X-Ray Pulsar-Based Navigation Considering Spacecraft Orbital Motion and Systematic Biases
The accuracy of X-ray pulsar-based navigation is greatly affected by the Doppler effect caused by the spacecraft orbital motion and the systematic biases introduced by the pulsar directional error, spacecraft-borne clock error, etc. In this paper, an innovative navigation method simultaneously emplo...
Ausführliche Beschreibung
Autor*in: |
Mengfan Xue [verfasserIn] Yifang Shi [verfasserIn] Yunfei Guo [verfasserIn] Na Huang [verfasserIn] Dongliang Peng [verfasserIn] Ji’an Luo [verfasserIn] Han Shentu [verfasserIn] Zhikun Chen [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Sensors - MDPI AG, 2003, 19(2019), 8, p 1877 |
---|---|
Übergeordnetes Werk: |
volume:19 ; year:2019 ; number:8, p 1877 |
Links: |
---|
DOI / URN: |
10.3390/s19081877 |
---|
Katalog-ID: |
DOAJ085015350 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ085015350 | ||
003 | DE-627 | ||
005 | 20230501211621.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/s19081877 |2 doi | |
035 | |a (DE-627)DOAJ085015350 | ||
035 | |a (DE-599)DOAJ9aa9d098d3fd413d81e83870f93d1d2b | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TP1-1185 | |
100 | 0 | |a Mengfan Xue |e verfasserin |4 aut | |
245 | 1 | 0 | |a X-Ray Pulsar-Based Navigation Considering Spacecraft Orbital Motion and Systematic Biases |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The accuracy of X-ray pulsar-based navigation is greatly affected by the Doppler effect caused by the spacecraft orbital motion and the systematic biases introduced by the pulsar directional error, spacecraft-borne clock error, etc. In this paper, an innovative navigation method simultaneously employing the pulse phase (PP), the difference of two neighbor PPs (DPP) and the Doppler frequency (DF) of X-ray pulsars as measurements is proposed to solve this problem. With the aid of the spacecraft orbital dynamics, a single pair of PP and DF relative to the spacecraft’s state estimation error can be estimated by using the joint probability density function of the arrival photon timestamps as the likelihood function. The systematic biases involved to the PP is proved to be nearly invariant over two adjacent navigation periods and the major part of it is eliminated in the DPP; therefore, the DPP is also exploited as additional navigation measurement to weaken the impact of systematic biases on navigation accuracy. Results of photon-level simulations show that the navigation accuracy of the proposed method is remarkably better than that of the method only using PP, the method using both PP and DF and the method using both PP and DPP for Earth orbit. | ||
650 | 4 | |a X-ray pulsar-based navigation | |
650 | 4 | |a Doppler effect | |
650 | 4 | |a systematic biases | |
650 | 4 | |a DPP | |
650 | 4 | |a photon-level simulation | |
653 | 0 | |a Chemical technology | |
700 | 0 | |a Yifang Shi |e verfasserin |4 aut | |
700 | 0 | |a Yunfei Guo |e verfasserin |4 aut | |
700 | 0 | |a Na Huang |e verfasserin |4 aut | |
700 | 0 | |a Dongliang Peng |e verfasserin |4 aut | |
700 | 0 | |a Ji’an Luo |e verfasserin |4 aut | |
700 | 0 | |a Han Shentu |e verfasserin |4 aut | |
700 | 0 | |a Zhikun Chen |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Sensors |d MDPI AG, 2003 |g 19(2019), 8, p 1877 |w (DE-627)331640910 |w (DE-600)2052857-7 |x 14248220 |7 nnns |
773 | 1 | 8 | |g volume:19 |g year:2019 |g number:8, p 1877 |
856 | 4 | 0 | |u https://doi.org/10.3390/s19081877 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/9aa9d098d3fd413d81e83870f93d1d2b |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1424-8220/19/8/1877 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1424-8220 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 19 |j 2019 |e 8, p 1877 |
author_variant |
m x mx y s ys y g yg n h nh d p dp j l jl h s hs z c zc |
---|---|
matchkey_str |
article:14248220:2019----::ryusraenvgtocnieigpccatriamt |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
TP |
publishDate |
2019 |
allfields |
10.3390/s19081877 doi (DE-627)DOAJ085015350 (DE-599)DOAJ9aa9d098d3fd413d81e83870f93d1d2b DE-627 ger DE-627 rakwb eng TP1-1185 Mengfan Xue verfasserin aut X-Ray Pulsar-Based Navigation Considering Spacecraft Orbital Motion and Systematic Biases 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The accuracy of X-ray pulsar-based navigation is greatly affected by the Doppler effect caused by the spacecraft orbital motion and the systematic biases introduced by the pulsar directional error, spacecraft-borne clock error, etc. In this paper, an innovative navigation method simultaneously employing the pulse phase (PP), the difference of two neighbor PPs (DPP) and the Doppler frequency (DF) of X-ray pulsars as measurements is proposed to solve this problem. With the aid of the spacecraft orbital dynamics, a single pair of PP and DF relative to the spacecraft’s state estimation error can be estimated by using the joint probability density function of the arrival photon timestamps as the likelihood function. The systematic biases involved to the PP is proved to be nearly invariant over two adjacent navigation periods and the major part of it is eliminated in the DPP; therefore, the DPP is also exploited as additional navigation measurement to weaken the impact of systematic biases on navigation accuracy. Results of photon-level simulations show that the navigation accuracy of the proposed method is remarkably better than that of the method only using PP, the method using both PP and DF and the method using both PP and DPP for Earth orbit. X-ray pulsar-based navigation Doppler effect systematic biases DPP photon-level simulation Chemical technology Yifang Shi verfasserin aut Yunfei Guo verfasserin aut Na Huang verfasserin aut Dongliang Peng verfasserin aut Ji’an Luo verfasserin aut Han Shentu verfasserin aut Zhikun Chen verfasserin aut In Sensors MDPI AG, 2003 19(2019), 8, p 1877 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:19 year:2019 number:8, p 1877 https://doi.org/10.3390/s19081877 kostenfrei https://doaj.org/article/9aa9d098d3fd413d81e83870f93d1d2b kostenfrei https://www.mdpi.com/1424-8220/19/8/1877 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 19 2019 8, p 1877 |
spelling |
10.3390/s19081877 doi (DE-627)DOAJ085015350 (DE-599)DOAJ9aa9d098d3fd413d81e83870f93d1d2b DE-627 ger DE-627 rakwb eng TP1-1185 Mengfan Xue verfasserin aut X-Ray Pulsar-Based Navigation Considering Spacecraft Orbital Motion and Systematic Biases 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The accuracy of X-ray pulsar-based navigation is greatly affected by the Doppler effect caused by the spacecraft orbital motion and the systematic biases introduced by the pulsar directional error, spacecraft-borne clock error, etc. In this paper, an innovative navigation method simultaneously employing the pulse phase (PP), the difference of two neighbor PPs (DPP) and the Doppler frequency (DF) of X-ray pulsars as measurements is proposed to solve this problem. With the aid of the spacecraft orbital dynamics, a single pair of PP and DF relative to the spacecraft’s state estimation error can be estimated by using the joint probability density function of the arrival photon timestamps as the likelihood function. The systematic biases involved to the PP is proved to be nearly invariant over two adjacent navigation periods and the major part of it is eliminated in the DPP; therefore, the DPP is also exploited as additional navigation measurement to weaken the impact of systematic biases on navigation accuracy. Results of photon-level simulations show that the navigation accuracy of the proposed method is remarkably better than that of the method only using PP, the method using both PP and DF and the method using both PP and DPP for Earth orbit. X-ray pulsar-based navigation Doppler effect systematic biases DPP photon-level simulation Chemical technology Yifang Shi verfasserin aut Yunfei Guo verfasserin aut Na Huang verfasserin aut Dongliang Peng verfasserin aut Ji’an Luo verfasserin aut Han Shentu verfasserin aut Zhikun Chen verfasserin aut In Sensors MDPI AG, 2003 19(2019), 8, p 1877 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:19 year:2019 number:8, p 1877 https://doi.org/10.3390/s19081877 kostenfrei https://doaj.org/article/9aa9d098d3fd413d81e83870f93d1d2b kostenfrei https://www.mdpi.com/1424-8220/19/8/1877 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 19 2019 8, p 1877 |
allfields_unstemmed |
10.3390/s19081877 doi (DE-627)DOAJ085015350 (DE-599)DOAJ9aa9d098d3fd413d81e83870f93d1d2b DE-627 ger DE-627 rakwb eng TP1-1185 Mengfan Xue verfasserin aut X-Ray Pulsar-Based Navigation Considering Spacecraft Orbital Motion and Systematic Biases 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The accuracy of X-ray pulsar-based navigation is greatly affected by the Doppler effect caused by the spacecraft orbital motion and the systematic biases introduced by the pulsar directional error, spacecraft-borne clock error, etc. In this paper, an innovative navigation method simultaneously employing the pulse phase (PP), the difference of two neighbor PPs (DPP) and the Doppler frequency (DF) of X-ray pulsars as measurements is proposed to solve this problem. With the aid of the spacecraft orbital dynamics, a single pair of PP and DF relative to the spacecraft’s state estimation error can be estimated by using the joint probability density function of the arrival photon timestamps as the likelihood function. The systematic biases involved to the PP is proved to be nearly invariant over two adjacent navigation periods and the major part of it is eliminated in the DPP; therefore, the DPP is also exploited as additional navigation measurement to weaken the impact of systematic biases on navigation accuracy. Results of photon-level simulations show that the navigation accuracy of the proposed method is remarkably better than that of the method only using PP, the method using both PP and DF and the method using both PP and DPP for Earth orbit. X-ray pulsar-based navigation Doppler effect systematic biases DPP photon-level simulation Chemical technology Yifang Shi verfasserin aut Yunfei Guo verfasserin aut Na Huang verfasserin aut Dongliang Peng verfasserin aut Ji’an Luo verfasserin aut Han Shentu verfasserin aut Zhikun Chen verfasserin aut In Sensors MDPI AG, 2003 19(2019), 8, p 1877 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:19 year:2019 number:8, p 1877 https://doi.org/10.3390/s19081877 kostenfrei https://doaj.org/article/9aa9d098d3fd413d81e83870f93d1d2b kostenfrei https://www.mdpi.com/1424-8220/19/8/1877 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 19 2019 8, p 1877 |
allfieldsGer |
10.3390/s19081877 doi (DE-627)DOAJ085015350 (DE-599)DOAJ9aa9d098d3fd413d81e83870f93d1d2b DE-627 ger DE-627 rakwb eng TP1-1185 Mengfan Xue verfasserin aut X-Ray Pulsar-Based Navigation Considering Spacecraft Orbital Motion and Systematic Biases 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The accuracy of X-ray pulsar-based navigation is greatly affected by the Doppler effect caused by the spacecraft orbital motion and the systematic biases introduced by the pulsar directional error, spacecraft-borne clock error, etc. In this paper, an innovative navigation method simultaneously employing the pulse phase (PP), the difference of two neighbor PPs (DPP) and the Doppler frequency (DF) of X-ray pulsars as measurements is proposed to solve this problem. With the aid of the spacecraft orbital dynamics, a single pair of PP and DF relative to the spacecraft’s state estimation error can be estimated by using the joint probability density function of the arrival photon timestamps as the likelihood function. The systematic biases involved to the PP is proved to be nearly invariant over two adjacent navigation periods and the major part of it is eliminated in the DPP; therefore, the DPP is also exploited as additional navigation measurement to weaken the impact of systematic biases on navigation accuracy. Results of photon-level simulations show that the navigation accuracy of the proposed method is remarkably better than that of the method only using PP, the method using both PP and DF and the method using both PP and DPP for Earth orbit. X-ray pulsar-based navigation Doppler effect systematic biases DPP photon-level simulation Chemical technology Yifang Shi verfasserin aut Yunfei Guo verfasserin aut Na Huang verfasserin aut Dongliang Peng verfasserin aut Ji’an Luo verfasserin aut Han Shentu verfasserin aut Zhikun Chen verfasserin aut In Sensors MDPI AG, 2003 19(2019), 8, p 1877 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:19 year:2019 number:8, p 1877 https://doi.org/10.3390/s19081877 kostenfrei https://doaj.org/article/9aa9d098d3fd413d81e83870f93d1d2b kostenfrei https://www.mdpi.com/1424-8220/19/8/1877 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 19 2019 8, p 1877 |
allfieldsSound |
10.3390/s19081877 doi (DE-627)DOAJ085015350 (DE-599)DOAJ9aa9d098d3fd413d81e83870f93d1d2b DE-627 ger DE-627 rakwb eng TP1-1185 Mengfan Xue verfasserin aut X-Ray Pulsar-Based Navigation Considering Spacecraft Orbital Motion and Systematic Biases 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The accuracy of X-ray pulsar-based navigation is greatly affected by the Doppler effect caused by the spacecraft orbital motion and the systematic biases introduced by the pulsar directional error, spacecraft-borne clock error, etc. In this paper, an innovative navigation method simultaneously employing the pulse phase (PP), the difference of two neighbor PPs (DPP) and the Doppler frequency (DF) of X-ray pulsars as measurements is proposed to solve this problem. With the aid of the spacecraft orbital dynamics, a single pair of PP and DF relative to the spacecraft’s state estimation error can be estimated by using the joint probability density function of the arrival photon timestamps as the likelihood function. The systematic biases involved to the PP is proved to be nearly invariant over two adjacent navigation periods and the major part of it is eliminated in the DPP; therefore, the DPP is also exploited as additional navigation measurement to weaken the impact of systematic biases on navigation accuracy. Results of photon-level simulations show that the navigation accuracy of the proposed method is remarkably better than that of the method only using PP, the method using both PP and DF and the method using both PP and DPP for Earth orbit. X-ray pulsar-based navigation Doppler effect systematic biases DPP photon-level simulation Chemical technology Yifang Shi verfasserin aut Yunfei Guo verfasserin aut Na Huang verfasserin aut Dongliang Peng verfasserin aut Ji’an Luo verfasserin aut Han Shentu verfasserin aut Zhikun Chen verfasserin aut In Sensors MDPI AG, 2003 19(2019), 8, p 1877 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:19 year:2019 number:8, p 1877 https://doi.org/10.3390/s19081877 kostenfrei https://doaj.org/article/9aa9d098d3fd413d81e83870f93d1d2b kostenfrei https://www.mdpi.com/1424-8220/19/8/1877 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 19 2019 8, p 1877 |
language |
English |
source |
In Sensors 19(2019), 8, p 1877 volume:19 year:2019 number:8, p 1877 |
sourceStr |
In Sensors 19(2019), 8, p 1877 volume:19 year:2019 number:8, p 1877 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
X-ray pulsar-based navigation Doppler effect systematic biases DPP photon-level simulation Chemical technology |
isfreeaccess_bool |
true |
container_title |
Sensors |
authorswithroles_txt_mv |
Mengfan Xue @@aut@@ Yifang Shi @@aut@@ Yunfei Guo @@aut@@ Na Huang @@aut@@ Dongliang Peng @@aut@@ Ji’an Luo @@aut@@ Han Shentu @@aut@@ Zhikun Chen @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
331640910 |
id |
DOAJ085015350 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ085015350</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230501211621.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/s19081877</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ085015350</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ9aa9d098d3fd413d81e83870f93d1d2b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mengfan Xue</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">X-Ray Pulsar-Based Navigation Considering Spacecraft Orbital Motion and Systematic Biases</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The accuracy of X-ray pulsar-based navigation is greatly affected by the Doppler effect caused by the spacecraft orbital motion and the systematic biases introduced by the pulsar directional error, spacecraft-borne clock error, etc. In this paper, an innovative navigation method simultaneously employing the pulse phase (PP), the difference of two neighbor PPs (DPP) and the Doppler frequency (DF) of X-ray pulsars as measurements is proposed to solve this problem. With the aid of the spacecraft orbital dynamics, a single pair of PP and DF relative to the spacecraft’s state estimation error can be estimated by using the joint probability density function of the arrival photon timestamps as the likelihood function. The systematic biases involved to the PP is proved to be nearly invariant over two adjacent navigation periods and the major part of it is eliminated in the DPP; therefore, the DPP is also exploited as additional navigation measurement to weaken the impact of systematic biases on navigation accuracy. Results of photon-level simulations show that the navigation accuracy of the proposed method is remarkably better than that of the method only using PP, the method using both PP and DF and the method using both PP and DPP for Earth orbit.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">X-ray pulsar-based navigation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Doppler effect</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">systematic biases</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DPP</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">photon-level simulation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yifang Shi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yunfei Guo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Na Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dongliang Peng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ji’an Luo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Han Shentu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhikun Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sensors</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">19(2019), 8, p 1877</subfield><subfield code="w">(DE-627)331640910</subfield><subfield code="w">(DE-600)2052857-7</subfield><subfield code="x">14248220</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:19</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:8, p 1877</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/s19081877</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/9aa9d098d3fd413d81e83870f93d1d2b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1424-8220/19/8/1877</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1424-8220</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">19</subfield><subfield code="j">2019</subfield><subfield code="e">8, p 1877</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Mengfan Xue |
spellingShingle |
Mengfan Xue misc TP1-1185 misc X-ray pulsar-based navigation misc Doppler effect misc systematic biases misc DPP misc photon-level simulation misc Chemical technology X-Ray Pulsar-Based Navigation Considering Spacecraft Orbital Motion and Systematic Biases |
authorStr |
Mengfan Xue |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)331640910 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TP1-1185 |
illustrated |
Not Illustrated |
issn |
14248220 |
topic_title |
TP1-1185 X-Ray Pulsar-Based Navigation Considering Spacecraft Orbital Motion and Systematic Biases X-ray pulsar-based navigation Doppler effect systematic biases DPP photon-level simulation |
topic |
misc TP1-1185 misc X-ray pulsar-based navigation misc Doppler effect misc systematic biases misc DPP misc photon-level simulation misc Chemical technology |
topic_unstemmed |
misc TP1-1185 misc X-ray pulsar-based navigation misc Doppler effect misc systematic biases misc DPP misc photon-level simulation misc Chemical technology |
topic_browse |
misc TP1-1185 misc X-ray pulsar-based navigation misc Doppler effect misc systematic biases misc DPP misc photon-level simulation misc Chemical technology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Sensors |
hierarchy_parent_id |
331640910 |
hierarchy_top_title |
Sensors |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)331640910 (DE-600)2052857-7 |
title |
X-Ray Pulsar-Based Navigation Considering Spacecraft Orbital Motion and Systematic Biases |
ctrlnum |
(DE-627)DOAJ085015350 (DE-599)DOAJ9aa9d098d3fd413d81e83870f93d1d2b |
title_full |
X-Ray Pulsar-Based Navigation Considering Spacecraft Orbital Motion and Systematic Biases |
author_sort |
Mengfan Xue |
journal |
Sensors |
journalStr |
Sensors |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
author_browse |
Mengfan Xue Yifang Shi Yunfei Guo Na Huang Dongliang Peng Ji’an Luo Han Shentu Zhikun Chen |
container_volume |
19 |
class |
TP1-1185 |
format_se |
Elektronische Aufsätze |
author-letter |
Mengfan Xue |
doi_str_mv |
10.3390/s19081877 |
author2-role |
verfasserin |
title_sort |
x-ray pulsar-based navigation considering spacecraft orbital motion and systematic biases |
callnumber |
TP1-1185 |
title_auth |
X-Ray Pulsar-Based Navigation Considering Spacecraft Orbital Motion and Systematic Biases |
abstract |
The accuracy of X-ray pulsar-based navigation is greatly affected by the Doppler effect caused by the spacecraft orbital motion and the systematic biases introduced by the pulsar directional error, spacecraft-borne clock error, etc. In this paper, an innovative navigation method simultaneously employing the pulse phase (PP), the difference of two neighbor PPs (DPP) and the Doppler frequency (DF) of X-ray pulsars as measurements is proposed to solve this problem. With the aid of the spacecraft orbital dynamics, a single pair of PP and DF relative to the spacecraft’s state estimation error can be estimated by using the joint probability density function of the arrival photon timestamps as the likelihood function. The systematic biases involved to the PP is proved to be nearly invariant over two adjacent navigation periods and the major part of it is eliminated in the DPP; therefore, the DPP is also exploited as additional navigation measurement to weaken the impact of systematic biases on navigation accuracy. Results of photon-level simulations show that the navigation accuracy of the proposed method is remarkably better than that of the method only using PP, the method using both PP and DF and the method using both PP and DPP for Earth orbit. |
abstractGer |
The accuracy of X-ray pulsar-based navigation is greatly affected by the Doppler effect caused by the spacecraft orbital motion and the systematic biases introduced by the pulsar directional error, spacecraft-borne clock error, etc. In this paper, an innovative navigation method simultaneously employing the pulse phase (PP), the difference of two neighbor PPs (DPP) and the Doppler frequency (DF) of X-ray pulsars as measurements is proposed to solve this problem. With the aid of the spacecraft orbital dynamics, a single pair of PP and DF relative to the spacecraft’s state estimation error can be estimated by using the joint probability density function of the arrival photon timestamps as the likelihood function. The systematic biases involved to the PP is proved to be nearly invariant over two adjacent navigation periods and the major part of it is eliminated in the DPP; therefore, the DPP is also exploited as additional navigation measurement to weaken the impact of systematic biases on navigation accuracy. Results of photon-level simulations show that the navigation accuracy of the proposed method is remarkably better than that of the method only using PP, the method using both PP and DF and the method using both PP and DPP for Earth orbit. |
abstract_unstemmed |
The accuracy of X-ray pulsar-based navigation is greatly affected by the Doppler effect caused by the spacecraft orbital motion and the systematic biases introduced by the pulsar directional error, spacecraft-borne clock error, etc. In this paper, an innovative navigation method simultaneously employing the pulse phase (PP), the difference of two neighbor PPs (DPP) and the Doppler frequency (DF) of X-ray pulsars as measurements is proposed to solve this problem. With the aid of the spacecraft orbital dynamics, a single pair of PP and DF relative to the spacecraft’s state estimation error can be estimated by using the joint probability density function of the arrival photon timestamps as the likelihood function. The systematic biases involved to the PP is proved to be nearly invariant over two adjacent navigation periods and the major part of it is eliminated in the DPP; therefore, the DPP is also exploited as additional navigation measurement to weaken the impact of systematic biases on navigation accuracy. Results of photon-level simulations show that the navigation accuracy of the proposed method is remarkably better than that of the method only using PP, the method using both PP and DF and the method using both PP and DPP for Earth orbit. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
8, p 1877 |
title_short |
X-Ray Pulsar-Based Navigation Considering Spacecraft Orbital Motion and Systematic Biases |
url |
https://doi.org/10.3390/s19081877 https://doaj.org/article/9aa9d098d3fd413d81e83870f93d1d2b https://www.mdpi.com/1424-8220/19/8/1877 https://doaj.org/toc/1424-8220 |
remote_bool |
true |
author2 |
Yifang Shi Yunfei Guo Na Huang Dongliang Peng Ji’an Luo Han Shentu Zhikun Chen |
author2Str |
Yifang Shi Yunfei Guo Na Huang Dongliang Peng Ji’an Luo Han Shentu Zhikun Chen |
ppnlink |
331640910 |
callnumber-subject |
TP - Chemical Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/s19081877 |
callnumber-a |
TP1-1185 |
up_date |
2024-07-04T01:29:50.981Z |
_version_ |
1803610059948687360 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ085015350</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230501211621.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/s19081877</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ085015350</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ9aa9d098d3fd413d81e83870f93d1d2b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mengfan Xue</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">X-Ray Pulsar-Based Navigation Considering Spacecraft Orbital Motion and Systematic Biases</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The accuracy of X-ray pulsar-based navigation is greatly affected by the Doppler effect caused by the spacecraft orbital motion and the systematic biases introduced by the pulsar directional error, spacecraft-borne clock error, etc. In this paper, an innovative navigation method simultaneously employing the pulse phase (PP), the difference of two neighbor PPs (DPP) and the Doppler frequency (DF) of X-ray pulsars as measurements is proposed to solve this problem. With the aid of the spacecraft orbital dynamics, a single pair of PP and DF relative to the spacecraft’s state estimation error can be estimated by using the joint probability density function of the arrival photon timestamps as the likelihood function. The systematic biases involved to the PP is proved to be nearly invariant over two adjacent navigation periods and the major part of it is eliminated in the DPP; therefore, the DPP is also exploited as additional navigation measurement to weaken the impact of systematic biases on navigation accuracy. Results of photon-level simulations show that the navigation accuracy of the proposed method is remarkably better than that of the method only using PP, the method using both PP and DF and the method using both PP and DPP for Earth orbit.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">X-ray pulsar-based navigation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Doppler effect</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">systematic biases</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DPP</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">photon-level simulation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yifang Shi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yunfei Guo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Na Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dongliang Peng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ji’an Luo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Han Shentu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhikun Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sensors</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">19(2019), 8, p 1877</subfield><subfield code="w">(DE-627)331640910</subfield><subfield code="w">(DE-600)2052857-7</subfield><subfield code="x">14248220</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:19</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:8, p 1877</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/s19081877</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/9aa9d098d3fd413d81e83870f93d1d2b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1424-8220/19/8/1877</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1424-8220</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">19</subfield><subfield code="j">2019</subfield><subfield code="e">8, p 1877</subfield></datafield></record></collection>
|
score |
7.40059 |