Enzyme-Responsive Amphiphilic Peptide Nanoparticles for Biocompatible and Efficient Drug Delivery
Self-assembled peptide nanostructures recently have gained much attention as drug delivery systems. As biomolecules, peptides have enhanced biocompatibility and biodegradability compared to polymer-based carriers. We introduce a peptide nanoparticle system containing arginine, histidine, and an enzy...
Ausführliche Beschreibung
Autor*in: |
Su Jeong Song [verfasserIn] Joon Sig Choi [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Pharmaceutics - MDPI AG, 2010, 14(2022), 1, p 143 |
---|---|
Übergeordnetes Werk: |
volume:14 ; year:2022 ; number:1, p 143 |
Links: |
---|
DOI / URN: |
10.3390/pharmaceutics14010143 |
---|
Katalog-ID: |
DOAJ085080489 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ085080489 | ||
003 | DE-627 | ||
005 | 20240414210651.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/pharmaceutics14010143 |2 doi | |
035 | |a (DE-627)DOAJ085080489 | ||
035 | |a (DE-599)DOAJaf252db95b9b430db980cb1c44bbcb03 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a RS1-441 | |
100 | 0 | |a Su Jeong Song |e verfasserin |4 aut | |
245 | 1 | 0 | |a Enzyme-Responsive Amphiphilic Peptide Nanoparticles for Biocompatible and Efficient Drug Delivery |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Self-assembled peptide nanostructures recently have gained much attention as drug delivery systems. As biomolecules, peptides have enhanced biocompatibility and biodegradability compared to polymer-based carriers. We introduce a peptide nanoparticle system containing arginine, histidine, and an enzyme-responsive core of repeating GLFG oligopeptides. GLFG oligopeptides exhibit specific sensitivity towards the enzyme cathepsin B that helps effective controlled release of cargo molecules in the cytoplasm. Arginine can induce cell penetration, and histidine facilitates lysosomal escape by its buffering capacity. Herein, we propose an enzyme-responsive amphiphilic peptide delivery system (Arg-His-(Gly-Phe-Lue-Gly)<sub<3</sub<, RH-(GFLG)<sub<3</sub<). The self-assembled RH-(GFLG)<sub<3</sub< globular nanoparticle structure exhibited a positive charge and formulation stability for 35 days. Nile Red-tagged RH-(GFLG)<sub<3</sub< nanoparticles showed good cellular uptake compared to the non-enzyme-responsive control groups with <span style="font-variant: small-caps;"<d</span<-form peptides (LD (<sup<L</sup<RH-<sup<D</sup<(GFLG)<sub<3</sub<), DL (<sup<D</sup<RH-L(GFLG)<sub<3</sub<), and DD (<sup<D</sup<RH-<sup<D</sup<(GFLG)<sub<3</sub<). The RH-(GFLG)<sub<3</sub< nanoparticles showed negligible cytotoxicity in HeLa cells and human RBCs. To determine the drug delivery efficacy, we introduced the anticancer drug doxorubicin (Dox) in the RH-(GFLG)<sub<3</sub< nanoparticle system. LL-Dox exhibited formulation stability, maintaining the physical properties of the nanostructure, as well as a robust anticancer effect in HeLa cells compared to DD-Dox. These results indicate that the enzyme-sensitive RH-(GFLG)<sub<3</sub< peptide nanoparticles are promising candidates as drug delivery carriers for biomedical applications. | ||
650 | 4 | |a peptide nanoparticle | |
650 | 4 | |a doxorubicin | |
650 | 4 | |a cytotoxicity | |
650 | 4 | |a drug delivery systems | |
653 | 0 | |a Pharmacy and materia medica | |
700 | 0 | |a Joon Sig Choi |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Pharmaceutics |d MDPI AG, 2010 |g 14(2022), 1, p 143 |w (DE-627)614096529 |w (DE-600)2527217-2 |x 19994923 |7 nnns |
773 | 1 | 8 | |g volume:14 |g year:2022 |g number:1, p 143 |
856 | 4 | 0 | |u https://doi.org/10.3390/pharmaceutics14010143 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/af252db95b9b430db980cb1c44bbcb03 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1999-4923/14/1/143 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1999-4923 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 14 |j 2022 |e 1, p 143 |
author_variant |
s j s sjs j s c jsc |
---|---|
matchkey_str |
article:19994923:2022----::nyeepniemhpiippieaoatcefricmail |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
RS |
publishDate |
2022 |
allfields |
10.3390/pharmaceutics14010143 doi (DE-627)DOAJ085080489 (DE-599)DOAJaf252db95b9b430db980cb1c44bbcb03 DE-627 ger DE-627 rakwb eng RS1-441 Su Jeong Song verfasserin aut Enzyme-Responsive Amphiphilic Peptide Nanoparticles for Biocompatible and Efficient Drug Delivery 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Self-assembled peptide nanostructures recently have gained much attention as drug delivery systems. As biomolecules, peptides have enhanced biocompatibility and biodegradability compared to polymer-based carriers. We introduce a peptide nanoparticle system containing arginine, histidine, and an enzyme-responsive core of repeating GLFG oligopeptides. GLFG oligopeptides exhibit specific sensitivity towards the enzyme cathepsin B that helps effective controlled release of cargo molecules in the cytoplasm. Arginine can induce cell penetration, and histidine facilitates lysosomal escape by its buffering capacity. Herein, we propose an enzyme-responsive amphiphilic peptide delivery system (Arg-His-(Gly-Phe-Lue-Gly)<sub<3</sub<, RH-(GFLG)<sub<3</sub<). The self-assembled RH-(GFLG)<sub<3</sub< globular nanoparticle structure exhibited a positive charge and formulation stability for 35 days. Nile Red-tagged RH-(GFLG)<sub<3</sub< nanoparticles showed good cellular uptake compared to the non-enzyme-responsive control groups with <span style="font-variant: small-caps;"<d</span<-form peptides (LD (<sup<L</sup<RH-<sup<D</sup<(GFLG)<sub<3</sub<), DL (<sup<D</sup<RH-L(GFLG)<sub<3</sub<), and DD (<sup<D</sup<RH-<sup<D</sup<(GFLG)<sub<3</sub<). The RH-(GFLG)<sub<3</sub< nanoparticles showed negligible cytotoxicity in HeLa cells and human RBCs. To determine the drug delivery efficacy, we introduced the anticancer drug doxorubicin (Dox) in the RH-(GFLG)<sub<3</sub< nanoparticle system. LL-Dox exhibited formulation stability, maintaining the physical properties of the nanostructure, as well as a robust anticancer effect in HeLa cells compared to DD-Dox. These results indicate that the enzyme-sensitive RH-(GFLG)<sub<3</sub< peptide nanoparticles are promising candidates as drug delivery carriers for biomedical applications. peptide nanoparticle doxorubicin cytotoxicity drug delivery systems Pharmacy and materia medica Joon Sig Choi verfasserin aut In Pharmaceutics MDPI AG, 2010 14(2022), 1, p 143 (DE-627)614096529 (DE-600)2527217-2 19994923 nnns volume:14 year:2022 number:1, p 143 https://doi.org/10.3390/pharmaceutics14010143 kostenfrei https://doaj.org/article/af252db95b9b430db980cb1c44bbcb03 kostenfrei https://www.mdpi.com/1999-4923/14/1/143 kostenfrei https://doaj.org/toc/1999-4923 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2022 1, p 143 |
spelling |
10.3390/pharmaceutics14010143 doi (DE-627)DOAJ085080489 (DE-599)DOAJaf252db95b9b430db980cb1c44bbcb03 DE-627 ger DE-627 rakwb eng RS1-441 Su Jeong Song verfasserin aut Enzyme-Responsive Amphiphilic Peptide Nanoparticles for Biocompatible and Efficient Drug Delivery 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Self-assembled peptide nanostructures recently have gained much attention as drug delivery systems. As biomolecules, peptides have enhanced biocompatibility and biodegradability compared to polymer-based carriers. We introduce a peptide nanoparticle system containing arginine, histidine, and an enzyme-responsive core of repeating GLFG oligopeptides. GLFG oligopeptides exhibit specific sensitivity towards the enzyme cathepsin B that helps effective controlled release of cargo molecules in the cytoplasm. Arginine can induce cell penetration, and histidine facilitates lysosomal escape by its buffering capacity. Herein, we propose an enzyme-responsive amphiphilic peptide delivery system (Arg-His-(Gly-Phe-Lue-Gly)<sub<3</sub<, RH-(GFLG)<sub<3</sub<). The self-assembled RH-(GFLG)<sub<3</sub< globular nanoparticle structure exhibited a positive charge and formulation stability for 35 days. Nile Red-tagged RH-(GFLG)<sub<3</sub< nanoparticles showed good cellular uptake compared to the non-enzyme-responsive control groups with <span style="font-variant: small-caps;"<d</span<-form peptides (LD (<sup<L</sup<RH-<sup<D</sup<(GFLG)<sub<3</sub<), DL (<sup<D</sup<RH-L(GFLG)<sub<3</sub<), and DD (<sup<D</sup<RH-<sup<D</sup<(GFLG)<sub<3</sub<). The RH-(GFLG)<sub<3</sub< nanoparticles showed negligible cytotoxicity in HeLa cells and human RBCs. To determine the drug delivery efficacy, we introduced the anticancer drug doxorubicin (Dox) in the RH-(GFLG)<sub<3</sub< nanoparticle system. LL-Dox exhibited formulation stability, maintaining the physical properties of the nanostructure, as well as a robust anticancer effect in HeLa cells compared to DD-Dox. These results indicate that the enzyme-sensitive RH-(GFLG)<sub<3</sub< peptide nanoparticles are promising candidates as drug delivery carriers for biomedical applications. peptide nanoparticle doxorubicin cytotoxicity drug delivery systems Pharmacy and materia medica Joon Sig Choi verfasserin aut In Pharmaceutics MDPI AG, 2010 14(2022), 1, p 143 (DE-627)614096529 (DE-600)2527217-2 19994923 nnns volume:14 year:2022 number:1, p 143 https://doi.org/10.3390/pharmaceutics14010143 kostenfrei https://doaj.org/article/af252db95b9b430db980cb1c44bbcb03 kostenfrei https://www.mdpi.com/1999-4923/14/1/143 kostenfrei https://doaj.org/toc/1999-4923 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2022 1, p 143 |
allfields_unstemmed |
10.3390/pharmaceutics14010143 doi (DE-627)DOAJ085080489 (DE-599)DOAJaf252db95b9b430db980cb1c44bbcb03 DE-627 ger DE-627 rakwb eng RS1-441 Su Jeong Song verfasserin aut Enzyme-Responsive Amphiphilic Peptide Nanoparticles for Biocompatible and Efficient Drug Delivery 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Self-assembled peptide nanostructures recently have gained much attention as drug delivery systems. As biomolecules, peptides have enhanced biocompatibility and biodegradability compared to polymer-based carriers. We introduce a peptide nanoparticle system containing arginine, histidine, and an enzyme-responsive core of repeating GLFG oligopeptides. GLFG oligopeptides exhibit specific sensitivity towards the enzyme cathepsin B that helps effective controlled release of cargo molecules in the cytoplasm. Arginine can induce cell penetration, and histidine facilitates lysosomal escape by its buffering capacity. Herein, we propose an enzyme-responsive amphiphilic peptide delivery system (Arg-His-(Gly-Phe-Lue-Gly)<sub<3</sub<, RH-(GFLG)<sub<3</sub<). The self-assembled RH-(GFLG)<sub<3</sub< globular nanoparticle structure exhibited a positive charge and formulation stability for 35 days. Nile Red-tagged RH-(GFLG)<sub<3</sub< nanoparticles showed good cellular uptake compared to the non-enzyme-responsive control groups with <span style="font-variant: small-caps;"<d</span<-form peptides (LD (<sup<L</sup<RH-<sup<D</sup<(GFLG)<sub<3</sub<), DL (<sup<D</sup<RH-L(GFLG)<sub<3</sub<), and DD (<sup<D</sup<RH-<sup<D</sup<(GFLG)<sub<3</sub<). The RH-(GFLG)<sub<3</sub< nanoparticles showed negligible cytotoxicity in HeLa cells and human RBCs. To determine the drug delivery efficacy, we introduced the anticancer drug doxorubicin (Dox) in the RH-(GFLG)<sub<3</sub< nanoparticle system. LL-Dox exhibited formulation stability, maintaining the physical properties of the nanostructure, as well as a robust anticancer effect in HeLa cells compared to DD-Dox. These results indicate that the enzyme-sensitive RH-(GFLG)<sub<3</sub< peptide nanoparticles are promising candidates as drug delivery carriers for biomedical applications. peptide nanoparticle doxorubicin cytotoxicity drug delivery systems Pharmacy and materia medica Joon Sig Choi verfasserin aut In Pharmaceutics MDPI AG, 2010 14(2022), 1, p 143 (DE-627)614096529 (DE-600)2527217-2 19994923 nnns volume:14 year:2022 number:1, p 143 https://doi.org/10.3390/pharmaceutics14010143 kostenfrei https://doaj.org/article/af252db95b9b430db980cb1c44bbcb03 kostenfrei https://www.mdpi.com/1999-4923/14/1/143 kostenfrei https://doaj.org/toc/1999-4923 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2022 1, p 143 |
allfieldsGer |
10.3390/pharmaceutics14010143 doi (DE-627)DOAJ085080489 (DE-599)DOAJaf252db95b9b430db980cb1c44bbcb03 DE-627 ger DE-627 rakwb eng RS1-441 Su Jeong Song verfasserin aut Enzyme-Responsive Amphiphilic Peptide Nanoparticles for Biocompatible and Efficient Drug Delivery 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Self-assembled peptide nanostructures recently have gained much attention as drug delivery systems. As biomolecules, peptides have enhanced biocompatibility and biodegradability compared to polymer-based carriers. We introduce a peptide nanoparticle system containing arginine, histidine, and an enzyme-responsive core of repeating GLFG oligopeptides. GLFG oligopeptides exhibit specific sensitivity towards the enzyme cathepsin B that helps effective controlled release of cargo molecules in the cytoplasm. Arginine can induce cell penetration, and histidine facilitates lysosomal escape by its buffering capacity. Herein, we propose an enzyme-responsive amphiphilic peptide delivery system (Arg-His-(Gly-Phe-Lue-Gly)<sub<3</sub<, RH-(GFLG)<sub<3</sub<). The self-assembled RH-(GFLG)<sub<3</sub< globular nanoparticle structure exhibited a positive charge and formulation stability for 35 days. Nile Red-tagged RH-(GFLG)<sub<3</sub< nanoparticles showed good cellular uptake compared to the non-enzyme-responsive control groups with <span style="font-variant: small-caps;"<d</span<-form peptides (LD (<sup<L</sup<RH-<sup<D</sup<(GFLG)<sub<3</sub<), DL (<sup<D</sup<RH-L(GFLG)<sub<3</sub<), and DD (<sup<D</sup<RH-<sup<D</sup<(GFLG)<sub<3</sub<). The RH-(GFLG)<sub<3</sub< nanoparticles showed negligible cytotoxicity in HeLa cells and human RBCs. To determine the drug delivery efficacy, we introduced the anticancer drug doxorubicin (Dox) in the RH-(GFLG)<sub<3</sub< nanoparticle system. LL-Dox exhibited formulation stability, maintaining the physical properties of the nanostructure, as well as a robust anticancer effect in HeLa cells compared to DD-Dox. These results indicate that the enzyme-sensitive RH-(GFLG)<sub<3</sub< peptide nanoparticles are promising candidates as drug delivery carriers for biomedical applications. peptide nanoparticle doxorubicin cytotoxicity drug delivery systems Pharmacy and materia medica Joon Sig Choi verfasserin aut In Pharmaceutics MDPI AG, 2010 14(2022), 1, p 143 (DE-627)614096529 (DE-600)2527217-2 19994923 nnns volume:14 year:2022 number:1, p 143 https://doi.org/10.3390/pharmaceutics14010143 kostenfrei https://doaj.org/article/af252db95b9b430db980cb1c44bbcb03 kostenfrei https://www.mdpi.com/1999-4923/14/1/143 kostenfrei https://doaj.org/toc/1999-4923 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2022 1, p 143 |
allfieldsSound |
10.3390/pharmaceutics14010143 doi (DE-627)DOAJ085080489 (DE-599)DOAJaf252db95b9b430db980cb1c44bbcb03 DE-627 ger DE-627 rakwb eng RS1-441 Su Jeong Song verfasserin aut Enzyme-Responsive Amphiphilic Peptide Nanoparticles for Biocompatible and Efficient Drug Delivery 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Self-assembled peptide nanostructures recently have gained much attention as drug delivery systems. As biomolecules, peptides have enhanced biocompatibility and biodegradability compared to polymer-based carriers. We introduce a peptide nanoparticle system containing arginine, histidine, and an enzyme-responsive core of repeating GLFG oligopeptides. GLFG oligopeptides exhibit specific sensitivity towards the enzyme cathepsin B that helps effective controlled release of cargo molecules in the cytoplasm. Arginine can induce cell penetration, and histidine facilitates lysosomal escape by its buffering capacity. Herein, we propose an enzyme-responsive amphiphilic peptide delivery system (Arg-His-(Gly-Phe-Lue-Gly)<sub<3</sub<, RH-(GFLG)<sub<3</sub<). The self-assembled RH-(GFLG)<sub<3</sub< globular nanoparticle structure exhibited a positive charge and formulation stability for 35 days. Nile Red-tagged RH-(GFLG)<sub<3</sub< nanoparticles showed good cellular uptake compared to the non-enzyme-responsive control groups with <span style="font-variant: small-caps;"<d</span<-form peptides (LD (<sup<L</sup<RH-<sup<D</sup<(GFLG)<sub<3</sub<), DL (<sup<D</sup<RH-L(GFLG)<sub<3</sub<), and DD (<sup<D</sup<RH-<sup<D</sup<(GFLG)<sub<3</sub<). The RH-(GFLG)<sub<3</sub< nanoparticles showed negligible cytotoxicity in HeLa cells and human RBCs. To determine the drug delivery efficacy, we introduced the anticancer drug doxorubicin (Dox) in the RH-(GFLG)<sub<3</sub< nanoparticle system. LL-Dox exhibited formulation stability, maintaining the physical properties of the nanostructure, as well as a robust anticancer effect in HeLa cells compared to DD-Dox. These results indicate that the enzyme-sensitive RH-(GFLG)<sub<3</sub< peptide nanoparticles are promising candidates as drug delivery carriers for biomedical applications. peptide nanoparticle doxorubicin cytotoxicity drug delivery systems Pharmacy and materia medica Joon Sig Choi verfasserin aut In Pharmaceutics MDPI AG, 2010 14(2022), 1, p 143 (DE-627)614096529 (DE-600)2527217-2 19994923 nnns volume:14 year:2022 number:1, p 143 https://doi.org/10.3390/pharmaceutics14010143 kostenfrei https://doaj.org/article/af252db95b9b430db980cb1c44bbcb03 kostenfrei https://www.mdpi.com/1999-4923/14/1/143 kostenfrei https://doaj.org/toc/1999-4923 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2022 1, p 143 |
language |
English |
source |
In Pharmaceutics 14(2022), 1, p 143 volume:14 year:2022 number:1, p 143 |
sourceStr |
In Pharmaceutics 14(2022), 1, p 143 volume:14 year:2022 number:1, p 143 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
peptide nanoparticle doxorubicin cytotoxicity drug delivery systems Pharmacy and materia medica |
isfreeaccess_bool |
true |
container_title |
Pharmaceutics |
authorswithroles_txt_mv |
Su Jeong Song @@aut@@ Joon Sig Choi @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
614096529 |
id |
DOAJ085080489 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ085080489</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414210651.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/pharmaceutics14010143</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ085080489</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJaf252db95b9b430db980cb1c44bbcb03</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RS1-441</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Su Jeong Song</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Enzyme-Responsive Amphiphilic Peptide Nanoparticles for Biocompatible and Efficient Drug Delivery</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Self-assembled peptide nanostructures recently have gained much attention as drug delivery systems. As biomolecules, peptides have enhanced biocompatibility and biodegradability compared to polymer-based carriers. We introduce a peptide nanoparticle system containing arginine, histidine, and an enzyme-responsive core of repeating GLFG oligopeptides. GLFG oligopeptides exhibit specific sensitivity towards the enzyme cathepsin B that helps effective controlled release of cargo molecules in the cytoplasm. Arginine can induce cell penetration, and histidine facilitates lysosomal escape by its buffering capacity. Herein, we propose an enzyme-responsive amphiphilic peptide delivery system (Arg-His-(Gly-Phe-Lue-Gly)<sub<3</sub<, RH-(GFLG)<sub<3</sub<). The self-assembled RH-(GFLG)<sub<3</sub< globular nanoparticle structure exhibited a positive charge and formulation stability for 35 days. Nile Red-tagged RH-(GFLG)<sub<3</sub< nanoparticles showed good cellular uptake compared to the non-enzyme-responsive control groups with <span style="font-variant: small-caps;"<d</span<-form peptides (LD (<sup<L</sup<RH-<sup<D</sup<(GFLG)<sub<3</sub<), DL (<sup<D</sup<RH-L(GFLG)<sub<3</sub<), and DD (<sup<D</sup<RH-<sup<D</sup<(GFLG)<sub<3</sub<). The RH-(GFLG)<sub<3</sub< nanoparticles showed negligible cytotoxicity in HeLa cells and human RBCs. To determine the drug delivery efficacy, we introduced the anticancer drug doxorubicin (Dox) in the RH-(GFLG)<sub<3</sub< nanoparticle system. LL-Dox exhibited formulation stability, maintaining the physical properties of the nanostructure, as well as a robust anticancer effect in HeLa cells compared to DD-Dox. These results indicate that the enzyme-sensitive RH-(GFLG)<sub<3</sub< peptide nanoparticles are promising candidates as drug delivery carriers for biomedical applications.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">peptide nanoparticle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">doxorubicin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cytotoxicity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">drug delivery systems</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Pharmacy and materia medica</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Joon Sig Choi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Pharmaceutics</subfield><subfield code="d">MDPI AG, 2010</subfield><subfield code="g">14(2022), 1, p 143</subfield><subfield code="w">(DE-627)614096529</subfield><subfield code="w">(DE-600)2527217-2</subfield><subfield code="x">19994923</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1, p 143</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/pharmaceutics14010143</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/af252db95b9b430db980cb1c44bbcb03</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1999-4923/14/1/143</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1999-4923</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2022</subfield><subfield code="e">1, p 143</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Su Jeong Song |
spellingShingle |
Su Jeong Song misc RS1-441 misc peptide nanoparticle misc doxorubicin misc cytotoxicity misc drug delivery systems misc Pharmacy and materia medica Enzyme-Responsive Amphiphilic Peptide Nanoparticles for Biocompatible and Efficient Drug Delivery |
authorStr |
Su Jeong Song |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)614096529 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
RS1-441 |
illustrated |
Not Illustrated |
issn |
19994923 |
topic_title |
RS1-441 Enzyme-Responsive Amphiphilic Peptide Nanoparticles for Biocompatible and Efficient Drug Delivery peptide nanoparticle doxorubicin cytotoxicity drug delivery systems |
topic |
misc RS1-441 misc peptide nanoparticle misc doxorubicin misc cytotoxicity misc drug delivery systems misc Pharmacy and materia medica |
topic_unstemmed |
misc RS1-441 misc peptide nanoparticle misc doxorubicin misc cytotoxicity misc drug delivery systems misc Pharmacy and materia medica |
topic_browse |
misc RS1-441 misc peptide nanoparticle misc doxorubicin misc cytotoxicity misc drug delivery systems misc Pharmacy and materia medica |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Pharmaceutics |
hierarchy_parent_id |
614096529 |
hierarchy_top_title |
Pharmaceutics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)614096529 (DE-600)2527217-2 |
title |
Enzyme-Responsive Amphiphilic Peptide Nanoparticles for Biocompatible and Efficient Drug Delivery |
ctrlnum |
(DE-627)DOAJ085080489 (DE-599)DOAJaf252db95b9b430db980cb1c44bbcb03 |
title_full |
Enzyme-Responsive Amphiphilic Peptide Nanoparticles for Biocompatible and Efficient Drug Delivery |
author_sort |
Su Jeong Song |
journal |
Pharmaceutics |
journalStr |
Pharmaceutics |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Su Jeong Song Joon Sig Choi |
container_volume |
14 |
class |
RS1-441 |
format_se |
Elektronische Aufsätze |
author-letter |
Su Jeong Song |
doi_str_mv |
10.3390/pharmaceutics14010143 |
author2-role |
verfasserin |
title_sort |
enzyme-responsive amphiphilic peptide nanoparticles for biocompatible and efficient drug delivery |
callnumber |
RS1-441 |
title_auth |
Enzyme-Responsive Amphiphilic Peptide Nanoparticles for Biocompatible and Efficient Drug Delivery |
abstract |
Self-assembled peptide nanostructures recently have gained much attention as drug delivery systems. As biomolecules, peptides have enhanced biocompatibility and biodegradability compared to polymer-based carriers. We introduce a peptide nanoparticle system containing arginine, histidine, and an enzyme-responsive core of repeating GLFG oligopeptides. GLFG oligopeptides exhibit specific sensitivity towards the enzyme cathepsin B that helps effective controlled release of cargo molecules in the cytoplasm. Arginine can induce cell penetration, and histidine facilitates lysosomal escape by its buffering capacity. Herein, we propose an enzyme-responsive amphiphilic peptide delivery system (Arg-His-(Gly-Phe-Lue-Gly)<sub<3</sub<, RH-(GFLG)<sub<3</sub<). The self-assembled RH-(GFLG)<sub<3</sub< globular nanoparticle structure exhibited a positive charge and formulation stability for 35 days. Nile Red-tagged RH-(GFLG)<sub<3</sub< nanoparticles showed good cellular uptake compared to the non-enzyme-responsive control groups with <span style="font-variant: small-caps;"<d</span<-form peptides (LD (<sup<L</sup<RH-<sup<D</sup<(GFLG)<sub<3</sub<), DL (<sup<D</sup<RH-L(GFLG)<sub<3</sub<), and DD (<sup<D</sup<RH-<sup<D</sup<(GFLG)<sub<3</sub<). The RH-(GFLG)<sub<3</sub< nanoparticles showed negligible cytotoxicity in HeLa cells and human RBCs. To determine the drug delivery efficacy, we introduced the anticancer drug doxorubicin (Dox) in the RH-(GFLG)<sub<3</sub< nanoparticle system. LL-Dox exhibited formulation stability, maintaining the physical properties of the nanostructure, as well as a robust anticancer effect in HeLa cells compared to DD-Dox. These results indicate that the enzyme-sensitive RH-(GFLG)<sub<3</sub< peptide nanoparticles are promising candidates as drug delivery carriers for biomedical applications. |
abstractGer |
Self-assembled peptide nanostructures recently have gained much attention as drug delivery systems. As biomolecules, peptides have enhanced biocompatibility and biodegradability compared to polymer-based carriers. We introduce a peptide nanoparticle system containing arginine, histidine, and an enzyme-responsive core of repeating GLFG oligopeptides. GLFG oligopeptides exhibit specific sensitivity towards the enzyme cathepsin B that helps effective controlled release of cargo molecules in the cytoplasm. Arginine can induce cell penetration, and histidine facilitates lysosomal escape by its buffering capacity. Herein, we propose an enzyme-responsive amphiphilic peptide delivery system (Arg-His-(Gly-Phe-Lue-Gly)<sub<3</sub<, RH-(GFLG)<sub<3</sub<). The self-assembled RH-(GFLG)<sub<3</sub< globular nanoparticle structure exhibited a positive charge and formulation stability for 35 days. Nile Red-tagged RH-(GFLG)<sub<3</sub< nanoparticles showed good cellular uptake compared to the non-enzyme-responsive control groups with <span style="font-variant: small-caps;"<d</span<-form peptides (LD (<sup<L</sup<RH-<sup<D</sup<(GFLG)<sub<3</sub<), DL (<sup<D</sup<RH-L(GFLG)<sub<3</sub<), and DD (<sup<D</sup<RH-<sup<D</sup<(GFLG)<sub<3</sub<). The RH-(GFLG)<sub<3</sub< nanoparticles showed negligible cytotoxicity in HeLa cells and human RBCs. To determine the drug delivery efficacy, we introduced the anticancer drug doxorubicin (Dox) in the RH-(GFLG)<sub<3</sub< nanoparticle system. LL-Dox exhibited formulation stability, maintaining the physical properties of the nanostructure, as well as a robust anticancer effect in HeLa cells compared to DD-Dox. These results indicate that the enzyme-sensitive RH-(GFLG)<sub<3</sub< peptide nanoparticles are promising candidates as drug delivery carriers for biomedical applications. |
abstract_unstemmed |
Self-assembled peptide nanostructures recently have gained much attention as drug delivery systems. As biomolecules, peptides have enhanced biocompatibility and biodegradability compared to polymer-based carriers. We introduce a peptide nanoparticle system containing arginine, histidine, and an enzyme-responsive core of repeating GLFG oligopeptides. GLFG oligopeptides exhibit specific sensitivity towards the enzyme cathepsin B that helps effective controlled release of cargo molecules in the cytoplasm. Arginine can induce cell penetration, and histidine facilitates lysosomal escape by its buffering capacity. Herein, we propose an enzyme-responsive amphiphilic peptide delivery system (Arg-His-(Gly-Phe-Lue-Gly)<sub<3</sub<, RH-(GFLG)<sub<3</sub<). The self-assembled RH-(GFLG)<sub<3</sub< globular nanoparticle structure exhibited a positive charge and formulation stability for 35 days. Nile Red-tagged RH-(GFLG)<sub<3</sub< nanoparticles showed good cellular uptake compared to the non-enzyme-responsive control groups with <span style="font-variant: small-caps;"<d</span<-form peptides (LD (<sup<L</sup<RH-<sup<D</sup<(GFLG)<sub<3</sub<), DL (<sup<D</sup<RH-L(GFLG)<sub<3</sub<), and DD (<sup<D</sup<RH-<sup<D</sup<(GFLG)<sub<3</sub<). The RH-(GFLG)<sub<3</sub< nanoparticles showed negligible cytotoxicity in HeLa cells and human RBCs. To determine the drug delivery efficacy, we introduced the anticancer drug doxorubicin (Dox) in the RH-(GFLG)<sub<3</sub< nanoparticle system. LL-Dox exhibited formulation stability, maintaining the physical properties of the nanostructure, as well as a robust anticancer effect in HeLa cells compared to DD-Dox. These results indicate that the enzyme-sensitive RH-(GFLG)<sub<3</sub< peptide nanoparticles are promising candidates as drug delivery carriers for biomedical applications. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1, p 143 |
title_short |
Enzyme-Responsive Amphiphilic Peptide Nanoparticles for Biocompatible and Efficient Drug Delivery |
url |
https://doi.org/10.3390/pharmaceutics14010143 https://doaj.org/article/af252db95b9b430db980cb1c44bbcb03 https://www.mdpi.com/1999-4923/14/1/143 https://doaj.org/toc/1999-4923 |
remote_bool |
true |
author2 |
Joon Sig Choi |
author2Str |
Joon Sig Choi |
ppnlink |
614096529 |
callnumber-subject |
RS - Pharmacy |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/pharmaceutics14010143 |
callnumber-a |
RS1-441 |
up_date |
2024-07-04T01:45:54.921Z |
_version_ |
1803611070709891072 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ085080489</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414210651.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/pharmaceutics14010143</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ085080489</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJaf252db95b9b430db980cb1c44bbcb03</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RS1-441</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Su Jeong Song</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Enzyme-Responsive Amphiphilic Peptide Nanoparticles for Biocompatible and Efficient Drug Delivery</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Self-assembled peptide nanostructures recently have gained much attention as drug delivery systems. As biomolecules, peptides have enhanced biocompatibility and biodegradability compared to polymer-based carriers. We introduce a peptide nanoparticle system containing arginine, histidine, and an enzyme-responsive core of repeating GLFG oligopeptides. GLFG oligopeptides exhibit specific sensitivity towards the enzyme cathepsin B that helps effective controlled release of cargo molecules in the cytoplasm. Arginine can induce cell penetration, and histidine facilitates lysosomal escape by its buffering capacity. Herein, we propose an enzyme-responsive amphiphilic peptide delivery system (Arg-His-(Gly-Phe-Lue-Gly)<sub<3</sub<, RH-(GFLG)<sub<3</sub<). The self-assembled RH-(GFLG)<sub<3</sub< globular nanoparticle structure exhibited a positive charge and formulation stability for 35 days. Nile Red-tagged RH-(GFLG)<sub<3</sub< nanoparticles showed good cellular uptake compared to the non-enzyme-responsive control groups with <span style="font-variant: small-caps;"<d</span<-form peptides (LD (<sup<L</sup<RH-<sup<D</sup<(GFLG)<sub<3</sub<), DL (<sup<D</sup<RH-L(GFLG)<sub<3</sub<), and DD (<sup<D</sup<RH-<sup<D</sup<(GFLG)<sub<3</sub<). The RH-(GFLG)<sub<3</sub< nanoparticles showed negligible cytotoxicity in HeLa cells and human RBCs. To determine the drug delivery efficacy, we introduced the anticancer drug doxorubicin (Dox) in the RH-(GFLG)<sub<3</sub< nanoparticle system. LL-Dox exhibited formulation stability, maintaining the physical properties of the nanostructure, as well as a robust anticancer effect in HeLa cells compared to DD-Dox. These results indicate that the enzyme-sensitive RH-(GFLG)<sub<3</sub< peptide nanoparticles are promising candidates as drug delivery carriers for biomedical applications.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">peptide nanoparticle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">doxorubicin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cytotoxicity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">drug delivery systems</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Pharmacy and materia medica</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Joon Sig Choi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Pharmaceutics</subfield><subfield code="d">MDPI AG, 2010</subfield><subfield code="g">14(2022), 1, p 143</subfield><subfield code="w">(DE-627)614096529</subfield><subfield code="w">(DE-600)2527217-2</subfield><subfield code="x">19994923</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1, p 143</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/pharmaceutics14010143</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/af252db95b9b430db980cb1c44bbcb03</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1999-4923/14/1/143</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1999-4923</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2022</subfield><subfield code="e">1, p 143</subfield></datafield></record></collection>
|
score |
7.401458 |