Modeling and Stability Analysis of Model Predictive Control Dual Active Bridge Converter
Digital control has been widely used in dual active bridge (DAB) converters, which are pivotal parts of electric vehicles and distributed generation systems. However, the time delays introduced by the digital control could affect the performance or even lead to the instability of the digitally contr...
Ausführliche Beschreibung
Autor*in: |
Guoqing Gao [verfasserIn] Wanjun Lei [verfasserIn] Yao Cui [verfasserIn] Kai Li [verfasserIn] Ling Shi [verfasserIn] Shiyuan Yin [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Energies - MDPI AG, 2008, 12(2019), 16, p 3103 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2019 ; number:16, p 3103 |
Links: |
---|
DOI / URN: |
10.3390/en12163103 |
---|
Katalog-ID: |
DOAJ085292435 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ085292435 | ||
003 | DE-627 | ||
005 | 20230503111436.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/en12163103 |2 doi | |
035 | |a (DE-627)DOAJ085292435 | ||
035 | |a (DE-599)DOAJ7d9ea884f1d94ec2996cd150c2582499 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Guoqing Gao |e verfasserin |4 aut | |
245 | 1 | 0 | |a Modeling and Stability Analysis of Model Predictive Control Dual Active Bridge Converter |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Digital control has been widely used in dual active bridge (DAB) converters, which are pivotal parts of electric vehicles and distributed generation systems. However, the time delays introduced by the digital control could affect the performance or even lead to the instability of the digitally controlled DAB converter. In order to reduce the effect of time delay on the dynamics and stability of the system, the model predictive control (MPC) of the DAB converter is proposed based on the discrete-time iteration in this paper to compensate for the digital control delay. According to the obtained discrete-time model, the instability mechanism of the MPC DAB converters with different parameters is revealed. The simulation and theoretical analysis indicate that this method could reduce the influence of the digital control delay and increase the stable range of the system compared with the conventional control strategy. The proposed method is also revealed to have a strong compatibility and portability. In addition, the accurately predicted stability boundaries can be applied to the practical parameter design and guarantee the stable operation of the system. The experimental results are consistent with the theoretical analysis and verify the proposed method. | ||
650 | 4 | |a dual active bridge (DAB) converter | |
650 | 4 | |a discrete-time modelling | |
650 | 4 | |a digital control delay | |
650 | 4 | |a model predictive control | |
650 | 4 | |a stability analysis | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
700 | 0 | |a Wanjun Lei |e verfasserin |4 aut | |
700 | 0 | |a Yao Cui |e verfasserin |4 aut | |
700 | 0 | |a Kai Li |e verfasserin |4 aut | |
700 | 0 | |a Ling Shi |e verfasserin |4 aut | |
700 | 0 | |a Shiyuan Yin |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Energies |d MDPI AG, 2008 |g 12(2019), 16, p 3103 |w (DE-627)572083742 |w (DE-600)2437446-5 |x 19961073 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2019 |g number:16, p 3103 |
856 | 4 | 0 | |u https://doi.org/10.3390/en12163103 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/7d9ea884f1d94ec2996cd150c2582499 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1996-1073/12/16/3103 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1996-1073 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2019 |e 16, p 3103 |
author_variant |
g g gg w l wl y c yc k l kl l s ls s y sy |
---|---|
matchkey_str |
article:19961073:2019----::oeignsaiiynlssfoepeitvcnrlul |
hierarchy_sort_str |
2019 |
publishDate |
2019 |
allfields |
10.3390/en12163103 doi (DE-627)DOAJ085292435 (DE-599)DOAJ7d9ea884f1d94ec2996cd150c2582499 DE-627 ger DE-627 rakwb eng Guoqing Gao verfasserin aut Modeling and Stability Analysis of Model Predictive Control Dual Active Bridge Converter 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Digital control has been widely used in dual active bridge (DAB) converters, which are pivotal parts of electric vehicles and distributed generation systems. However, the time delays introduced by the digital control could affect the performance or even lead to the instability of the digitally controlled DAB converter. In order to reduce the effect of time delay on the dynamics and stability of the system, the model predictive control (MPC) of the DAB converter is proposed based on the discrete-time iteration in this paper to compensate for the digital control delay. According to the obtained discrete-time model, the instability mechanism of the MPC DAB converters with different parameters is revealed. The simulation and theoretical analysis indicate that this method could reduce the influence of the digital control delay and increase the stable range of the system compared with the conventional control strategy. The proposed method is also revealed to have a strong compatibility and portability. In addition, the accurately predicted stability boundaries can be applied to the practical parameter design and guarantee the stable operation of the system. The experimental results are consistent with the theoretical analysis and verify the proposed method. dual active bridge (DAB) converter discrete-time modelling digital control delay model predictive control stability analysis Technology T Wanjun Lei verfasserin aut Yao Cui verfasserin aut Kai Li verfasserin aut Ling Shi verfasserin aut Shiyuan Yin verfasserin aut In Energies MDPI AG, 2008 12(2019), 16, p 3103 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:12 year:2019 number:16, p 3103 https://doi.org/10.3390/en12163103 kostenfrei https://doaj.org/article/7d9ea884f1d94ec2996cd150c2582499 kostenfrei https://www.mdpi.com/1996-1073/12/16/3103 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2019 16, p 3103 |
spelling |
10.3390/en12163103 doi (DE-627)DOAJ085292435 (DE-599)DOAJ7d9ea884f1d94ec2996cd150c2582499 DE-627 ger DE-627 rakwb eng Guoqing Gao verfasserin aut Modeling and Stability Analysis of Model Predictive Control Dual Active Bridge Converter 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Digital control has been widely used in dual active bridge (DAB) converters, which are pivotal parts of electric vehicles and distributed generation systems. However, the time delays introduced by the digital control could affect the performance or even lead to the instability of the digitally controlled DAB converter. In order to reduce the effect of time delay on the dynamics and stability of the system, the model predictive control (MPC) of the DAB converter is proposed based on the discrete-time iteration in this paper to compensate for the digital control delay. According to the obtained discrete-time model, the instability mechanism of the MPC DAB converters with different parameters is revealed. The simulation and theoretical analysis indicate that this method could reduce the influence of the digital control delay and increase the stable range of the system compared with the conventional control strategy. The proposed method is also revealed to have a strong compatibility and portability. In addition, the accurately predicted stability boundaries can be applied to the practical parameter design and guarantee the stable operation of the system. The experimental results are consistent with the theoretical analysis and verify the proposed method. dual active bridge (DAB) converter discrete-time modelling digital control delay model predictive control stability analysis Technology T Wanjun Lei verfasserin aut Yao Cui verfasserin aut Kai Li verfasserin aut Ling Shi verfasserin aut Shiyuan Yin verfasserin aut In Energies MDPI AG, 2008 12(2019), 16, p 3103 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:12 year:2019 number:16, p 3103 https://doi.org/10.3390/en12163103 kostenfrei https://doaj.org/article/7d9ea884f1d94ec2996cd150c2582499 kostenfrei https://www.mdpi.com/1996-1073/12/16/3103 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2019 16, p 3103 |
allfields_unstemmed |
10.3390/en12163103 doi (DE-627)DOAJ085292435 (DE-599)DOAJ7d9ea884f1d94ec2996cd150c2582499 DE-627 ger DE-627 rakwb eng Guoqing Gao verfasserin aut Modeling and Stability Analysis of Model Predictive Control Dual Active Bridge Converter 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Digital control has been widely used in dual active bridge (DAB) converters, which are pivotal parts of electric vehicles and distributed generation systems. However, the time delays introduced by the digital control could affect the performance or even lead to the instability of the digitally controlled DAB converter. In order to reduce the effect of time delay on the dynamics and stability of the system, the model predictive control (MPC) of the DAB converter is proposed based on the discrete-time iteration in this paper to compensate for the digital control delay. According to the obtained discrete-time model, the instability mechanism of the MPC DAB converters with different parameters is revealed. The simulation and theoretical analysis indicate that this method could reduce the influence of the digital control delay and increase the stable range of the system compared with the conventional control strategy. The proposed method is also revealed to have a strong compatibility and portability. In addition, the accurately predicted stability boundaries can be applied to the practical parameter design and guarantee the stable operation of the system. The experimental results are consistent with the theoretical analysis and verify the proposed method. dual active bridge (DAB) converter discrete-time modelling digital control delay model predictive control stability analysis Technology T Wanjun Lei verfasserin aut Yao Cui verfasserin aut Kai Li verfasserin aut Ling Shi verfasserin aut Shiyuan Yin verfasserin aut In Energies MDPI AG, 2008 12(2019), 16, p 3103 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:12 year:2019 number:16, p 3103 https://doi.org/10.3390/en12163103 kostenfrei https://doaj.org/article/7d9ea884f1d94ec2996cd150c2582499 kostenfrei https://www.mdpi.com/1996-1073/12/16/3103 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2019 16, p 3103 |
allfieldsGer |
10.3390/en12163103 doi (DE-627)DOAJ085292435 (DE-599)DOAJ7d9ea884f1d94ec2996cd150c2582499 DE-627 ger DE-627 rakwb eng Guoqing Gao verfasserin aut Modeling and Stability Analysis of Model Predictive Control Dual Active Bridge Converter 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Digital control has been widely used in dual active bridge (DAB) converters, which are pivotal parts of electric vehicles and distributed generation systems. However, the time delays introduced by the digital control could affect the performance or even lead to the instability of the digitally controlled DAB converter. In order to reduce the effect of time delay on the dynamics and stability of the system, the model predictive control (MPC) of the DAB converter is proposed based on the discrete-time iteration in this paper to compensate for the digital control delay. According to the obtained discrete-time model, the instability mechanism of the MPC DAB converters with different parameters is revealed. The simulation and theoretical analysis indicate that this method could reduce the influence of the digital control delay and increase the stable range of the system compared with the conventional control strategy. The proposed method is also revealed to have a strong compatibility and portability. In addition, the accurately predicted stability boundaries can be applied to the practical parameter design and guarantee the stable operation of the system. The experimental results are consistent with the theoretical analysis and verify the proposed method. dual active bridge (DAB) converter discrete-time modelling digital control delay model predictive control stability analysis Technology T Wanjun Lei verfasserin aut Yao Cui verfasserin aut Kai Li verfasserin aut Ling Shi verfasserin aut Shiyuan Yin verfasserin aut In Energies MDPI AG, 2008 12(2019), 16, p 3103 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:12 year:2019 number:16, p 3103 https://doi.org/10.3390/en12163103 kostenfrei https://doaj.org/article/7d9ea884f1d94ec2996cd150c2582499 kostenfrei https://www.mdpi.com/1996-1073/12/16/3103 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2019 16, p 3103 |
allfieldsSound |
10.3390/en12163103 doi (DE-627)DOAJ085292435 (DE-599)DOAJ7d9ea884f1d94ec2996cd150c2582499 DE-627 ger DE-627 rakwb eng Guoqing Gao verfasserin aut Modeling and Stability Analysis of Model Predictive Control Dual Active Bridge Converter 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Digital control has been widely used in dual active bridge (DAB) converters, which are pivotal parts of electric vehicles and distributed generation systems. However, the time delays introduced by the digital control could affect the performance or even lead to the instability of the digitally controlled DAB converter. In order to reduce the effect of time delay on the dynamics and stability of the system, the model predictive control (MPC) of the DAB converter is proposed based on the discrete-time iteration in this paper to compensate for the digital control delay. According to the obtained discrete-time model, the instability mechanism of the MPC DAB converters with different parameters is revealed. The simulation and theoretical analysis indicate that this method could reduce the influence of the digital control delay and increase the stable range of the system compared with the conventional control strategy. The proposed method is also revealed to have a strong compatibility and portability. In addition, the accurately predicted stability boundaries can be applied to the practical parameter design and guarantee the stable operation of the system. The experimental results are consistent with the theoretical analysis and verify the proposed method. dual active bridge (DAB) converter discrete-time modelling digital control delay model predictive control stability analysis Technology T Wanjun Lei verfasserin aut Yao Cui verfasserin aut Kai Li verfasserin aut Ling Shi verfasserin aut Shiyuan Yin verfasserin aut In Energies MDPI AG, 2008 12(2019), 16, p 3103 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:12 year:2019 number:16, p 3103 https://doi.org/10.3390/en12163103 kostenfrei https://doaj.org/article/7d9ea884f1d94ec2996cd150c2582499 kostenfrei https://www.mdpi.com/1996-1073/12/16/3103 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2019 16, p 3103 |
language |
English |
source |
In Energies 12(2019), 16, p 3103 volume:12 year:2019 number:16, p 3103 |
sourceStr |
In Energies 12(2019), 16, p 3103 volume:12 year:2019 number:16, p 3103 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
dual active bridge (DAB) converter discrete-time modelling digital control delay model predictive control stability analysis Technology T |
isfreeaccess_bool |
true |
container_title |
Energies |
authorswithroles_txt_mv |
Guoqing Gao @@aut@@ Wanjun Lei @@aut@@ Yao Cui @@aut@@ Kai Li @@aut@@ Ling Shi @@aut@@ Shiyuan Yin @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
572083742 |
id |
DOAJ085292435 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ085292435</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503111436.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/en12163103</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ085292435</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ7d9ea884f1d94ec2996cd150c2582499</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Guoqing Gao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modeling and Stability Analysis of Model Predictive Control Dual Active Bridge Converter</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Digital control has been widely used in dual active bridge (DAB) converters, which are pivotal parts of electric vehicles and distributed generation systems. However, the time delays introduced by the digital control could affect the performance or even lead to the instability of the digitally controlled DAB converter. In order to reduce the effect of time delay on the dynamics and stability of the system, the model predictive control (MPC) of the DAB converter is proposed based on the discrete-time iteration in this paper to compensate for the digital control delay. According to the obtained discrete-time model, the instability mechanism of the MPC DAB converters with different parameters is revealed. The simulation and theoretical analysis indicate that this method could reduce the influence of the digital control delay and increase the stable range of the system compared with the conventional control strategy. The proposed method is also revealed to have a strong compatibility and portability. In addition, the accurately predicted stability boundaries can be applied to the practical parameter design and guarantee the stable operation of the system. The experimental results are consistent with the theoretical analysis and verify the proposed method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dual active bridge (DAB) converter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">discrete-time modelling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">digital control delay</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">model predictive control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stability analysis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wanjun Lei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yao Cui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kai Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ling Shi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shiyuan Yin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Energies</subfield><subfield code="d">MDPI AG, 2008</subfield><subfield code="g">12(2019), 16, p 3103</subfield><subfield code="w">(DE-627)572083742</subfield><subfield code="w">(DE-600)2437446-5</subfield><subfield code="x">19961073</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:16, p 3103</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/en12163103</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/7d9ea884f1d94ec2996cd150c2582499</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1996-1073/12/16/3103</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1996-1073</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2019</subfield><subfield code="e">16, p 3103</subfield></datafield></record></collection>
|
author |
Guoqing Gao |
spellingShingle |
Guoqing Gao misc dual active bridge (DAB) converter misc discrete-time modelling misc digital control delay misc model predictive control misc stability analysis misc Technology misc T Modeling and Stability Analysis of Model Predictive Control Dual Active Bridge Converter |
authorStr |
Guoqing Gao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)572083742 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
19961073 |
topic_title |
Modeling and Stability Analysis of Model Predictive Control Dual Active Bridge Converter dual active bridge (DAB) converter discrete-time modelling digital control delay model predictive control stability analysis |
topic |
misc dual active bridge (DAB) converter misc discrete-time modelling misc digital control delay misc model predictive control misc stability analysis misc Technology misc T |
topic_unstemmed |
misc dual active bridge (DAB) converter misc discrete-time modelling misc digital control delay misc model predictive control misc stability analysis misc Technology misc T |
topic_browse |
misc dual active bridge (DAB) converter misc discrete-time modelling misc digital control delay misc model predictive control misc stability analysis misc Technology misc T |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Energies |
hierarchy_parent_id |
572083742 |
hierarchy_top_title |
Energies |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)572083742 (DE-600)2437446-5 |
title |
Modeling and Stability Analysis of Model Predictive Control Dual Active Bridge Converter |
ctrlnum |
(DE-627)DOAJ085292435 (DE-599)DOAJ7d9ea884f1d94ec2996cd150c2582499 |
title_full |
Modeling and Stability Analysis of Model Predictive Control Dual Active Bridge Converter |
author_sort |
Guoqing Gao |
journal |
Energies |
journalStr |
Energies |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
author_browse |
Guoqing Gao Wanjun Lei Yao Cui Kai Li Ling Shi Shiyuan Yin |
container_volume |
12 |
format_se |
Elektronische Aufsätze |
author-letter |
Guoqing Gao |
doi_str_mv |
10.3390/en12163103 |
author2-role |
verfasserin |
title_sort |
modeling and stability analysis of model predictive control dual active bridge converter |
title_auth |
Modeling and Stability Analysis of Model Predictive Control Dual Active Bridge Converter |
abstract |
Digital control has been widely used in dual active bridge (DAB) converters, which are pivotal parts of electric vehicles and distributed generation systems. However, the time delays introduced by the digital control could affect the performance or even lead to the instability of the digitally controlled DAB converter. In order to reduce the effect of time delay on the dynamics and stability of the system, the model predictive control (MPC) of the DAB converter is proposed based on the discrete-time iteration in this paper to compensate for the digital control delay. According to the obtained discrete-time model, the instability mechanism of the MPC DAB converters with different parameters is revealed. The simulation and theoretical analysis indicate that this method could reduce the influence of the digital control delay and increase the stable range of the system compared with the conventional control strategy. The proposed method is also revealed to have a strong compatibility and portability. In addition, the accurately predicted stability boundaries can be applied to the practical parameter design and guarantee the stable operation of the system. The experimental results are consistent with the theoretical analysis and verify the proposed method. |
abstractGer |
Digital control has been widely used in dual active bridge (DAB) converters, which are pivotal parts of electric vehicles and distributed generation systems. However, the time delays introduced by the digital control could affect the performance or even lead to the instability of the digitally controlled DAB converter. In order to reduce the effect of time delay on the dynamics and stability of the system, the model predictive control (MPC) of the DAB converter is proposed based on the discrete-time iteration in this paper to compensate for the digital control delay. According to the obtained discrete-time model, the instability mechanism of the MPC DAB converters with different parameters is revealed. The simulation and theoretical analysis indicate that this method could reduce the influence of the digital control delay and increase the stable range of the system compared with the conventional control strategy. The proposed method is also revealed to have a strong compatibility and portability. In addition, the accurately predicted stability boundaries can be applied to the practical parameter design and guarantee the stable operation of the system. The experimental results are consistent with the theoretical analysis and verify the proposed method. |
abstract_unstemmed |
Digital control has been widely used in dual active bridge (DAB) converters, which are pivotal parts of electric vehicles and distributed generation systems. However, the time delays introduced by the digital control could affect the performance or even lead to the instability of the digitally controlled DAB converter. In order to reduce the effect of time delay on the dynamics and stability of the system, the model predictive control (MPC) of the DAB converter is proposed based on the discrete-time iteration in this paper to compensate for the digital control delay. According to the obtained discrete-time model, the instability mechanism of the MPC DAB converters with different parameters is revealed. The simulation and theoretical analysis indicate that this method could reduce the influence of the digital control delay and increase the stable range of the system compared with the conventional control strategy. The proposed method is also revealed to have a strong compatibility and portability. In addition, the accurately predicted stability boundaries can be applied to the practical parameter design and guarantee the stable operation of the system. The experimental results are consistent with the theoretical analysis and verify the proposed method. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
16, p 3103 |
title_short |
Modeling and Stability Analysis of Model Predictive Control Dual Active Bridge Converter |
url |
https://doi.org/10.3390/en12163103 https://doaj.org/article/7d9ea884f1d94ec2996cd150c2582499 https://www.mdpi.com/1996-1073/12/16/3103 https://doaj.org/toc/1996-1073 |
remote_bool |
true |
author2 |
Wanjun Lei Yao Cui Kai Li Ling Shi Shiyuan Yin |
author2Str |
Wanjun Lei Yao Cui Kai Li Ling Shi Shiyuan Yin |
ppnlink |
572083742 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/en12163103 |
up_date |
2024-07-03T13:52:06.794Z |
_version_ |
1803566162164842496 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ085292435</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503111436.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/en12163103</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ085292435</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ7d9ea884f1d94ec2996cd150c2582499</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Guoqing Gao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modeling and Stability Analysis of Model Predictive Control Dual Active Bridge Converter</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Digital control has been widely used in dual active bridge (DAB) converters, which are pivotal parts of electric vehicles and distributed generation systems. However, the time delays introduced by the digital control could affect the performance or even lead to the instability of the digitally controlled DAB converter. In order to reduce the effect of time delay on the dynamics and stability of the system, the model predictive control (MPC) of the DAB converter is proposed based on the discrete-time iteration in this paper to compensate for the digital control delay. According to the obtained discrete-time model, the instability mechanism of the MPC DAB converters with different parameters is revealed. The simulation and theoretical analysis indicate that this method could reduce the influence of the digital control delay and increase the stable range of the system compared with the conventional control strategy. The proposed method is also revealed to have a strong compatibility and portability. In addition, the accurately predicted stability boundaries can be applied to the practical parameter design and guarantee the stable operation of the system. The experimental results are consistent with the theoretical analysis and verify the proposed method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dual active bridge (DAB) converter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">discrete-time modelling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">digital control delay</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">model predictive control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stability analysis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wanjun Lei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yao Cui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kai Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ling Shi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shiyuan Yin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Energies</subfield><subfield code="d">MDPI AG, 2008</subfield><subfield code="g">12(2019), 16, p 3103</subfield><subfield code="w">(DE-627)572083742</subfield><subfield code="w">(DE-600)2437446-5</subfield><subfield code="x">19961073</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:16, p 3103</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/en12163103</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/7d9ea884f1d94ec2996cd150c2582499</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1996-1073/12/16/3103</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1996-1073</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2019</subfield><subfield code="e">16, p 3103</subfield></datafield></record></collection>
|
score |
7.4011803 |