Behavioral Acoustic Emanations: Attack and Verification of PIN Entry Using Keypress Sounds
This paper explores the security vulnerability of Personal Identification Number (PIN) or numeric passwords. Entry Device (PEDs) that use small strings of data (PINs, keys or passwords) as means of verifying the legitimacy of a user. Today, PEDs are commonly used by personnel in different industrial...
Ausführliche Beschreibung
Autor*in: |
Sourav Panda [verfasserIn] Yuanzhen Liu [verfasserIn] Gerhard Petrus Hancke [verfasserIn] Umair Mujtaba Qureshi [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Sensors - MDPI AG, 2003, 20(2020), 11, p 3015 |
---|---|
Übergeordnetes Werk: |
volume:20 ; year:2020 ; number:11, p 3015 |
Links: |
---|
DOI / URN: |
10.3390/s20113015 |
---|
Katalog-ID: |
DOAJ085171344 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ085171344 | ||
003 | DE-627 | ||
005 | 20240412233051.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/s20113015 |2 doi | |
035 | |a (DE-627)DOAJ085171344 | ||
035 | |a (DE-599)DOAJ4a970f9938e945da8cfa4a1c6aa0b5ba | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TP1-1185 | |
100 | 0 | |a Sourav Panda |e verfasserin |4 aut | |
245 | 1 | 0 | |a Behavioral Acoustic Emanations: Attack and Verification of PIN Entry Using Keypress Sounds |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This paper explores the security vulnerability of Personal Identification Number (PIN) or numeric passwords. Entry Device (PEDs) that use small strings of data (PINs, keys or passwords) as means of verifying the legitimacy of a user. Today, PEDs are commonly used by personnel in different industrial and consumer electronic applications, such as entry at security checkpoints, ATMs and customer kiosks, etc. In this paper, we propose a side-channel attack on a 4–6 digit random PIN key, and a PIN key user verification method. The intervals between two keystrokes are extracted from the acoustic emanation and used as features to train machine-learning models. The attack model has a 60% chance to recover the PIN key. The verification model has an 88% accuracy on identifying the user. Our attack methods can perform key recovery by using the acoustic side-channel at low cost. As a countermeasure, our verification method can improve the security of PIN entry devices. | ||
650 | 4 | |a side-channel attack | |
650 | 4 | |a personal identification number | |
650 | 4 | |a biometric verification | |
650 | 4 | |a PIN entry device | |
653 | 0 | |a Chemical technology | |
700 | 0 | |a Yuanzhen Liu |e verfasserin |4 aut | |
700 | 0 | |a Gerhard Petrus Hancke |e verfasserin |4 aut | |
700 | 0 | |a Umair Mujtaba Qureshi |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Sensors |d MDPI AG, 2003 |g 20(2020), 11, p 3015 |w (DE-627)331640910 |w (DE-600)2052857-7 |x 14248220 |7 nnns |
773 | 1 | 8 | |g volume:20 |g year:2020 |g number:11, p 3015 |
856 | 4 | 0 | |u https://doi.org/10.3390/s20113015 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/4a970f9938e945da8cfa4a1c6aa0b5ba |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1424-8220/20/11/3015 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1424-8220 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 20 |j 2020 |e 11, p 3015 |
author_variant |
s p sp y l yl g p h gph u m q umq |
---|---|
matchkey_str |
article:14248220:2020----::eairlcutcmntostaknvrfctoopnn |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
TP |
publishDate |
2020 |
allfields |
10.3390/s20113015 doi (DE-627)DOAJ085171344 (DE-599)DOAJ4a970f9938e945da8cfa4a1c6aa0b5ba DE-627 ger DE-627 rakwb eng TP1-1185 Sourav Panda verfasserin aut Behavioral Acoustic Emanations: Attack and Verification of PIN Entry Using Keypress Sounds 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper explores the security vulnerability of Personal Identification Number (PIN) or numeric passwords. Entry Device (PEDs) that use small strings of data (PINs, keys or passwords) as means of verifying the legitimacy of a user. Today, PEDs are commonly used by personnel in different industrial and consumer electronic applications, such as entry at security checkpoints, ATMs and customer kiosks, etc. In this paper, we propose a side-channel attack on a 4–6 digit random PIN key, and a PIN key user verification method. The intervals between two keystrokes are extracted from the acoustic emanation and used as features to train machine-learning models. The attack model has a 60% chance to recover the PIN key. The verification model has an 88% accuracy on identifying the user. Our attack methods can perform key recovery by using the acoustic side-channel at low cost. As a countermeasure, our verification method can improve the security of PIN entry devices. side-channel attack personal identification number biometric verification PIN entry device Chemical technology Yuanzhen Liu verfasserin aut Gerhard Petrus Hancke verfasserin aut Umair Mujtaba Qureshi verfasserin aut In Sensors MDPI AG, 2003 20(2020), 11, p 3015 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:20 year:2020 number:11, p 3015 https://doi.org/10.3390/s20113015 kostenfrei https://doaj.org/article/4a970f9938e945da8cfa4a1c6aa0b5ba kostenfrei https://www.mdpi.com/1424-8220/20/11/3015 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2020 11, p 3015 |
spelling |
10.3390/s20113015 doi (DE-627)DOAJ085171344 (DE-599)DOAJ4a970f9938e945da8cfa4a1c6aa0b5ba DE-627 ger DE-627 rakwb eng TP1-1185 Sourav Panda verfasserin aut Behavioral Acoustic Emanations: Attack and Verification of PIN Entry Using Keypress Sounds 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper explores the security vulnerability of Personal Identification Number (PIN) or numeric passwords. Entry Device (PEDs) that use small strings of data (PINs, keys or passwords) as means of verifying the legitimacy of a user. Today, PEDs are commonly used by personnel in different industrial and consumer electronic applications, such as entry at security checkpoints, ATMs and customer kiosks, etc. In this paper, we propose a side-channel attack on a 4–6 digit random PIN key, and a PIN key user verification method. The intervals between two keystrokes are extracted from the acoustic emanation and used as features to train machine-learning models. The attack model has a 60% chance to recover the PIN key. The verification model has an 88% accuracy on identifying the user. Our attack methods can perform key recovery by using the acoustic side-channel at low cost. As a countermeasure, our verification method can improve the security of PIN entry devices. side-channel attack personal identification number biometric verification PIN entry device Chemical technology Yuanzhen Liu verfasserin aut Gerhard Petrus Hancke verfasserin aut Umair Mujtaba Qureshi verfasserin aut In Sensors MDPI AG, 2003 20(2020), 11, p 3015 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:20 year:2020 number:11, p 3015 https://doi.org/10.3390/s20113015 kostenfrei https://doaj.org/article/4a970f9938e945da8cfa4a1c6aa0b5ba kostenfrei https://www.mdpi.com/1424-8220/20/11/3015 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2020 11, p 3015 |
allfields_unstemmed |
10.3390/s20113015 doi (DE-627)DOAJ085171344 (DE-599)DOAJ4a970f9938e945da8cfa4a1c6aa0b5ba DE-627 ger DE-627 rakwb eng TP1-1185 Sourav Panda verfasserin aut Behavioral Acoustic Emanations: Attack and Verification of PIN Entry Using Keypress Sounds 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper explores the security vulnerability of Personal Identification Number (PIN) or numeric passwords. Entry Device (PEDs) that use small strings of data (PINs, keys or passwords) as means of verifying the legitimacy of a user. Today, PEDs are commonly used by personnel in different industrial and consumer electronic applications, such as entry at security checkpoints, ATMs and customer kiosks, etc. In this paper, we propose a side-channel attack on a 4–6 digit random PIN key, and a PIN key user verification method. The intervals between two keystrokes are extracted from the acoustic emanation and used as features to train machine-learning models. The attack model has a 60% chance to recover the PIN key. The verification model has an 88% accuracy on identifying the user. Our attack methods can perform key recovery by using the acoustic side-channel at low cost. As a countermeasure, our verification method can improve the security of PIN entry devices. side-channel attack personal identification number biometric verification PIN entry device Chemical technology Yuanzhen Liu verfasserin aut Gerhard Petrus Hancke verfasserin aut Umair Mujtaba Qureshi verfasserin aut In Sensors MDPI AG, 2003 20(2020), 11, p 3015 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:20 year:2020 number:11, p 3015 https://doi.org/10.3390/s20113015 kostenfrei https://doaj.org/article/4a970f9938e945da8cfa4a1c6aa0b5ba kostenfrei https://www.mdpi.com/1424-8220/20/11/3015 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2020 11, p 3015 |
allfieldsGer |
10.3390/s20113015 doi (DE-627)DOAJ085171344 (DE-599)DOAJ4a970f9938e945da8cfa4a1c6aa0b5ba DE-627 ger DE-627 rakwb eng TP1-1185 Sourav Panda verfasserin aut Behavioral Acoustic Emanations: Attack and Verification of PIN Entry Using Keypress Sounds 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper explores the security vulnerability of Personal Identification Number (PIN) or numeric passwords. Entry Device (PEDs) that use small strings of data (PINs, keys or passwords) as means of verifying the legitimacy of a user. Today, PEDs are commonly used by personnel in different industrial and consumer electronic applications, such as entry at security checkpoints, ATMs and customer kiosks, etc. In this paper, we propose a side-channel attack on a 4–6 digit random PIN key, and a PIN key user verification method. The intervals between two keystrokes are extracted from the acoustic emanation and used as features to train machine-learning models. The attack model has a 60% chance to recover the PIN key. The verification model has an 88% accuracy on identifying the user. Our attack methods can perform key recovery by using the acoustic side-channel at low cost. As a countermeasure, our verification method can improve the security of PIN entry devices. side-channel attack personal identification number biometric verification PIN entry device Chemical technology Yuanzhen Liu verfasserin aut Gerhard Petrus Hancke verfasserin aut Umair Mujtaba Qureshi verfasserin aut In Sensors MDPI AG, 2003 20(2020), 11, p 3015 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:20 year:2020 number:11, p 3015 https://doi.org/10.3390/s20113015 kostenfrei https://doaj.org/article/4a970f9938e945da8cfa4a1c6aa0b5ba kostenfrei https://www.mdpi.com/1424-8220/20/11/3015 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2020 11, p 3015 |
allfieldsSound |
10.3390/s20113015 doi (DE-627)DOAJ085171344 (DE-599)DOAJ4a970f9938e945da8cfa4a1c6aa0b5ba DE-627 ger DE-627 rakwb eng TP1-1185 Sourav Panda verfasserin aut Behavioral Acoustic Emanations: Attack and Verification of PIN Entry Using Keypress Sounds 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper explores the security vulnerability of Personal Identification Number (PIN) or numeric passwords. Entry Device (PEDs) that use small strings of data (PINs, keys or passwords) as means of verifying the legitimacy of a user. Today, PEDs are commonly used by personnel in different industrial and consumer electronic applications, such as entry at security checkpoints, ATMs and customer kiosks, etc. In this paper, we propose a side-channel attack on a 4–6 digit random PIN key, and a PIN key user verification method. The intervals between two keystrokes are extracted from the acoustic emanation and used as features to train machine-learning models. The attack model has a 60% chance to recover the PIN key. The verification model has an 88% accuracy on identifying the user. Our attack methods can perform key recovery by using the acoustic side-channel at low cost. As a countermeasure, our verification method can improve the security of PIN entry devices. side-channel attack personal identification number biometric verification PIN entry device Chemical technology Yuanzhen Liu verfasserin aut Gerhard Petrus Hancke verfasserin aut Umair Mujtaba Qureshi verfasserin aut In Sensors MDPI AG, 2003 20(2020), 11, p 3015 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:20 year:2020 number:11, p 3015 https://doi.org/10.3390/s20113015 kostenfrei https://doaj.org/article/4a970f9938e945da8cfa4a1c6aa0b5ba kostenfrei https://www.mdpi.com/1424-8220/20/11/3015 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2020 11, p 3015 |
language |
English |
source |
In Sensors 20(2020), 11, p 3015 volume:20 year:2020 number:11, p 3015 |
sourceStr |
In Sensors 20(2020), 11, p 3015 volume:20 year:2020 number:11, p 3015 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
side-channel attack personal identification number biometric verification PIN entry device Chemical technology |
isfreeaccess_bool |
true |
container_title |
Sensors |
authorswithroles_txt_mv |
Sourav Panda @@aut@@ Yuanzhen Liu @@aut@@ Gerhard Petrus Hancke @@aut@@ Umair Mujtaba Qureshi @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
331640910 |
id |
DOAJ085171344 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ085171344</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412233051.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/s20113015</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ085171344</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4a970f9938e945da8cfa4a1c6aa0b5ba</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Sourav Panda</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Behavioral Acoustic Emanations: Attack and Verification of PIN Entry Using Keypress Sounds</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper explores the security vulnerability of Personal Identification Number (PIN) or numeric passwords. Entry Device (PEDs) that use small strings of data (PINs, keys or passwords) as means of verifying the legitimacy of a user. Today, PEDs are commonly used by personnel in different industrial and consumer electronic applications, such as entry at security checkpoints, ATMs and customer kiosks, etc. In this paper, we propose a side-channel attack on a 4–6 digit random PIN key, and a PIN key user verification method. The intervals between two keystrokes are extracted from the acoustic emanation and used as features to train machine-learning models. The attack model has a 60% chance to recover the PIN key. The verification model has an 88% accuracy on identifying the user. Our attack methods can perform key recovery by using the acoustic side-channel at low cost. As a countermeasure, our verification method can improve the security of PIN entry devices.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">side-channel attack</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">personal identification number</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">biometric verification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PIN entry device</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuanzhen Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gerhard Petrus Hancke</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Umair Mujtaba Qureshi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sensors</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">20(2020), 11, p 3015</subfield><subfield code="w">(DE-627)331640910</subfield><subfield code="w">(DE-600)2052857-7</subfield><subfield code="x">14248220</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:11, p 3015</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/s20113015</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4a970f9938e945da8cfa4a1c6aa0b5ba</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1424-8220/20/11/3015</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1424-8220</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">2020</subfield><subfield code="e">11, p 3015</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Sourav Panda |
spellingShingle |
Sourav Panda misc TP1-1185 misc side-channel attack misc personal identification number misc biometric verification misc PIN entry device misc Chemical technology Behavioral Acoustic Emanations: Attack and Verification of PIN Entry Using Keypress Sounds |
authorStr |
Sourav Panda |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)331640910 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TP1-1185 |
illustrated |
Not Illustrated |
issn |
14248220 |
topic_title |
TP1-1185 Behavioral Acoustic Emanations: Attack and Verification of PIN Entry Using Keypress Sounds side-channel attack personal identification number biometric verification PIN entry device |
topic |
misc TP1-1185 misc side-channel attack misc personal identification number misc biometric verification misc PIN entry device misc Chemical technology |
topic_unstemmed |
misc TP1-1185 misc side-channel attack misc personal identification number misc biometric verification misc PIN entry device misc Chemical technology |
topic_browse |
misc TP1-1185 misc side-channel attack misc personal identification number misc biometric verification misc PIN entry device misc Chemical technology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Sensors |
hierarchy_parent_id |
331640910 |
hierarchy_top_title |
Sensors |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)331640910 (DE-600)2052857-7 |
title |
Behavioral Acoustic Emanations: Attack and Verification of PIN Entry Using Keypress Sounds |
ctrlnum |
(DE-627)DOAJ085171344 (DE-599)DOAJ4a970f9938e945da8cfa4a1c6aa0b5ba |
title_full |
Behavioral Acoustic Emanations: Attack and Verification of PIN Entry Using Keypress Sounds |
author_sort |
Sourav Panda |
journal |
Sensors |
journalStr |
Sensors |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Sourav Panda Yuanzhen Liu Gerhard Petrus Hancke Umair Mujtaba Qureshi |
container_volume |
20 |
class |
TP1-1185 |
format_se |
Elektronische Aufsätze |
author-letter |
Sourav Panda |
doi_str_mv |
10.3390/s20113015 |
author2-role |
verfasserin |
title_sort |
behavioral acoustic emanations: attack and verification of pin entry using keypress sounds |
callnumber |
TP1-1185 |
title_auth |
Behavioral Acoustic Emanations: Attack and Verification of PIN Entry Using Keypress Sounds |
abstract |
This paper explores the security vulnerability of Personal Identification Number (PIN) or numeric passwords. Entry Device (PEDs) that use small strings of data (PINs, keys or passwords) as means of verifying the legitimacy of a user. Today, PEDs are commonly used by personnel in different industrial and consumer electronic applications, such as entry at security checkpoints, ATMs and customer kiosks, etc. In this paper, we propose a side-channel attack on a 4–6 digit random PIN key, and a PIN key user verification method. The intervals between two keystrokes are extracted from the acoustic emanation and used as features to train machine-learning models. The attack model has a 60% chance to recover the PIN key. The verification model has an 88% accuracy on identifying the user. Our attack methods can perform key recovery by using the acoustic side-channel at low cost. As a countermeasure, our verification method can improve the security of PIN entry devices. |
abstractGer |
This paper explores the security vulnerability of Personal Identification Number (PIN) or numeric passwords. Entry Device (PEDs) that use small strings of data (PINs, keys or passwords) as means of verifying the legitimacy of a user. Today, PEDs are commonly used by personnel in different industrial and consumer electronic applications, such as entry at security checkpoints, ATMs and customer kiosks, etc. In this paper, we propose a side-channel attack on a 4–6 digit random PIN key, and a PIN key user verification method. The intervals between two keystrokes are extracted from the acoustic emanation and used as features to train machine-learning models. The attack model has a 60% chance to recover the PIN key. The verification model has an 88% accuracy on identifying the user. Our attack methods can perform key recovery by using the acoustic side-channel at low cost. As a countermeasure, our verification method can improve the security of PIN entry devices. |
abstract_unstemmed |
This paper explores the security vulnerability of Personal Identification Number (PIN) or numeric passwords. Entry Device (PEDs) that use small strings of data (PINs, keys or passwords) as means of verifying the legitimacy of a user. Today, PEDs are commonly used by personnel in different industrial and consumer electronic applications, such as entry at security checkpoints, ATMs and customer kiosks, etc. In this paper, we propose a side-channel attack on a 4–6 digit random PIN key, and a PIN key user verification method. The intervals between two keystrokes are extracted from the acoustic emanation and used as features to train machine-learning models. The attack model has a 60% chance to recover the PIN key. The verification model has an 88% accuracy on identifying the user. Our attack methods can perform key recovery by using the acoustic side-channel at low cost. As a countermeasure, our verification method can improve the security of PIN entry devices. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
11, p 3015 |
title_short |
Behavioral Acoustic Emanations: Attack and Verification of PIN Entry Using Keypress Sounds |
url |
https://doi.org/10.3390/s20113015 https://doaj.org/article/4a970f9938e945da8cfa4a1c6aa0b5ba https://www.mdpi.com/1424-8220/20/11/3015 https://doaj.org/toc/1424-8220 |
remote_bool |
true |
author2 |
Yuanzhen Liu Gerhard Petrus Hancke Umair Mujtaba Qureshi |
author2Str |
Yuanzhen Liu Gerhard Petrus Hancke Umair Mujtaba Qureshi |
ppnlink |
331640910 |
callnumber-subject |
TP - Chemical Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/s20113015 |
callnumber-a |
TP1-1185 |
up_date |
2024-07-04T02:06:49.247Z |
_version_ |
1803612385968128000 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ085171344</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412233051.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/s20113015</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ085171344</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4a970f9938e945da8cfa4a1c6aa0b5ba</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Sourav Panda</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Behavioral Acoustic Emanations: Attack and Verification of PIN Entry Using Keypress Sounds</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper explores the security vulnerability of Personal Identification Number (PIN) or numeric passwords. Entry Device (PEDs) that use small strings of data (PINs, keys or passwords) as means of verifying the legitimacy of a user. Today, PEDs are commonly used by personnel in different industrial and consumer electronic applications, such as entry at security checkpoints, ATMs and customer kiosks, etc. In this paper, we propose a side-channel attack on a 4–6 digit random PIN key, and a PIN key user verification method. The intervals between two keystrokes are extracted from the acoustic emanation and used as features to train machine-learning models. The attack model has a 60% chance to recover the PIN key. The verification model has an 88% accuracy on identifying the user. Our attack methods can perform key recovery by using the acoustic side-channel at low cost. As a countermeasure, our verification method can improve the security of PIN entry devices.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">side-channel attack</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">personal identification number</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">biometric verification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PIN entry device</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuanzhen Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gerhard Petrus Hancke</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Umair Mujtaba Qureshi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sensors</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">20(2020), 11, p 3015</subfield><subfield code="w">(DE-627)331640910</subfield><subfield code="w">(DE-600)2052857-7</subfield><subfield code="x">14248220</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:11, p 3015</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/s20113015</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4a970f9938e945da8cfa4a1c6aa0b5ba</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1424-8220/20/11/3015</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1424-8220</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">2020</subfield><subfield code="e">11, p 3015</subfield></datafield></record></collection>
|
score |
7.401991 |