Lossy Hyperspectral Image Compression on a Reconfigurable and Fault-Tolerant FPGA-Based Adaptive Computing Platform
This paper describes a novel hardware implementation of a lossy multispectral and hyperspectral image compressor for on-board operation in space missions. The compression algorithm is a lossy extension of the Consultative Committee for Space Data Systems (CCSDS) 123.0-B-1 lossless standard that incl...
Ausführliche Beschreibung
Autor*in: |
Yubal Barrios [verfasserIn] Alfonso Rodríguez [verfasserIn] Antonio Sánchez [verfasserIn] Arturo Pérez [verfasserIn] Sebastián López [verfasserIn] Andrés Otero [verfasserIn] Eduardo de la Torre [verfasserIn] Roberto Sarmiento [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Electronics - MDPI AG, 2013, 9(2020), 10, p 1576 |
---|---|
Übergeordnetes Werk: |
volume:9 ; year:2020 ; number:10, p 1576 |
Links: |
---|
DOI / URN: |
10.3390/electronics9101576 |
---|
Katalog-ID: |
DOAJ085260231 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ085260231 | ||
003 | DE-627 | ||
005 | 20240412212715.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/electronics9101576 |2 doi | |
035 | |a (DE-627)DOAJ085260231 | ||
035 | |a (DE-599)DOAJ6a05bb9cb9cc4441a1410ace0da7c88d | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK7800-8360 | |
100 | 0 | |a Yubal Barrios |e verfasserin |4 aut | |
245 | 1 | 0 | |a Lossy Hyperspectral Image Compression on a Reconfigurable and Fault-Tolerant FPGA-Based Adaptive Computing Platform |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This paper describes a novel hardware implementation of a lossy multispectral and hyperspectral image compressor for on-board operation in space missions. The compression algorithm is a lossy extension of the Consultative Committee for Space Data Systems (CCSDS) 123.0-B-1 lossless standard that includes a bit-rate control stage, which in turn manages the losses the compressor may introduce to achieve higher compression ratios without compromising the recovered image quality. The algorithm has been implemented using High-Level Synthesis (HLS) techniques to increase design productivity by raising the abstraction level. The proposed lossy compression solution is deployed onto ARTICo<sup<3</sup<, a dynamically reconfigurable multi-accelerator architecture, obtaining a run-time adaptive solution that enables user-selectable performance (i.e., load more hardware accelerators to transparently increase throughput), power consumption, and fault tolerance (i.e., group hardware accelerators to transparently enable hardware redundancy). The whole compression solution is tested on a Xilinx Zynq UltraScale+ Field-Programmable Gate Array (FPGA)-based MPSoC using different input images, from multispectral to ultraspectral. For images acquired by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), the proposed implementation renders an execution time of approximately 36 s when 8 accelerators are compressing concurrently at 100 MHz, which in turn uses around 20% of the LUTs and 17% of the dedicated memory blocks available in the target device. In this scenario, a speedup of 15.6× is obtained in comparison with a pure software version of the algorithm running in an ARM Cortex-A53 processor. | ||
650 | 4 | |a hyperspectral imaging | |
650 | 4 | |a lossy data compression | |
650 | 4 | |a hardware acceleration | |
650 | 4 | |a on-board processing | |
650 | 4 | |a CCSDS | |
650 | 4 | |a fault-tolerance | |
653 | 0 | |a Electronics | |
700 | 0 | |a Alfonso Rodríguez |e verfasserin |4 aut | |
700 | 0 | |a Antonio Sánchez |e verfasserin |4 aut | |
700 | 0 | |a Arturo Pérez |e verfasserin |4 aut | |
700 | 0 | |a Sebastián López |e verfasserin |4 aut | |
700 | 0 | |a Andrés Otero |e verfasserin |4 aut | |
700 | 0 | |a Eduardo de la Torre |e verfasserin |4 aut | |
700 | 0 | |a Roberto Sarmiento |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Electronics |d MDPI AG, 2013 |g 9(2020), 10, p 1576 |w (DE-627)718626478 |w (DE-600)2662127-7 |x 20799292 |7 nnns |
773 | 1 | 8 | |g volume:9 |g year:2020 |g number:10, p 1576 |
856 | 4 | 0 | |u https://doi.org/10.3390/electronics9101576 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/6a05bb9cb9cc4441a1410ace0da7c88d |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2079-9292/9/10/1576 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2079-9292 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 9 |j 2020 |e 10, p 1576 |
author_variant |
y b yb a r ar a s as a p ap s l sl a o ao e d l t edlt r s rs |
---|---|
matchkey_str |
article:20799292:2020----::oshprpcrlmgcmrsinnrcniualadaltlrnfgbs |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
TK |
publishDate |
2020 |
allfields |
10.3390/electronics9101576 doi (DE-627)DOAJ085260231 (DE-599)DOAJ6a05bb9cb9cc4441a1410ace0da7c88d DE-627 ger DE-627 rakwb eng TK7800-8360 Yubal Barrios verfasserin aut Lossy Hyperspectral Image Compression on a Reconfigurable and Fault-Tolerant FPGA-Based Adaptive Computing Platform 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper describes a novel hardware implementation of a lossy multispectral and hyperspectral image compressor for on-board operation in space missions. The compression algorithm is a lossy extension of the Consultative Committee for Space Data Systems (CCSDS) 123.0-B-1 lossless standard that includes a bit-rate control stage, which in turn manages the losses the compressor may introduce to achieve higher compression ratios without compromising the recovered image quality. The algorithm has been implemented using High-Level Synthesis (HLS) techniques to increase design productivity by raising the abstraction level. The proposed lossy compression solution is deployed onto ARTICo<sup<3</sup<, a dynamically reconfigurable multi-accelerator architecture, obtaining a run-time adaptive solution that enables user-selectable performance (i.e., load more hardware accelerators to transparently increase throughput), power consumption, and fault tolerance (i.e., group hardware accelerators to transparently enable hardware redundancy). The whole compression solution is tested on a Xilinx Zynq UltraScale+ Field-Programmable Gate Array (FPGA)-based MPSoC using different input images, from multispectral to ultraspectral. For images acquired by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), the proposed implementation renders an execution time of approximately 36 s when 8 accelerators are compressing concurrently at 100 MHz, which in turn uses around 20% of the LUTs and 17% of the dedicated memory blocks available in the target device. In this scenario, a speedup of 15.6× is obtained in comparison with a pure software version of the algorithm running in an ARM Cortex-A53 processor. hyperspectral imaging lossy data compression hardware acceleration on-board processing CCSDS fault-tolerance Electronics Alfonso Rodríguez verfasserin aut Antonio Sánchez verfasserin aut Arturo Pérez verfasserin aut Sebastián López verfasserin aut Andrés Otero verfasserin aut Eduardo de la Torre verfasserin aut Roberto Sarmiento verfasserin aut In Electronics MDPI AG, 2013 9(2020), 10, p 1576 (DE-627)718626478 (DE-600)2662127-7 20799292 nnns volume:9 year:2020 number:10, p 1576 https://doi.org/10.3390/electronics9101576 kostenfrei https://doaj.org/article/6a05bb9cb9cc4441a1410ace0da7c88d kostenfrei https://www.mdpi.com/2079-9292/9/10/1576 kostenfrei https://doaj.org/toc/2079-9292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2020 10, p 1576 |
spelling |
10.3390/electronics9101576 doi (DE-627)DOAJ085260231 (DE-599)DOAJ6a05bb9cb9cc4441a1410ace0da7c88d DE-627 ger DE-627 rakwb eng TK7800-8360 Yubal Barrios verfasserin aut Lossy Hyperspectral Image Compression on a Reconfigurable and Fault-Tolerant FPGA-Based Adaptive Computing Platform 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper describes a novel hardware implementation of a lossy multispectral and hyperspectral image compressor for on-board operation in space missions. The compression algorithm is a lossy extension of the Consultative Committee for Space Data Systems (CCSDS) 123.0-B-1 lossless standard that includes a bit-rate control stage, which in turn manages the losses the compressor may introduce to achieve higher compression ratios without compromising the recovered image quality. The algorithm has been implemented using High-Level Synthesis (HLS) techniques to increase design productivity by raising the abstraction level. The proposed lossy compression solution is deployed onto ARTICo<sup<3</sup<, a dynamically reconfigurable multi-accelerator architecture, obtaining a run-time adaptive solution that enables user-selectable performance (i.e., load more hardware accelerators to transparently increase throughput), power consumption, and fault tolerance (i.e., group hardware accelerators to transparently enable hardware redundancy). The whole compression solution is tested on a Xilinx Zynq UltraScale+ Field-Programmable Gate Array (FPGA)-based MPSoC using different input images, from multispectral to ultraspectral. For images acquired by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), the proposed implementation renders an execution time of approximately 36 s when 8 accelerators are compressing concurrently at 100 MHz, which in turn uses around 20% of the LUTs and 17% of the dedicated memory blocks available in the target device. In this scenario, a speedup of 15.6× is obtained in comparison with a pure software version of the algorithm running in an ARM Cortex-A53 processor. hyperspectral imaging lossy data compression hardware acceleration on-board processing CCSDS fault-tolerance Electronics Alfonso Rodríguez verfasserin aut Antonio Sánchez verfasserin aut Arturo Pérez verfasserin aut Sebastián López verfasserin aut Andrés Otero verfasserin aut Eduardo de la Torre verfasserin aut Roberto Sarmiento verfasserin aut In Electronics MDPI AG, 2013 9(2020), 10, p 1576 (DE-627)718626478 (DE-600)2662127-7 20799292 nnns volume:9 year:2020 number:10, p 1576 https://doi.org/10.3390/electronics9101576 kostenfrei https://doaj.org/article/6a05bb9cb9cc4441a1410ace0da7c88d kostenfrei https://www.mdpi.com/2079-9292/9/10/1576 kostenfrei https://doaj.org/toc/2079-9292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2020 10, p 1576 |
allfields_unstemmed |
10.3390/electronics9101576 doi (DE-627)DOAJ085260231 (DE-599)DOAJ6a05bb9cb9cc4441a1410ace0da7c88d DE-627 ger DE-627 rakwb eng TK7800-8360 Yubal Barrios verfasserin aut Lossy Hyperspectral Image Compression on a Reconfigurable and Fault-Tolerant FPGA-Based Adaptive Computing Platform 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper describes a novel hardware implementation of a lossy multispectral and hyperspectral image compressor for on-board operation in space missions. The compression algorithm is a lossy extension of the Consultative Committee for Space Data Systems (CCSDS) 123.0-B-1 lossless standard that includes a bit-rate control stage, which in turn manages the losses the compressor may introduce to achieve higher compression ratios without compromising the recovered image quality. The algorithm has been implemented using High-Level Synthesis (HLS) techniques to increase design productivity by raising the abstraction level. The proposed lossy compression solution is deployed onto ARTICo<sup<3</sup<, a dynamically reconfigurable multi-accelerator architecture, obtaining a run-time adaptive solution that enables user-selectable performance (i.e., load more hardware accelerators to transparently increase throughput), power consumption, and fault tolerance (i.e., group hardware accelerators to transparently enable hardware redundancy). The whole compression solution is tested on a Xilinx Zynq UltraScale+ Field-Programmable Gate Array (FPGA)-based MPSoC using different input images, from multispectral to ultraspectral. For images acquired by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), the proposed implementation renders an execution time of approximately 36 s when 8 accelerators are compressing concurrently at 100 MHz, which in turn uses around 20% of the LUTs and 17% of the dedicated memory blocks available in the target device. In this scenario, a speedup of 15.6× is obtained in comparison with a pure software version of the algorithm running in an ARM Cortex-A53 processor. hyperspectral imaging lossy data compression hardware acceleration on-board processing CCSDS fault-tolerance Electronics Alfonso Rodríguez verfasserin aut Antonio Sánchez verfasserin aut Arturo Pérez verfasserin aut Sebastián López verfasserin aut Andrés Otero verfasserin aut Eduardo de la Torre verfasserin aut Roberto Sarmiento verfasserin aut In Electronics MDPI AG, 2013 9(2020), 10, p 1576 (DE-627)718626478 (DE-600)2662127-7 20799292 nnns volume:9 year:2020 number:10, p 1576 https://doi.org/10.3390/electronics9101576 kostenfrei https://doaj.org/article/6a05bb9cb9cc4441a1410ace0da7c88d kostenfrei https://www.mdpi.com/2079-9292/9/10/1576 kostenfrei https://doaj.org/toc/2079-9292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2020 10, p 1576 |
allfieldsGer |
10.3390/electronics9101576 doi (DE-627)DOAJ085260231 (DE-599)DOAJ6a05bb9cb9cc4441a1410ace0da7c88d DE-627 ger DE-627 rakwb eng TK7800-8360 Yubal Barrios verfasserin aut Lossy Hyperspectral Image Compression on a Reconfigurable and Fault-Tolerant FPGA-Based Adaptive Computing Platform 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper describes a novel hardware implementation of a lossy multispectral and hyperspectral image compressor for on-board operation in space missions. The compression algorithm is a lossy extension of the Consultative Committee for Space Data Systems (CCSDS) 123.0-B-1 lossless standard that includes a bit-rate control stage, which in turn manages the losses the compressor may introduce to achieve higher compression ratios without compromising the recovered image quality. The algorithm has been implemented using High-Level Synthesis (HLS) techniques to increase design productivity by raising the abstraction level. The proposed lossy compression solution is deployed onto ARTICo<sup<3</sup<, a dynamically reconfigurable multi-accelerator architecture, obtaining a run-time adaptive solution that enables user-selectable performance (i.e., load more hardware accelerators to transparently increase throughput), power consumption, and fault tolerance (i.e., group hardware accelerators to transparently enable hardware redundancy). The whole compression solution is tested on a Xilinx Zynq UltraScale+ Field-Programmable Gate Array (FPGA)-based MPSoC using different input images, from multispectral to ultraspectral. For images acquired by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), the proposed implementation renders an execution time of approximately 36 s when 8 accelerators are compressing concurrently at 100 MHz, which in turn uses around 20% of the LUTs and 17% of the dedicated memory blocks available in the target device. In this scenario, a speedup of 15.6× is obtained in comparison with a pure software version of the algorithm running in an ARM Cortex-A53 processor. hyperspectral imaging lossy data compression hardware acceleration on-board processing CCSDS fault-tolerance Electronics Alfonso Rodríguez verfasserin aut Antonio Sánchez verfasserin aut Arturo Pérez verfasserin aut Sebastián López verfasserin aut Andrés Otero verfasserin aut Eduardo de la Torre verfasserin aut Roberto Sarmiento verfasserin aut In Electronics MDPI AG, 2013 9(2020), 10, p 1576 (DE-627)718626478 (DE-600)2662127-7 20799292 nnns volume:9 year:2020 number:10, p 1576 https://doi.org/10.3390/electronics9101576 kostenfrei https://doaj.org/article/6a05bb9cb9cc4441a1410ace0da7c88d kostenfrei https://www.mdpi.com/2079-9292/9/10/1576 kostenfrei https://doaj.org/toc/2079-9292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2020 10, p 1576 |
allfieldsSound |
10.3390/electronics9101576 doi (DE-627)DOAJ085260231 (DE-599)DOAJ6a05bb9cb9cc4441a1410ace0da7c88d DE-627 ger DE-627 rakwb eng TK7800-8360 Yubal Barrios verfasserin aut Lossy Hyperspectral Image Compression on a Reconfigurable and Fault-Tolerant FPGA-Based Adaptive Computing Platform 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper describes a novel hardware implementation of a lossy multispectral and hyperspectral image compressor for on-board operation in space missions. The compression algorithm is a lossy extension of the Consultative Committee for Space Data Systems (CCSDS) 123.0-B-1 lossless standard that includes a bit-rate control stage, which in turn manages the losses the compressor may introduce to achieve higher compression ratios without compromising the recovered image quality. The algorithm has been implemented using High-Level Synthesis (HLS) techniques to increase design productivity by raising the abstraction level. The proposed lossy compression solution is deployed onto ARTICo<sup<3</sup<, a dynamically reconfigurable multi-accelerator architecture, obtaining a run-time adaptive solution that enables user-selectable performance (i.e., load more hardware accelerators to transparently increase throughput), power consumption, and fault tolerance (i.e., group hardware accelerators to transparently enable hardware redundancy). The whole compression solution is tested on a Xilinx Zynq UltraScale+ Field-Programmable Gate Array (FPGA)-based MPSoC using different input images, from multispectral to ultraspectral. For images acquired by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), the proposed implementation renders an execution time of approximately 36 s when 8 accelerators are compressing concurrently at 100 MHz, which in turn uses around 20% of the LUTs and 17% of the dedicated memory blocks available in the target device. In this scenario, a speedup of 15.6× is obtained in comparison with a pure software version of the algorithm running in an ARM Cortex-A53 processor. hyperspectral imaging lossy data compression hardware acceleration on-board processing CCSDS fault-tolerance Electronics Alfonso Rodríguez verfasserin aut Antonio Sánchez verfasserin aut Arturo Pérez verfasserin aut Sebastián López verfasserin aut Andrés Otero verfasserin aut Eduardo de la Torre verfasserin aut Roberto Sarmiento verfasserin aut In Electronics MDPI AG, 2013 9(2020), 10, p 1576 (DE-627)718626478 (DE-600)2662127-7 20799292 nnns volume:9 year:2020 number:10, p 1576 https://doi.org/10.3390/electronics9101576 kostenfrei https://doaj.org/article/6a05bb9cb9cc4441a1410ace0da7c88d kostenfrei https://www.mdpi.com/2079-9292/9/10/1576 kostenfrei https://doaj.org/toc/2079-9292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2020 10, p 1576 |
language |
English |
source |
In Electronics 9(2020), 10, p 1576 volume:9 year:2020 number:10, p 1576 |
sourceStr |
In Electronics 9(2020), 10, p 1576 volume:9 year:2020 number:10, p 1576 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
hyperspectral imaging lossy data compression hardware acceleration on-board processing CCSDS fault-tolerance Electronics |
isfreeaccess_bool |
true |
container_title |
Electronics |
authorswithroles_txt_mv |
Yubal Barrios @@aut@@ Alfonso Rodríguez @@aut@@ Antonio Sánchez @@aut@@ Arturo Pérez @@aut@@ Sebastián López @@aut@@ Andrés Otero @@aut@@ Eduardo de la Torre @@aut@@ Roberto Sarmiento @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
718626478 |
id |
DOAJ085260231 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ085260231</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412212715.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/electronics9101576</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ085260231</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6a05bb9cb9cc4441a1410ace0da7c88d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK7800-8360</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yubal Barrios</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lossy Hyperspectral Image Compression on a Reconfigurable and Fault-Tolerant FPGA-Based Adaptive Computing Platform</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper describes a novel hardware implementation of a lossy multispectral and hyperspectral image compressor for on-board operation in space missions. The compression algorithm is a lossy extension of the Consultative Committee for Space Data Systems (CCSDS) 123.0-B-1 lossless standard that includes a bit-rate control stage, which in turn manages the losses the compressor may introduce to achieve higher compression ratios without compromising the recovered image quality. The algorithm has been implemented using High-Level Synthesis (HLS) techniques to increase design productivity by raising the abstraction level. The proposed lossy compression solution is deployed onto ARTICo<sup<3</sup<, a dynamically reconfigurable multi-accelerator architecture, obtaining a run-time adaptive solution that enables user-selectable performance (i.e., load more hardware accelerators to transparently increase throughput), power consumption, and fault tolerance (i.e., group hardware accelerators to transparently enable hardware redundancy). The whole compression solution is tested on a Xilinx Zynq UltraScale+ Field-Programmable Gate Array (FPGA)-based MPSoC using different input images, from multispectral to ultraspectral. For images acquired by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), the proposed implementation renders an execution time of approximately 36 s when 8 accelerators are compressing concurrently at 100 MHz, which in turn uses around 20% of the LUTs and 17% of the dedicated memory blocks available in the target device. In this scenario, a speedup of 15.6× is obtained in comparison with a pure software version of the algorithm running in an ARM Cortex-A53 processor.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hyperspectral imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">lossy data compression</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hardware acceleration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">on-board processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CCSDS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fault-tolerance</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alfonso Rodríguez</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Antonio Sánchez</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Arturo Pérez</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sebastián López</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Andrés Otero</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Eduardo de la Torre</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Roberto Sarmiento</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Electronics</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">9(2020), 10, p 1576</subfield><subfield code="w">(DE-627)718626478</subfield><subfield code="w">(DE-600)2662127-7</subfield><subfield code="x">20799292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:10, p 1576</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/electronics9101576</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6a05bb9cb9cc4441a1410ace0da7c88d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2079-9292/9/10/1576</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2079-9292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2020</subfield><subfield code="e">10, p 1576</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Yubal Barrios |
spellingShingle |
Yubal Barrios misc TK7800-8360 misc hyperspectral imaging misc lossy data compression misc hardware acceleration misc on-board processing misc CCSDS misc fault-tolerance misc Electronics Lossy Hyperspectral Image Compression on a Reconfigurable and Fault-Tolerant FPGA-Based Adaptive Computing Platform |
authorStr |
Yubal Barrios |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)718626478 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK7800-8360 |
illustrated |
Not Illustrated |
issn |
20799292 |
topic_title |
TK7800-8360 Lossy Hyperspectral Image Compression on a Reconfigurable and Fault-Tolerant FPGA-Based Adaptive Computing Platform hyperspectral imaging lossy data compression hardware acceleration on-board processing CCSDS fault-tolerance |
topic |
misc TK7800-8360 misc hyperspectral imaging misc lossy data compression misc hardware acceleration misc on-board processing misc CCSDS misc fault-tolerance misc Electronics |
topic_unstemmed |
misc TK7800-8360 misc hyperspectral imaging misc lossy data compression misc hardware acceleration misc on-board processing misc CCSDS misc fault-tolerance misc Electronics |
topic_browse |
misc TK7800-8360 misc hyperspectral imaging misc lossy data compression misc hardware acceleration misc on-board processing misc CCSDS misc fault-tolerance misc Electronics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Electronics |
hierarchy_parent_id |
718626478 |
hierarchy_top_title |
Electronics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)718626478 (DE-600)2662127-7 |
title |
Lossy Hyperspectral Image Compression on a Reconfigurable and Fault-Tolerant FPGA-Based Adaptive Computing Platform |
ctrlnum |
(DE-627)DOAJ085260231 (DE-599)DOAJ6a05bb9cb9cc4441a1410ace0da7c88d |
title_full |
Lossy Hyperspectral Image Compression on a Reconfigurable and Fault-Tolerant FPGA-Based Adaptive Computing Platform |
author_sort |
Yubal Barrios |
journal |
Electronics |
journalStr |
Electronics |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Yubal Barrios Alfonso Rodríguez Antonio Sánchez Arturo Pérez Sebastián López Andrés Otero Eduardo de la Torre Roberto Sarmiento |
container_volume |
9 |
class |
TK7800-8360 |
format_se |
Elektronische Aufsätze |
author-letter |
Yubal Barrios |
doi_str_mv |
10.3390/electronics9101576 |
author2-role |
verfasserin |
title_sort |
lossy hyperspectral image compression on a reconfigurable and fault-tolerant fpga-based adaptive computing platform |
callnumber |
TK7800-8360 |
title_auth |
Lossy Hyperspectral Image Compression on a Reconfigurable and Fault-Tolerant FPGA-Based Adaptive Computing Platform |
abstract |
This paper describes a novel hardware implementation of a lossy multispectral and hyperspectral image compressor for on-board operation in space missions. The compression algorithm is a lossy extension of the Consultative Committee for Space Data Systems (CCSDS) 123.0-B-1 lossless standard that includes a bit-rate control stage, which in turn manages the losses the compressor may introduce to achieve higher compression ratios without compromising the recovered image quality. The algorithm has been implemented using High-Level Synthesis (HLS) techniques to increase design productivity by raising the abstraction level. The proposed lossy compression solution is deployed onto ARTICo<sup<3</sup<, a dynamically reconfigurable multi-accelerator architecture, obtaining a run-time adaptive solution that enables user-selectable performance (i.e., load more hardware accelerators to transparently increase throughput), power consumption, and fault tolerance (i.e., group hardware accelerators to transparently enable hardware redundancy). The whole compression solution is tested on a Xilinx Zynq UltraScale+ Field-Programmable Gate Array (FPGA)-based MPSoC using different input images, from multispectral to ultraspectral. For images acquired by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), the proposed implementation renders an execution time of approximately 36 s when 8 accelerators are compressing concurrently at 100 MHz, which in turn uses around 20% of the LUTs and 17% of the dedicated memory blocks available in the target device. In this scenario, a speedup of 15.6× is obtained in comparison with a pure software version of the algorithm running in an ARM Cortex-A53 processor. |
abstractGer |
This paper describes a novel hardware implementation of a lossy multispectral and hyperspectral image compressor for on-board operation in space missions. The compression algorithm is a lossy extension of the Consultative Committee for Space Data Systems (CCSDS) 123.0-B-1 lossless standard that includes a bit-rate control stage, which in turn manages the losses the compressor may introduce to achieve higher compression ratios without compromising the recovered image quality. The algorithm has been implemented using High-Level Synthesis (HLS) techniques to increase design productivity by raising the abstraction level. The proposed lossy compression solution is deployed onto ARTICo<sup<3</sup<, a dynamically reconfigurable multi-accelerator architecture, obtaining a run-time adaptive solution that enables user-selectable performance (i.e., load more hardware accelerators to transparently increase throughput), power consumption, and fault tolerance (i.e., group hardware accelerators to transparently enable hardware redundancy). The whole compression solution is tested on a Xilinx Zynq UltraScale+ Field-Programmable Gate Array (FPGA)-based MPSoC using different input images, from multispectral to ultraspectral. For images acquired by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), the proposed implementation renders an execution time of approximately 36 s when 8 accelerators are compressing concurrently at 100 MHz, which in turn uses around 20% of the LUTs and 17% of the dedicated memory blocks available in the target device. In this scenario, a speedup of 15.6× is obtained in comparison with a pure software version of the algorithm running in an ARM Cortex-A53 processor. |
abstract_unstemmed |
This paper describes a novel hardware implementation of a lossy multispectral and hyperspectral image compressor for on-board operation in space missions. The compression algorithm is a lossy extension of the Consultative Committee for Space Data Systems (CCSDS) 123.0-B-1 lossless standard that includes a bit-rate control stage, which in turn manages the losses the compressor may introduce to achieve higher compression ratios without compromising the recovered image quality. The algorithm has been implemented using High-Level Synthesis (HLS) techniques to increase design productivity by raising the abstraction level. The proposed lossy compression solution is deployed onto ARTICo<sup<3</sup<, a dynamically reconfigurable multi-accelerator architecture, obtaining a run-time adaptive solution that enables user-selectable performance (i.e., load more hardware accelerators to transparently increase throughput), power consumption, and fault tolerance (i.e., group hardware accelerators to transparently enable hardware redundancy). The whole compression solution is tested on a Xilinx Zynq UltraScale+ Field-Programmable Gate Array (FPGA)-based MPSoC using different input images, from multispectral to ultraspectral. For images acquired by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), the proposed implementation renders an execution time of approximately 36 s when 8 accelerators are compressing concurrently at 100 MHz, which in turn uses around 20% of the LUTs and 17% of the dedicated memory blocks available in the target device. In this scenario, a speedup of 15.6× is obtained in comparison with a pure software version of the algorithm running in an ARM Cortex-A53 processor. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
10, p 1576 |
title_short |
Lossy Hyperspectral Image Compression on a Reconfigurable and Fault-Tolerant FPGA-Based Adaptive Computing Platform |
url |
https://doi.org/10.3390/electronics9101576 https://doaj.org/article/6a05bb9cb9cc4441a1410ace0da7c88d https://www.mdpi.com/2079-9292/9/10/1576 https://doaj.org/toc/2079-9292 |
remote_bool |
true |
author2 |
Alfonso Rodríguez Antonio Sánchez Arturo Pérez Sebastián López Andrés Otero Eduardo de la Torre Roberto Sarmiento |
author2Str |
Alfonso Rodríguez Antonio Sánchez Arturo Pérez Sebastián López Andrés Otero Eduardo de la Torre Roberto Sarmiento |
ppnlink |
718626478 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/electronics9101576 |
callnumber-a |
TK7800-8360 |
up_date |
2024-07-03T13:40:07.870Z |
_version_ |
1803565408325730304 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ085260231</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412212715.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/electronics9101576</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ085260231</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6a05bb9cb9cc4441a1410ace0da7c88d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK7800-8360</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yubal Barrios</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lossy Hyperspectral Image Compression on a Reconfigurable and Fault-Tolerant FPGA-Based Adaptive Computing Platform</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper describes a novel hardware implementation of a lossy multispectral and hyperspectral image compressor for on-board operation in space missions. The compression algorithm is a lossy extension of the Consultative Committee for Space Data Systems (CCSDS) 123.0-B-1 lossless standard that includes a bit-rate control stage, which in turn manages the losses the compressor may introduce to achieve higher compression ratios without compromising the recovered image quality. The algorithm has been implemented using High-Level Synthesis (HLS) techniques to increase design productivity by raising the abstraction level. The proposed lossy compression solution is deployed onto ARTICo<sup<3</sup<, a dynamically reconfigurable multi-accelerator architecture, obtaining a run-time adaptive solution that enables user-selectable performance (i.e., load more hardware accelerators to transparently increase throughput), power consumption, and fault tolerance (i.e., group hardware accelerators to transparently enable hardware redundancy). The whole compression solution is tested on a Xilinx Zynq UltraScale+ Field-Programmable Gate Array (FPGA)-based MPSoC using different input images, from multispectral to ultraspectral. For images acquired by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), the proposed implementation renders an execution time of approximately 36 s when 8 accelerators are compressing concurrently at 100 MHz, which in turn uses around 20% of the LUTs and 17% of the dedicated memory blocks available in the target device. In this scenario, a speedup of 15.6× is obtained in comparison with a pure software version of the algorithm running in an ARM Cortex-A53 processor.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hyperspectral imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">lossy data compression</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hardware acceleration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">on-board processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CCSDS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fault-tolerance</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alfonso Rodríguez</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Antonio Sánchez</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Arturo Pérez</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sebastián López</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Andrés Otero</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Eduardo de la Torre</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Roberto Sarmiento</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Electronics</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">9(2020), 10, p 1576</subfield><subfield code="w">(DE-627)718626478</subfield><subfield code="w">(DE-600)2662127-7</subfield><subfield code="x">20799292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:10, p 1576</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/electronics9101576</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6a05bb9cb9cc4441a1410ace0da7c88d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2079-9292/9/10/1576</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2079-9292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2020</subfield><subfield code="e">10, p 1576</subfield></datafield></record></collection>
|
score |
7.4008713 |