer |
Polyamine oxidases (PAOs), which are flavin adenine dinucleotide-dependent enzymes, catalyze polyamine (PA) catabolism, producing hydrogen peroxide (H<sub<2</sub<O<sub<2</sub<). Several PAO family members have been identified in plants, but their expression in pepper plants remains unclear. Here, six PAO genes were identified in the ‘Zunla-1’ pepper genome (named <i<CaPAO1</i<–<i<CaPAO6</i< according to their chromosomal positions). The PAO proteins were divided into four subfamilies according to phylogenetics: CaPAO1 belongs to subfamily I; CaPAO3 and CaPAO5 belong to subfamily III; and CaPAO2, CaPAO4, and CaPAO6 belong to subfamily IV (none belong to subfamily II). <i<CaPAO2</i<, <i<CaPAO4</i<, and <i<CaPAO6</i< were ubiquitously and highly expressed in all tissues, <i<CaPAO1</i< was mainly expressed in flowers, whereas <i<CaPAO3</i< and <i<CaPAO5</i< were expressed at very low levels in all tissues. RNA-seq analysis revealed that <i<CaPAO2</i< and <i<CaPAO4</i< were notably upregulated by cold stress. CaPAO2 and CaPAO4 were localized in the peroxisome, and spermine was the preferred substrate for PA catabolism. <i<CaPAO2</i< and <i<CaPAO4</i< overexpression in <i<Arabidopsis thaliana</i< significantly enhanced freezing-stress tolerance by increasing antioxidant enzyme activity and decreasing malondialdehyde, H<sub<2</sub<O<sub<2</sub<, and superoxide accumulation, accompanied by the upregulation of cold-responsive genes (<i<AtCOR15A</i<, <i<AtRD29A</i<, <i<AtCOR47</i<, and <i<AtKIN1</i<). Thus, we identified candidate PAO genes for breeding cold-stress-tolerant transgenic pepper cultivars. |
abstract_unstemmed |
Polyamine oxidases (PAOs), which are flavin adenine dinucleotide-dependent enzymes, catalyze polyamine (PA) catabolism, producing hydrogen peroxide (H<sub<2</sub<O<sub<2</sub<). Several PAO family members have been identified in plants, but their expression in pepper plants remains unclear. Here, six PAO genes were identified in the ‘Zunla-1’ pepper genome (named <i<CaPAO1</i<–<i<CaPAO6</i< according to their chromosomal positions). The PAO proteins were divided into four subfamilies according to phylogenetics: CaPAO1 belongs to subfamily I; CaPAO3 and CaPAO5 belong to subfamily III; and CaPAO2, CaPAO4, and CaPAO6 belong to subfamily IV (none belong to subfamily II). <i<CaPAO2</i<, <i<CaPAO4</i<, and <i<CaPAO6</i< were ubiquitously and highly expressed in all tissues, <i<CaPAO1</i< was mainly expressed in flowers, whereas <i<CaPAO3</i< and <i<CaPAO5</i< were expressed at very low levels in all tissues. RNA-seq analysis revealed that <i<CaPAO2</i< and <i<CaPAO4</i< were notably upregulated by cold stress. CaPAO2 and CaPAO4 were localized in the peroxisome, and spermine was the preferred substrate for PA catabolism. <i<CaPAO2</i< and <i<CaPAO4</i< overexpression in <i<Arabidopsis thaliana</i< significantly enhanced freezing-stress tolerance by increasing antioxidant enzyme activity and decreasing malondialdehyde, H<sub<2</sub<O<sub<2</sub<, and superoxide accumulation, accompanied by the upregulation of cold-responsive genes (<i<AtCOR15A</i<, <i<AtRD29A</i<, <i<AtCOR47</i<, and <i<AtKIN1</i<). Thus, we identified candidate PAO genes for breeding cold-stress-tolerant transgenic pepper cultivars. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
17, p 9999 |
title_short |
Genome-Wide Identification of Polyamine Oxidase (PAO) Family Genes: Roles of <i<CaPAO2</i< and <i<CaPAO4</i< in the Cold Tolerance of Pepper (<i<Capsicum annuum</i< L.) |
url |
https://doi.org/10.3390/ijms23179999 https://doaj.org/article/5b7296aa0f8f4b1991ac471d0c281f34 https://www.mdpi.com/1422-0067/23/17/9999 https://doaj.org/toc/1661-6596 https://doaj.org/toc/1422-0067 |
remote_bool |
true |
author2 |
Le Liang Jiachang Xiao Yongdong Xie Li Zhu Xinru Xue Linyu Xu Peihan Zhou Jianzhao Ran Zhi Huang Guochao Sun Yunsong Lai Bo Sun Yi Tang Huanxiu Li |
author2Str |
Le Liang Jiachang Xiao Yongdong Xie Li Zhu Xinru Xue Linyu Xu Peihan Zhou Jianzhao Ran Zhi Huang Guochao Sun Yunsong Lai Bo Sun Yi Tang Huanxiu Li |
ppnlink |
316340715 |
callnumber-subject |
QH - Natural History and Biology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/ijms23179999 |
callnumber-a |
QH301-705.5 |
up_date |
2024-07-04T01:10:27.808Z |
_version_ |
1803608840272347136 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ084936118</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414214008.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/ijms23179999</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ084936118</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5b7296aa0f8f4b1991ac471d0c281f34</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jianwei Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Genome-Wide Identification of Polyamine Oxidase (PAO) Family Genes: Roles of <i<CaPAO2</i< and <i<CaPAO4</i< in the Cold Tolerance of Pepper (<i<Capsicum annuum</i< L.)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Polyamine oxidases (PAOs), which are flavin adenine dinucleotide-dependent enzymes, catalyze polyamine (PA) catabolism, producing hydrogen peroxide (H<sub<2</sub<O<sub<2</sub<). Several PAO family members have been identified in plants, but their expression in pepper plants remains unclear. Here, six PAO genes were identified in the ‘Zunla-1’ pepper genome (named <i<CaPAO1</i<–<i<CaPAO6</i< according to their chromosomal positions). The PAO proteins were divided into four subfamilies according to phylogenetics: CaPAO1 belongs to subfamily I; CaPAO3 and CaPAO5 belong to subfamily III; and CaPAO2, CaPAO4, and CaPAO6 belong to subfamily IV (none belong to subfamily II). <i<CaPAO2</i<, <i<CaPAO4</i<, and <i<CaPAO6</i< were ubiquitously and highly expressed in all tissues, <i<CaPAO1</i< was mainly expressed in flowers, whereas <i<CaPAO3</i< and <i<CaPAO5</i< were expressed at very low levels in all tissues. RNA-seq analysis revealed that <i<CaPAO2</i< and <i<CaPAO4</i< were notably upregulated by cold stress. CaPAO2 and CaPAO4 were localized in the peroxisome, and spermine was the preferred substrate for PA catabolism. <i<CaPAO2</i< and <i<CaPAO4</i< overexpression in <i<Arabidopsis thaliana</i< significantly enhanced freezing-stress tolerance by increasing antioxidant enzyme activity and decreasing malondialdehyde, H<sub<2</sub<O<sub<2</sub<, and superoxide accumulation, accompanied by the upregulation of cold-responsive genes (<i<AtCOR15A</i<, <i<AtRD29A</i<, <i<AtCOR47</i<, and <i<AtKIN1</i<). Thus, we identified candidate PAO genes for breeding cold-stress-tolerant transgenic pepper cultivars.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pepper</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PAO gene family</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cold stress</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">overexpression</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">prokaryotic expression</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Le Liang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiachang Xiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yongdong Xie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Li Zhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xinru Xue</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Linyu Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Peihan Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jianzhao Ran</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhi Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guochao Sun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yunsong Lai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bo Sun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yi Tang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huanxiu Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">International Journal of Molecular Sciences</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">23(2022), 17, p 9999</subfield><subfield code="w">(DE-627)316340715</subfield><subfield code="w">(DE-600)2019364-6</subfield><subfield code="x">14220067</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:17, p 9999</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/ijms23179999</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5b7296aa0f8f4b1991ac471d0c281f34</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1422-0067/23/17/9999</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1661-6596</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1422-0067</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2022</subfield><subfield code="e">17, p 9999</subfield></datafield></record></collection>
|
score |
7.401642 |