Application of Initial Bias Estimation Method for Inertial Navigation System (INS)/Doppler Velocity Log (DVL) and INS/DVL/Gyrocompass Using Micro-Electro-Mechanical System Sensors
This article proposes a novel initial bias estimation method using a trajectory generator (TG). The accuracy of attitude and position estimation in navigation after using the inertial navigation system/Doppler velocity log (INS/DVL) and INS/DVL/gyrocompass (IDG) for 1 h were evaluated, and the resul...
Ausführliche Beschreibung
Autor*in: |
Gen Fukuda [verfasserIn] Nobuaki Kubo [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Sensors - MDPI AG, 2003, 22(2022), 14, p 5334 |
---|---|
Übergeordnetes Werk: |
volume:22 ; year:2022 ; number:14, p 5334 |
Links: |
---|
DOI / URN: |
10.3390/s22145334 |
---|
Katalog-ID: |
DOAJ08515069X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ08515069X | ||
003 | DE-627 | ||
005 | 20240414113221.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/s22145334 |2 doi | |
035 | |a (DE-627)DOAJ08515069X | ||
035 | |a (DE-599)DOAJ1ba95bf2710642a285f5ea3cdf3ed38d | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TP1-1185 | |
100 | 0 | |a Gen Fukuda |e verfasserin |4 aut | |
245 | 1 | 0 | |a Application of Initial Bias Estimation Method for Inertial Navigation System (INS)/Doppler Velocity Log (DVL) and INS/DVL/Gyrocompass Using Micro-Electro-Mechanical System Sensors |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This article proposes a novel initial bias estimation method using a trajectory generator (TG). The accuracy of attitude and position estimation in navigation after using the inertial navigation system/Doppler velocity log (INS/DVL) and INS/DVL/gyrocompass (IDG) for 1 h were evaluated, and the results were compared to those obtained using the conventional Kalman filter (KF) estimation method. The probability of a horizontal position error < 1852 m (1 nautical mile) with a bias interval < 400 s was 100% and 9% for the TG and KF, respectively. In addition, the IDG average horizontal position errors over 1 h were 493 m and 507 m for the TG and KF, respectively. Moreover, the amount of variation was 2 m and 27 m for the TG and the KF, respectively. Thus, the proposed method is effective for initial bias estimation of INS/DVL and IDG using micro-electro-mechanical system sensors on a constantly moving vessel. | ||
650 | 4 | |a initial bias | |
650 | 4 | |a trajectory generator | |
650 | 4 | |a INS/DVL | |
650 | 4 | |a INS/DVL/gyrocompass | |
650 | 4 | |a MEMS | |
653 | 0 | |a Chemical technology | |
700 | 0 | |a Nobuaki Kubo |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Sensors |d MDPI AG, 2003 |g 22(2022), 14, p 5334 |w (DE-627)331640910 |w (DE-600)2052857-7 |x 14248220 |7 nnns |
773 | 1 | 8 | |g volume:22 |g year:2022 |g number:14, p 5334 |
856 | 4 | 0 | |u https://doi.org/10.3390/s22145334 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/1ba95bf2710642a285f5ea3cdf3ed38d |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1424-8220/22/14/5334 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1424-8220 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 22 |j 2022 |e 14, p 5334 |
author_variant |
g f gf n k nk |
---|---|
matchkey_str |
article:14248220:2022----::plctooiiilissiainehdoietanvgtosseisopevlctlgvadndlyoops |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TP |
publishDate |
2022 |
allfields |
10.3390/s22145334 doi (DE-627)DOAJ08515069X (DE-599)DOAJ1ba95bf2710642a285f5ea3cdf3ed38d DE-627 ger DE-627 rakwb eng TP1-1185 Gen Fukuda verfasserin aut Application of Initial Bias Estimation Method for Inertial Navigation System (INS)/Doppler Velocity Log (DVL) and INS/DVL/Gyrocompass Using Micro-Electro-Mechanical System Sensors 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This article proposes a novel initial bias estimation method using a trajectory generator (TG). The accuracy of attitude and position estimation in navigation after using the inertial navigation system/Doppler velocity log (INS/DVL) and INS/DVL/gyrocompass (IDG) for 1 h were evaluated, and the results were compared to those obtained using the conventional Kalman filter (KF) estimation method. The probability of a horizontal position error < 1852 m (1 nautical mile) with a bias interval < 400 s was 100% and 9% for the TG and KF, respectively. In addition, the IDG average horizontal position errors over 1 h were 493 m and 507 m for the TG and KF, respectively. Moreover, the amount of variation was 2 m and 27 m for the TG and the KF, respectively. Thus, the proposed method is effective for initial bias estimation of INS/DVL and IDG using micro-electro-mechanical system sensors on a constantly moving vessel. initial bias trajectory generator INS/DVL INS/DVL/gyrocompass MEMS Chemical technology Nobuaki Kubo verfasserin aut In Sensors MDPI AG, 2003 22(2022), 14, p 5334 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:22 year:2022 number:14, p 5334 https://doi.org/10.3390/s22145334 kostenfrei https://doaj.org/article/1ba95bf2710642a285f5ea3cdf3ed38d kostenfrei https://www.mdpi.com/1424-8220/22/14/5334 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2022 14, p 5334 |
spelling |
10.3390/s22145334 doi (DE-627)DOAJ08515069X (DE-599)DOAJ1ba95bf2710642a285f5ea3cdf3ed38d DE-627 ger DE-627 rakwb eng TP1-1185 Gen Fukuda verfasserin aut Application of Initial Bias Estimation Method for Inertial Navigation System (INS)/Doppler Velocity Log (DVL) and INS/DVL/Gyrocompass Using Micro-Electro-Mechanical System Sensors 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This article proposes a novel initial bias estimation method using a trajectory generator (TG). The accuracy of attitude and position estimation in navigation after using the inertial navigation system/Doppler velocity log (INS/DVL) and INS/DVL/gyrocompass (IDG) for 1 h were evaluated, and the results were compared to those obtained using the conventional Kalman filter (KF) estimation method. The probability of a horizontal position error < 1852 m (1 nautical mile) with a bias interval < 400 s was 100% and 9% for the TG and KF, respectively. In addition, the IDG average horizontal position errors over 1 h were 493 m and 507 m for the TG and KF, respectively. Moreover, the amount of variation was 2 m and 27 m for the TG and the KF, respectively. Thus, the proposed method is effective for initial bias estimation of INS/DVL and IDG using micro-electro-mechanical system sensors on a constantly moving vessel. initial bias trajectory generator INS/DVL INS/DVL/gyrocompass MEMS Chemical technology Nobuaki Kubo verfasserin aut In Sensors MDPI AG, 2003 22(2022), 14, p 5334 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:22 year:2022 number:14, p 5334 https://doi.org/10.3390/s22145334 kostenfrei https://doaj.org/article/1ba95bf2710642a285f5ea3cdf3ed38d kostenfrei https://www.mdpi.com/1424-8220/22/14/5334 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2022 14, p 5334 |
allfields_unstemmed |
10.3390/s22145334 doi (DE-627)DOAJ08515069X (DE-599)DOAJ1ba95bf2710642a285f5ea3cdf3ed38d DE-627 ger DE-627 rakwb eng TP1-1185 Gen Fukuda verfasserin aut Application of Initial Bias Estimation Method for Inertial Navigation System (INS)/Doppler Velocity Log (DVL) and INS/DVL/Gyrocompass Using Micro-Electro-Mechanical System Sensors 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This article proposes a novel initial bias estimation method using a trajectory generator (TG). The accuracy of attitude and position estimation in navigation after using the inertial navigation system/Doppler velocity log (INS/DVL) and INS/DVL/gyrocompass (IDG) for 1 h were evaluated, and the results were compared to those obtained using the conventional Kalman filter (KF) estimation method. The probability of a horizontal position error < 1852 m (1 nautical mile) with a bias interval < 400 s was 100% and 9% for the TG and KF, respectively. In addition, the IDG average horizontal position errors over 1 h were 493 m and 507 m for the TG and KF, respectively. Moreover, the amount of variation was 2 m and 27 m for the TG and the KF, respectively. Thus, the proposed method is effective for initial bias estimation of INS/DVL and IDG using micro-electro-mechanical system sensors on a constantly moving vessel. initial bias trajectory generator INS/DVL INS/DVL/gyrocompass MEMS Chemical technology Nobuaki Kubo verfasserin aut In Sensors MDPI AG, 2003 22(2022), 14, p 5334 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:22 year:2022 number:14, p 5334 https://doi.org/10.3390/s22145334 kostenfrei https://doaj.org/article/1ba95bf2710642a285f5ea3cdf3ed38d kostenfrei https://www.mdpi.com/1424-8220/22/14/5334 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2022 14, p 5334 |
allfieldsGer |
10.3390/s22145334 doi (DE-627)DOAJ08515069X (DE-599)DOAJ1ba95bf2710642a285f5ea3cdf3ed38d DE-627 ger DE-627 rakwb eng TP1-1185 Gen Fukuda verfasserin aut Application of Initial Bias Estimation Method for Inertial Navigation System (INS)/Doppler Velocity Log (DVL) and INS/DVL/Gyrocompass Using Micro-Electro-Mechanical System Sensors 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This article proposes a novel initial bias estimation method using a trajectory generator (TG). The accuracy of attitude and position estimation in navigation after using the inertial navigation system/Doppler velocity log (INS/DVL) and INS/DVL/gyrocompass (IDG) for 1 h were evaluated, and the results were compared to those obtained using the conventional Kalman filter (KF) estimation method. The probability of a horizontal position error < 1852 m (1 nautical mile) with a bias interval < 400 s was 100% and 9% for the TG and KF, respectively. In addition, the IDG average horizontal position errors over 1 h were 493 m and 507 m for the TG and KF, respectively. Moreover, the amount of variation was 2 m and 27 m for the TG and the KF, respectively. Thus, the proposed method is effective for initial bias estimation of INS/DVL and IDG using micro-electro-mechanical system sensors on a constantly moving vessel. initial bias trajectory generator INS/DVL INS/DVL/gyrocompass MEMS Chemical technology Nobuaki Kubo verfasserin aut In Sensors MDPI AG, 2003 22(2022), 14, p 5334 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:22 year:2022 number:14, p 5334 https://doi.org/10.3390/s22145334 kostenfrei https://doaj.org/article/1ba95bf2710642a285f5ea3cdf3ed38d kostenfrei https://www.mdpi.com/1424-8220/22/14/5334 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2022 14, p 5334 |
allfieldsSound |
10.3390/s22145334 doi (DE-627)DOAJ08515069X (DE-599)DOAJ1ba95bf2710642a285f5ea3cdf3ed38d DE-627 ger DE-627 rakwb eng TP1-1185 Gen Fukuda verfasserin aut Application of Initial Bias Estimation Method for Inertial Navigation System (INS)/Doppler Velocity Log (DVL) and INS/DVL/Gyrocompass Using Micro-Electro-Mechanical System Sensors 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This article proposes a novel initial bias estimation method using a trajectory generator (TG). The accuracy of attitude and position estimation in navigation after using the inertial navigation system/Doppler velocity log (INS/DVL) and INS/DVL/gyrocompass (IDG) for 1 h were evaluated, and the results were compared to those obtained using the conventional Kalman filter (KF) estimation method. The probability of a horizontal position error < 1852 m (1 nautical mile) with a bias interval < 400 s was 100% and 9% for the TG and KF, respectively. In addition, the IDG average horizontal position errors over 1 h were 493 m and 507 m for the TG and KF, respectively. Moreover, the amount of variation was 2 m and 27 m for the TG and the KF, respectively. Thus, the proposed method is effective for initial bias estimation of INS/DVL and IDG using micro-electro-mechanical system sensors on a constantly moving vessel. initial bias trajectory generator INS/DVL INS/DVL/gyrocompass MEMS Chemical technology Nobuaki Kubo verfasserin aut In Sensors MDPI AG, 2003 22(2022), 14, p 5334 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:22 year:2022 number:14, p 5334 https://doi.org/10.3390/s22145334 kostenfrei https://doaj.org/article/1ba95bf2710642a285f5ea3cdf3ed38d kostenfrei https://www.mdpi.com/1424-8220/22/14/5334 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2022 14, p 5334 |
language |
English |
source |
In Sensors 22(2022), 14, p 5334 volume:22 year:2022 number:14, p 5334 |
sourceStr |
In Sensors 22(2022), 14, p 5334 volume:22 year:2022 number:14, p 5334 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
initial bias trajectory generator INS/DVL INS/DVL/gyrocompass MEMS Chemical technology |
isfreeaccess_bool |
true |
container_title |
Sensors |
authorswithroles_txt_mv |
Gen Fukuda @@aut@@ Nobuaki Kubo @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
331640910 |
id |
DOAJ08515069X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ08515069X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414113221.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/s22145334</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ08515069X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ1ba95bf2710642a285f5ea3cdf3ed38d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Gen Fukuda</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Application of Initial Bias Estimation Method for Inertial Navigation System (INS)/Doppler Velocity Log (DVL) and INS/DVL/Gyrocompass Using Micro-Electro-Mechanical System Sensors</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This article proposes a novel initial bias estimation method using a trajectory generator (TG). The accuracy of attitude and position estimation in navigation after using the inertial navigation system/Doppler velocity log (INS/DVL) and INS/DVL/gyrocompass (IDG) for 1 h were evaluated, and the results were compared to those obtained using the conventional Kalman filter (KF) estimation method. The probability of a horizontal position error < 1852 m (1 nautical mile) with a bias interval < 400 s was 100% and 9% for the TG and KF, respectively. In addition, the IDG average horizontal position errors over 1 h were 493 m and 507 m for the TG and KF, respectively. Moreover, the amount of variation was 2 m and 27 m for the TG and the KF, respectively. Thus, the proposed method is effective for initial bias estimation of INS/DVL and IDG using micro-electro-mechanical system sensors on a constantly moving vessel.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">initial bias</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">trajectory generator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">INS/DVL</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">INS/DVL/gyrocompass</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MEMS</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nobuaki Kubo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sensors</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">22(2022), 14, p 5334</subfield><subfield code="w">(DE-627)331640910</subfield><subfield code="w">(DE-600)2052857-7</subfield><subfield code="x">14248220</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:14, p 5334</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/s22145334</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/1ba95bf2710642a285f5ea3cdf3ed38d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1424-8220/22/14/5334</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1424-8220</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2022</subfield><subfield code="e">14, p 5334</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Gen Fukuda |
spellingShingle |
Gen Fukuda misc TP1-1185 misc initial bias misc trajectory generator misc INS/DVL misc INS/DVL/gyrocompass misc MEMS misc Chemical technology Application of Initial Bias Estimation Method for Inertial Navigation System (INS)/Doppler Velocity Log (DVL) and INS/DVL/Gyrocompass Using Micro-Electro-Mechanical System Sensors |
authorStr |
Gen Fukuda |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)331640910 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TP1-1185 |
illustrated |
Not Illustrated |
issn |
14248220 |
topic_title |
TP1-1185 Application of Initial Bias Estimation Method for Inertial Navigation System (INS)/Doppler Velocity Log (DVL) and INS/DVL/Gyrocompass Using Micro-Electro-Mechanical System Sensors initial bias trajectory generator INS/DVL INS/DVL/gyrocompass MEMS |
topic |
misc TP1-1185 misc initial bias misc trajectory generator misc INS/DVL misc INS/DVL/gyrocompass misc MEMS misc Chemical technology |
topic_unstemmed |
misc TP1-1185 misc initial bias misc trajectory generator misc INS/DVL misc INS/DVL/gyrocompass misc MEMS misc Chemical technology |
topic_browse |
misc TP1-1185 misc initial bias misc trajectory generator misc INS/DVL misc INS/DVL/gyrocompass misc MEMS misc Chemical technology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Sensors |
hierarchy_parent_id |
331640910 |
hierarchy_top_title |
Sensors |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)331640910 (DE-600)2052857-7 |
title |
Application of Initial Bias Estimation Method for Inertial Navigation System (INS)/Doppler Velocity Log (DVL) and INS/DVL/Gyrocompass Using Micro-Electro-Mechanical System Sensors |
ctrlnum |
(DE-627)DOAJ08515069X (DE-599)DOAJ1ba95bf2710642a285f5ea3cdf3ed38d |
title_full |
Application of Initial Bias Estimation Method for Inertial Navigation System (INS)/Doppler Velocity Log (DVL) and INS/DVL/Gyrocompass Using Micro-Electro-Mechanical System Sensors |
author_sort |
Gen Fukuda |
journal |
Sensors |
journalStr |
Sensors |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Gen Fukuda Nobuaki Kubo |
container_volume |
22 |
class |
TP1-1185 |
format_se |
Elektronische Aufsätze |
author-letter |
Gen Fukuda |
doi_str_mv |
10.3390/s22145334 |
author2-role |
verfasserin |
title_sort |
application of initial bias estimation method for inertial navigation system (ins)/doppler velocity log (dvl) and ins/dvl/gyrocompass using micro-electro-mechanical system sensors |
callnumber |
TP1-1185 |
title_auth |
Application of Initial Bias Estimation Method for Inertial Navigation System (INS)/Doppler Velocity Log (DVL) and INS/DVL/Gyrocompass Using Micro-Electro-Mechanical System Sensors |
abstract |
This article proposes a novel initial bias estimation method using a trajectory generator (TG). The accuracy of attitude and position estimation in navigation after using the inertial navigation system/Doppler velocity log (INS/DVL) and INS/DVL/gyrocompass (IDG) for 1 h were evaluated, and the results were compared to those obtained using the conventional Kalman filter (KF) estimation method. The probability of a horizontal position error < 1852 m (1 nautical mile) with a bias interval < 400 s was 100% and 9% for the TG and KF, respectively. In addition, the IDG average horizontal position errors over 1 h were 493 m and 507 m for the TG and KF, respectively. Moreover, the amount of variation was 2 m and 27 m for the TG and the KF, respectively. Thus, the proposed method is effective for initial bias estimation of INS/DVL and IDG using micro-electro-mechanical system sensors on a constantly moving vessel. |
abstractGer |
This article proposes a novel initial bias estimation method using a trajectory generator (TG). The accuracy of attitude and position estimation in navigation after using the inertial navigation system/Doppler velocity log (INS/DVL) and INS/DVL/gyrocompass (IDG) for 1 h were evaluated, and the results were compared to those obtained using the conventional Kalman filter (KF) estimation method. The probability of a horizontal position error < 1852 m (1 nautical mile) with a bias interval < 400 s was 100% and 9% for the TG and KF, respectively. In addition, the IDG average horizontal position errors over 1 h were 493 m and 507 m for the TG and KF, respectively. Moreover, the amount of variation was 2 m and 27 m for the TG and the KF, respectively. Thus, the proposed method is effective for initial bias estimation of INS/DVL and IDG using micro-electro-mechanical system sensors on a constantly moving vessel. |
abstract_unstemmed |
This article proposes a novel initial bias estimation method using a trajectory generator (TG). The accuracy of attitude and position estimation in navigation after using the inertial navigation system/Doppler velocity log (INS/DVL) and INS/DVL/gyrocompass (IDG) for 1 h were evaluated, and the results were compared to those obtained using the conventional Kalman filter (KF) estimation method. The probability of a horizontal position error < 1852 m (1 nautical mile) with a bias interval < 400 s was 100% and 9% for the TG and KF, respectively. In addition, the IDG average horizontal position errors over 1 h were 493 m and 507 m for the TG and KF, respectively. Moreover, the amount of variation was 2 m and 27 m for the TG and the KF, respectively. Thus, the proposed method is effective for initial bias estimation of INS/DVL and IDG using micro-electro-mechanical system sensors on a constantly moving vessel. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
14, p 5334 |
title_short |
Application of Initial Bias Estimation Method for Inertial Navigation System (INS)/Doppler Velocity Log (DVL) and INS/DVL/Gyrocompass Using Micro-Electro-Mechanical System Sensors |
url |
https://doi.org/10.3390/s22145334 https://doaj.org/article/1ba95bf2710642a285f5ea3cdf3ed38d https://www.mdpi.com/1424-8220/22/14/5334 https://doaj.org/toc/1424-8220 |
remote_bool |
true |
author2 |
Nobuaki Kubo |
author2Str |
Nobuaki Kubo |
ppnlink |
331640910 |
callnumber-subject |
TP - Chemical Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/s22145334 |
callnumber-a |
TP1-1185 |
up_date |
2024-07-04T02:02:17.029Z |
_version_ |
1803612100526866432 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ08515069X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414113221.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/s22145334</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ08515069X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ1ba95bf2710642a285f5ea3cdf3ed38d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Gen Fukuda</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Application of Initial Bias Estimation Method for Inertial Navigation System (INS)/Doppler Velocity Log (DVL) and INS/DVL/Gyrocompass Using Micro-Electro-Mechanical System Sensors</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This article proposes a novel initial bias estimation method using a trajectory generator (TG). The accuracy of attitude and position estimation in navigation after using the inertial navigation system/Doppler velocity log (INS/DVL) and INS/DVL/gyrocompass (IDG) for 1 h were evaluated, and the results were compared to those obtained using the conventional Kalman filter (KF) estimation method. The probability of a horizontal position error < 1852 m (1 nautical mile) with a bias interval < 400 s was 100% and 9% for the TG and KF, respectively. In addition, the IDG average horizontal position errors over 1 h were 493 m and 507 m for the TG and KF, respectively. Moreover, the amount of variation was 2 m and 27 m for the TG and the KF, respectively. Thus, the proposed method is effective for initial bias estimation of INS/DVL and IDG using micro-electro-mechanical system sensors on a constantly moving vessel.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">initial bias</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">trajectory generator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">INS/DVL</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">INS/DVL/gyrocompass</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MEMS</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nobuaki Kubo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sensors</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">22(2022), 14, p 5334</subfield><subfield code="w">(DE-627)331640910</subfield><subfield code="w">(DE-600)2052857-7</subfield><subfield code="x">14248220</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:14, p 5334</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/s22145334</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/1ba95bf2710642a285f5ea3cdf3ed38d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1424-8220/22/14/5334</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1424-8220</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2022</subfield><subfield code="e">14, p 5334</subfield></datafield></record></collection>
|
score |
7.4026136 |