Application of Synchrosqueezed Wavelet Transforms for Extraction of the Oscillatory Parameters of Subsynchronous Oscillation in Power Systems
The most classical subsynchronous oscillation (SSO) mode extraction methods have some shortcomings, such as lower mode identification and poor anti-noise properties. Thus, this paper proposes a new time-frequency analysis method, namely, synchrosqueezed wavelet transforms (SWT). SWT combines the adv...
Ausführliche Beschreibung
Autor*in: |
Yan Zhao [verfasserIn] Haohan Cui [verfasserIn] Hong Huo [verfasserIn] Yonghui Nie [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
subsynchronous oscillation (SSO) |
---|
Übergeordnetes Werk: |
In: Energies - MDPI AG, 2008, 11(2018), 6, p 1525 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2018 ; number:6, p 1525 |
Links: |
---|
DOI / URN: |
10.3390/en11061525 |
---|
Katalog-ID: |
DOAJ085138592 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ085138592 | ||
003 | DE-627 | ||
005 | 20230311033625.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/en11061525 |2 doi | |
035 | |a (DE-627)DOAJ085138592 | ||
035 | |a (DE-599)DOAJd089744540614b939781fbe76ddd74a0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Yan Zhao |e verfasserin |4 aut | |
245 | 1 | 0 | |a Application of Synchrosqueezed Wavelet Transforms for Extraction of the Oscillatory Parameters of Subsynchronous Oscillation in Power Systems |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The most classical subsynchronous oscillation (SSO) mode extraction methods have some shortcomings, such as lower mode identification and poor anti-noise properties. Thus, this paper proposes a new time-frequency analysis method, namely, synchrosqueezed wavelet transforms (SWT). SWT combines the advantages of empirical mode decomposition (EMD) and wavelet, which has the adaptability of EMD, and improve the ability of anti-mode mixing on EMD and wavelet. Thus, better anti-noise property and higher mode identification can be achieved. Firstly, the SSO signal is transformed by SWT and its time-frequency spectrum is obtained. Secondly, the attenuation characteristic of each intrinsic mode type (IMT) component in its time-frequency spectrum is analyzed by an automatic identification algorithm, and determine which IMT component needs reconstruction. After that, the selected IMT components with divergent characteristic are reconstructed. Thirdly, high-accuracy detection for mode parameter identification is achieved by the Hilbert transform (HT). Simulation and application examples prove the effectiveness of the proposed method. | ||
650 | 4 | |a subsynchronous oscillation (SSO) | |
650 | 4 | |a time-frequency analysis | |
650 | 4 | |a synchrosqueezed wavelet transforms (SWT) | |
650 | 4 | |a Hilbert transform (HT) | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
700 | 0 | |a Haohan Cui |e verfasserin |4 aut | |
700 | 0 | |a Hong Huo |e verfasserin |4 aut | |
700 | 0 | |a Yonghui Nie |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Energies |d MDPI AG, 2008 |g 11(2018), 6, p 1525 |w (DE-627)572083742 |w (DE-600)2437446-5 |x 19961073 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2018 |g number:6, p 1525 |
856 | 4 | 0 | |u https://doi.org/10.3390/en11061525 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/d089744540614b939781fbe76ddd74a0 |z kostenfrei |
856 | 4 | 0 | |u http://www.mdpi.com/1996-1073/11/6/1525 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1996-1073 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2018 |e 6, p 1525 |
author_variant |
y z yz h c hc h h hh y n yn |
---|---|
matchkey_str |
article:19961073:2018----::plctoosnhoqezdaeetasomfrxrcinfhoclaoyaaeesfusn |
hierarchy_sort_str |
2018 |
publishDate |
2018 |
allfields |
10.3390/en11061525 doi (DE-627)DOAJ085138592 (DE-599)DOAJd089744540614b939781fbe76ddd74a0 DE-627 ger DE-627 rakwb eng Yan Zhao verfasserin aut Application of Synchrosqueezed Wavelet Transforms for Extraction of the Oscillatory Parameters of Subsynchronous Oscillation in Power Systems 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The most classical subsynchronous oscillation (SSO) mode extraction methods have some shortcomings, such as lower mode identification and poor anti-noise properties. Thus, this paper proposes a new time-frequency analysis method, namely, synchrosqueezed wavelet transforms (SWT). SWT combines the advantages of empirical mode decomposition (EMD) and wavelet, which has the adaptability of EMD, and improve the ability of anti-mode mixing on EMD and wavelet. Thus, better anti-noise property and higher mode identification can be achieved. Firstly, the SSO signal is transformed by SWT and its time-frequency spectrum is obtained. Secondly, the attenuation characteristic of each intrinsic mode type (IMT) component in its time-frequency spectrum is analyzed by an automatic identification algorithm, and determine which IMT component needs reconstruction. After that, the selected IMT components with divergent characteristic are reconstructed. Thirdly, high-accuracy detection for mode parameter identification is achieved by the Hilbert transform (HT). Simulation and application examples prove the effectiveness of the proposed method. subsynchronous oscillation (SSO) time-frequency analysis synchrosqueezed wavelet transforms (SWT) Hilbert transform (HT) Technology T Haohan Cui verfasserin aut Hong Huo verfasserin aut Yonghui Nie verfasserin aut In Energies MDPI AG, 2008 11(2018), 6, p 1525 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:11 year:2018 number:6, p 1525 https://doi.org/10.3390/en11061525 kostenfrei https://doaj.org/article/d089744540614b939781fbe76ddd74a0 kostenfrei http://www.mdpi.com/1996-1073/11/6/1525 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2018 6, p 1525 |
spelling |
10.3390/en11061525 doi (DE-627)DOAJ085138592 (DE-599)DOAJd089744540614b939781fbe76ddd74a0 DE-627 ger DE-627 rakwb eng Yan Zhao verfasserin aut Application of Synchrosqueezed Wavelet Transforms for Extraction of the Oscillatory Parameters of Subsynchronous Oscillation in Power Systems 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The most classical subsynchronous oscillation (SSO) mode extraction methods have some shortcomings, such as lower mode identification and poor anti-noise properties. Thus, this paper proposes a new time-frequency analysis method, namely, synchrosqueezed wavelet transforms (SWT). SWT combines the advantages of empirical mode decomposition (EMD) and wavelet, which has the adaptability of EMD, and improve the ability of anti-mode mixing on EMD and wavelet. Thus, better anti-noise property and higher mode identification can be achieved. Firstly, the SSO signal is transformed by SWT and its time-frequency spectrum is obtained. Secondly, the attenuation characteristic of each intrinsic mode type (IMT) component in its time-frequency spectrum is analyzed by an automatic identification algorithm, and determine which IMT component needs reconstruction. After that, the selected IMT components with divergent characteristic are reconstructed. Thirdly, high-accuracy detection for mode parameter identification is achieved by the Hilbert transform (HT). Simulation and application examples prove the effectiveness of the proposed method. subsynchronous oscillation (SSO) time-frequency analysis synchrosqueezed wavelet transforms (SWT) Hilbert transform (HT) Technology T Haohan Cui verfasserin aut Hong Huo verfasserin aut Yonghui Nie verfasserin aut In Energies MDPI AG, 2008 11(2018), 6, p 1525 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:11 year:2018 number:6, p 1525 https://doi.org/10.3390/en11061525 kostenfrei https://doaj.org/article/d089744540614b939781fbe76ddd74a0 kostenfrei http://www.mdpi.com/1996-1073/11/6/1525 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2018 6, p 1525 |
allfields_unstemmed |
10.3390/en11061525 doi (DE-627)DOAJ085138592 (DE-599)DOAJd089744540614b939781fbe76ddd74a0 DE-627 ger DE-627 rakwb eng Yan Zhao verfasserin aut Application of Synchrosqueezed Wavelet Transforms for Extraction of the Oscillatory Parameters of Subsynchronous Oscillation in Power Systems 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The most classical subsynchronous oscillation (SSO) mode extraction methods have some shortcomings, such as lower mode identification and poor anti-noise properties. Thus, this paper proposes a new time-frequency analysis method, namely, synchrosqueezed wavelet transforms (SWT). SWT combines the advantages of empirical mode decomposition (EMD) and wavelet, which has the adaptability of EMD, and improve the ability of anti-mode mixing on EMD and wavelet. Thus, better anti-noise property and higher mode identification can be achieved. Firstly, the SSO signal is transformed by SWT and its time-frequency spectrum is obtained. Secondly, the attenuation characteristic of each intrinsic mode type (IMT) component in its time-frequency spectrum is analyzed by an automatic identification algorithm, and determine which IMT component needs reconstruction. After that, the selected IMT components with divergent characteristic are reconstructed. Thirdly, high-accuracy detection for mode parameter identification is achieved by the Hilbert transform (HT). Simulation and application examples prove the effectiveness of the proposed method. subsynchronous oscillation (SSO) time-frequency analysis synchrosqueezed wavelet transforms (SWT) Hilbert transform (HT) Technology T Haohan Cui verfasserin aut Hong Huo verfasserin aut Yonghui Nie verfasserin aut In Energies MDPI AG, 2008 11(2018), 6, p 1525 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:11 year:2018 number:6, p 1525 https://doi.org/10.3390/en11061525 kostenfrei https://doaj.org/article/d089744540614b939781fbe76ddd74a0 kostenfrei http://www.mdpi.com/1996-1073/11/6/1525 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2018 6, p 1525 |
allfieldsGer |
10.3390/en11061525 doi (DE-627)DOAJ085138592 (DE-599)DOAJd089744540614b939781fbe76ddd74a0 DE-627 ger DE-627 rakwb eng Yan Zhao verfasserin aut Application of Synchrosqueezed Wavelet Transforms for Extraction of the Oscillatory Parameters of Subsynchronous Oscillation in Power Systems 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The most classical subsynchronous oscillation (SSO) mode extraction methods have some shortcomings, such as lower mode identification and poor anti-noise properties. Thus, this paper proposes a new time-frequency analysis method, namely, synchrosqueezed wavelet transforms (SWT). SWT combines the advantages of empirical mode decomposition (EMD) and wavelet, which has the adaptability of EMD, and improve the ability of anti-mode mixing on EMD and wavelet. Thus, better anti-noise property and higher mode identification can be achieved. Firstly, the SSO signal is transformed by SWT and its time-frequency spectrum is obtained. Secondly, the attenuation characteristic of each intrinsic mode type (IMT) component in its time-frequency spectrum is analyzed by an automatic identification algorithm, and determine which IMT component needs reconstruction. After that, the selected IMT components with divergent characteristic are reconstructed. Thirdly, high-accuracy detection for mode parameter identification is achieved by the Hilbert transform (HT). Simulation and application examples prove the effectiveness of the proposed method. subsynchronous oscillation (SSO) time-frequency analysis synchrosqueezed wavelet transforms (SWT) Hilbert transform (HT) Technology T Haohan Cui verfasserin aut Hong Huo verfasserin aut Yonghui Nie verfasserin aut In Energies MDPI AG, 2008 11(2018), 6, p 1525 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:11 year:2018 number:6, p 1525 https://doi.org/10.3390/en11061525 kostenfrei https://doaj.org/article/d089744540614b939781fbe76ddd74a0 kostenfrei http://www.mdpi.com/1996-1073/11/6/1525 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2018 6, p 1525 |
allfieldsSound |
10.3390/en11061525 doi (DE-627)DOAJ085138592 (DE-599)DOAJd089744540614b939781fbe76ddd74a0 DE-627 ger DE-627 rakwb eng Yan Zhao verfasserin aut Application of Synchrosqueezed Wavelet Transforms for Extraction of the Oscillatory Parameters of Subsynchronous Oscillation in Power Systems 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The most classical subsynchronous oscillation (SSO) mode extraction methods have some shortcomings, such as lower mode identification and poor anti-noise properties. Thus, this paper proposes a new time-frequency analysis method, namely, synchrosqueezed wavelet transforms (SWT). SWT combines the advantages of empirical mode decomposition (EMD) and wavelet, which has the adaptability of EMD, and improve the ability of anti-mode mixing on EMD and wavelet. Thus, better anti-noise property and higher mode identification can be achieved. Firstly, the SSO signal is transformed by SWT and its time-frequency spectrum is obtained. Secondly, the attenuation characteristic of each intrinsic mode type (IMT) component in its time-frequency spectrum is analyzed by an automatic identification algorithm, and determine which IMT component needs reconstruction. After that, the selected IMT components with divergent characteristic are reconstructed. Thirdly, high-accuracy detection for mode parameter identification is achieved by the Hilbert transform (HT). Simulation and application examples prove the effectiveness of the proposed method. subsynchronous oscillation (SSO) time-frequency analysis synchrosqueezed wavelet transforms (SWT) Hilbert transform (HT) Technology T Haohan Cui verfasserin aut Hong Huo verfasserin aut Yonghui Nie verfasserin aut In Energies MDPI AG, 2008 11(2018), 6, p 1525 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:11 year:2018 number:6, p 1525 https://doi.org/10.3390/en11061525 kostenfrei https://doaj.org/article/d089744540614b939781fbe76ddd74a0 kostenfrei http://www.mdpi.com/1996-1073/11/6/1525 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2018 6, p 1525 |
language |
English |
source |
In Energies 11(2018), 6, p 1525 volume:11 year:2018 number:6, p 1525 |
sourceStr |
In Energies 11(2018), 6, p 1525 volume:11 year:2018 number:6, p 1525 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
subsynchronous oscillation (SSO) time-frequency analysis synchrosqueezed wavelet transforms (SWT) Hilbert transform (HT) Technology T |
isfreeaccess_bool |
true |
container_title |
Energies |
authorswithroles_txt_mv |
Yan Zhao @@aut@@ Haohan Cui @@aut@@ Hong Huo @@aut@@ Yonghui Nie @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
572083742 |
id |
DOAJ085138592 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ085138592</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230311033625.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/en11061525</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ085138592</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJd089744540614b939781fbe76ddd74a0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yan Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Application of Synchrosqueezed Wavelet Transforms for Extraction of the Oscillatory Parameters of Subsynchronous Oscillation in Power Systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The most classical subsynchronous oscillation (SSO) mode extraction methods have some shortcomings, such as lower mode identification and poor anti-noise properties. Thus, this paper proposes a new time-frequency analysis method, namely, synchrosqueezed wavelet transforms (SWT). SWT combines the advantages of empirical mode decomposition (EMD) and wavelet, which has the adaptability of EMD, and improve the ability of anti-mode mixing on EMD and wavelet. Thus, better anti-noise property and higher mode identification can be achieved. Firstly, the SSO signal is transformed by SWT and its time-frequency spectrum is obtained. Secondly, the attenuation characteristic of each intrinsic mode type (IMT) component in its time-frequency spectrum is analyzed by an automatic identification algorithm, and determine which IMT component needs reconstruction. After that, the selected IMT components with divergent characteristic are reconstructed. Thirdly, high-accuracy detection for mode parameter identification is achieved by the Hilbert transform (HT). Simulation and application examples prove the effectiveness of the proposed method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">subsynchronous oscillation (SSO)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">time-frequency analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">synchrosqueezed wavelet transforms (SWT)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hilbert transform (HT)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haohan Cui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hong Huo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yonghui Nie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Energies</subfield><subfield code="d">MDPI AG, 2008</subfield><subfield code="g">11(2018), 6, p 1525</subfield><subfield code="w">(DE-627)572083742</subfield><subfield code="w">(DE-600)2437446-5</subfield><subfield code="x">19961073</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:6, p 1525</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/en11061525</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/d089744540614b939781fbe76ddd74a0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.mdpi.com/1996-1073/11/6/1525</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1996-1073</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2018</subfield><subfield code="e">6, p 1525</subfield></datafield></record></collection>
|
author |
Yan Zhao |
spellingShingle |
Yan Zhao misc subsynchronous oscillation (SSO) misc time-frequency analysis misc synchrosqueezed wavelet transforms (SWT) misc Hilbert transform (HT) misc Technology misc T Application of Synchrosqueezed Wavelet Transforms for Extraction of the Oscillatory Parameters of Subsynchronous Oscillation in Power Systems |
authorStr |
Yan Zhao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)572083742 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
19961073 |
topic_title |
Application of Synchrosqueezed Wavelet Transforms for Extraction of the Oscillatory Parameters of Subsynchronous Oscillation in Power Systems subsynchronous oscillation (SSO) time-frequency analysis synchrosqueezed wavelet transforms (SWT) Hilbert transform (HT) |
topic |
misc subsynchronous oscillation (SSO) misc time-frequency analysis misc synchrosqueezed wavelet transforms (SWT) misc Hilbert transform (HT) misc Technology misc T |
topic_unstemmed |
misc subsynchronous oscillation (SSO) misc time-frequency analysis misc synchrosqueezed wavelet transforms (SWT) misc Hilbert transform (HT) misc Technology misc T |
topic_browse |
misc subsynchronous oscillation (SSO) misc time-frequency analysis misc synchrosqueezed wavelet transforms (SWT) misc Hilbert transform (HT) misc Technology misc T |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Energies |
hierarchy_parent_id |
572083742 |
hierarchy_top_title |
Energies |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)572083742 (DE-600)2437446-5 |
title |
Application of Synchrosqueezed Wavelet Transforms for Extraction of the Oscillatory Parameters of Subsynchronous Oscillation in Power Systems |
ctrlnum |
(DE-627)DOAJ085138592 (DE-599)DOAJd089744540614b939781fbe76ddd74a0 |
title_full |
Application of Synchrosqueezed Wavelet Transforms for Extraction of the Oscillatory Parameters of Subsynchronous Oscillation in Power Systems |
author_sort |
Yan Zhao |
journal |
Energies |
journalStr |
Energies |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
author_browse |
Yan Zhao Haohan Cui Hong Huo Yonghui Nie |
container_volume |
11 |
format_se |
Elektronische Aufsätze |
author-letter |
Yan Zhao |
doi_str_mv |
10.3390/en11061525 |
author2-role |
verfasserin |
title_sort |
application of synchrosqueezed wavelet transforms for extraction of the oscillatory parameters of subsynchronous oscillation in power systems |
title_auth |
Application of Synchrosqueezed Wavelet Transforms for Extraction of the Oscillatory Parameters of Subsynchronous Oscillation in Power Systems |
abstract |
The most classical subsynchronous oscillation (SSO) mode extraction methods have some shortcomings, such as lower mode identification and poor anti-noise properties. Thus, this paper proposes a new time-frequency analysis method, namely, synchrosqueezed wavelet transforms (SWT). SWT combines the advantages of empirical mode decomposition (EMD) and wavelet, which has the adaptability of EMD, and improve the ability of anti-mode mixing on EMD and wavelet. Thus, better anti-noise property and higher mode identification can be achieved. Firstly, the SSO signal is transformed by SWT and its time-frequency spectrum is obtained. Secondly, the attenuation characteristic of each intrinsic mode type (IMT) component in its time-frequency spectrum is analyzed by an automatic identification algorithm, and determine which IMT component needs reconstruction. After that, the selected IMT components with divergent characteristic are reconstructed. Thirdly, high-accuracy detection for mode parameter identification is achieved by the Hilbert transform (HT). Simulation and application examples prove the effectiveness of the proposed method. |
abstractGer |
The most classical subsynchronous oscillation (SSO) mode extraction methods have some shortcomings, such as lower mode identification and poor anti-noise properties. Thus, this paper proposes a new time-frequency analysis method, namely, synchrosqueezed wavelet transforms (SWT). SWT combines the advantages of empirical mode decomposition (EMD) and wavelet, which has the adaptability of EMD, and improve the ability of anti-mode mixing on EMD and wavelet. Thus, better anti-noise property and higher mode identification can be achieved. Firstly, the SSO signal is transformed by SWT and its time-frequency spectrum is obtained. Secondly, the attenuation characteristic of each intrinsic mode type (IMT) component in its time-frequency spectrum is analyzed by an automatic identification algorithm, and determine which IMT component needs reconstruction. After that, the selected IMT components with divergent characteristic are reconstructed. Thirdly, high-accuracy detection for mode parameter identification is achieved by the Hilbert transform (HT). Simulation and application examples prove the effectiveness of the proposed method. |
abstract_unstemmed |
The most classical subsynchronous oscillation (SSO) mode extraction methods have some shortcomings, such as lower mode identification and poor anti-noise properties. Thus, this paper proposes a new time-frequency analysis method, namely, synchrosqueezed wavelet transforms (SWT). SWT combines the advantages of empirical mode decomposition (EMD) and wavelet, which has the adaptability of EMD, and improve the ability of anti-mode mixing on EMD and wavelet. Thus, better anti-noise property and higher mode identification can be achieved. Firstly, the SSO signal is transformed by SWT and its time-frequency spectrum is obtained. Secondly, the attenuation characteristic of each intrinsic mode type (IMT) component in its time-frequency spectrum is analyzed by an automatic identification algorithm, and determine which IMT component needs reconstruction. After that, the selected IMT components with divergent characteristic are reconstructed. Thirdly, high-accuracy detection for mode parameter identification is achieved by the Hilbert transform (HT). Simulation and application examples prove the effectiveness of the proposed method. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
6, p 1525 |
title_short |
Application of Synchrosqueezed Wavelet Transforms for Extraction of the Oscillatory Parameters of Subsynchronous Oscillation in Power Systems |
url |
https://doi.org/10.3390/en11061525 https://doaj.org/article/d089744540614b939781fbe76ddd74a0 http://www.mdpi.com/1996-1073/11/6/1525 https://doaj.org/toc/1996-1073 |
remote_bool |
true |
author2 |
Haohan Cui Hong Huo Yonghui Nie |
author2Str |
Haohan Cui Hong Huo Yonghui Nie |
ppnlink |
572083742 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/en11061525 |
up_date |
2024-07-04T01:59:30.207Z |
_version_ |
1803611925601320960 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ085138592</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230311033625.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/en11061525</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ085138592</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJd089744540614b939781fbe76ddd74a0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yan Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Application of Synchrosqueezed Wavelet Transforms for Extraction of the Oscillatory Parameters of Subsynchronous Oscillation in Power Systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The most classical subsynchronous oscillation (SSO) mode extraction methods have some shortcomings, such as lower mode identification and poor anti-noise properties. Thus, this paper proposes a new time-frequency analysis method, namely, synchrosqueezed wavelet transforms (SWT). SWT combines the advantages of empirical mode decomposition (EMD) and wavelet, which has the adaptability of EMD, and improve the ability of anti-mode mixing on EMD and wavelet. Thus, better anti-noise property and higher mode identification can be achieved. Firstly, the SSO signal is transformed by SWT and its time-frequency spectrum is obtained. Secondly, the attenuation characteristic of each intrinsic mode type (IMT) component in its time-frequency spectrum is analyzed by an automatic identification algorithm, and determine which IMT component needs reconstruction. After that, the selected IMT components with divergent characteristic are reconstructed. Thirdly, high-accuracy detection for mode parameter identification is achieved by the Hilbert transform (HT). Simulation and application examples prove the effectiveness of the proposed method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">subsynchronous oscillation (SSO)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">time-frequency analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">synchrosqueezed wavelet transforms (SWT)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hilbert transform (HT)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haohan Cui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hong Huo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yonghui Nie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Energies</subfield><subfield code="d">MDPI AG, 2008</subfield><subfield code="g">11(2018), 6, p 1525</subfield><subfield code="w">(DE-627)572083742</subfield><subfield code="w">(DE-600)2437446-5</subfield><subfield code="x">19961073</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:6, p 1525</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/en11061525</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/d089744540614b939781fbe76ddd74a0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.mdpi.com/1996-1073/11/6/1525</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1996-1073</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2018</subfield><subfield code="e">6, p 1525</subfield></datafield></record></collection>
|
score |
7.402135 |