MS Location Estimation Based on the Artificial Bee Colony Algorithm
With the mature technology of wireless communications, the function of estimating the mobile station (MS) position has become essential. Suppressing the bias resulting from non-line-of-sight (NLSO) scenarios is the main issue for a wireless location network. The artificial bee colony (ABC) algorithm...
Ausführliche Beschreibung
Autor*in: |
Chien-Sheng Chen [verfasserIn] Jen-Fa Huang [verfasserIn] Nan-Chun Huang [verfasserIn] Kai-Sheng Chen [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Sensors - MDPI AG, 2003, 20(2020), 19, p 5597 |
---|---|
Übergeordnetes Werk: |
volume:20 ; year:2020 ; number:19, p 5597 |
Links: |
---|
DOI / URN: |
10.3390/s20195597 |
---|
Katalog-ID: |
DOAJ085327301 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ085327301 | ||
003 | DE-627 | ||
005 | 20240412212552.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/s20195597 |2 doi | |
035 | |a (DE-627)DOAJ085327301 | ||
035 | |a (DE-599)DOAJ2a1a72c8f5184d4d985f621ed8926486 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TP1-1185 | |
100 | 0 | |a Chien-Sheng Chen |e verfasserin |4 aut | |
245 | 1 | 0 | |a MS Location Estimation Based on the Artificial Bee Colony Algorithm |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a With the mature technology of wireless communications, the function of estimating the mobile station (MS) position has become essential. Suppressing the bias resulting from non-line-of-sight (NLSO) scenarios is the main issue for a wireless location network. The artificial bee colony (ABC) algorithm, based on the depiction of bee swarm’s foraging characteristics, is widely applied to solve optimization problems in several fields. Based on three measurements of time-of-arrival (TOA), an objective function is used to quantify the additional NLOS error on the MS positioning scheme. The ABC algorithm is adopted to locate the most precise MS location by minimizing the objective function value. The performance of the proposed positioning methods is verified under various error distributions through computer simulations. Meanwhile, the localization accuracy achieved by other existing methods is also investigated. According to the simulation results, accurate estimation of the MS position is derived and therefore the efficiency of the localization process is increased. | ||
650 | 4 | |a time of arrival (TOA) | |
650 | 4 | |a non-line-of-sight (NLOS) | |
650 | 4 | |a artificial bee colony (ABC) | |
650 | 4 | |a mobile station (MS) | |
650 | 4 | |a base station (BS) | |
653 | 0 | |a Chemical technology | |
700 | 0 | |a Jen-Fa Huang |e verfasserin |4 aut | |
700 | 0 | |a Nan-Chun Huang |e verfasserin |4 aut | |
700 | 0 | |a Kai-Sheng Chen |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Sensors |d MDPI AG, 2003 |g 20(2020), 19, p 5597 |w (DE-627)331640910 |w (DE-600)2052857-7 |x 14248220 |7 nnns |
773 | 1 | 8 | |g volume:20 |g year:2020 |g number:19, p 5597 |
856 | 4 | 0 | |u https://doi.org/10.3390/s20195597 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/2a1a72c8f5184d4d985f621ed8926486 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1424-8220/20/19/5597 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1424-8220 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 20 |j 2020 |e 19, p 5597 |
author_variant |
c s c csc j f h jfh n c h nch k s c ksc |
---|---|
matchkey_str |
article:14248220:2020----::soainsiainaeoteriiile |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
TP |
publishDate |
2020 |
allfields |
10.3390/s20195597 doi (DE-627)DOAJ085327301 (DE-599)DOAJ2a1a72c8f5184d4d985f621ed8926486 DE-627 ger DE-627 rakwb eng TP1-1185 Chien-Sheng Chen verfasserin aut MS Location Estimation Based on the Artificial Bee Colony Algorithm 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With the mature technology of wireless communications, the function of estimating the mobile station (MS) position has become essential. Suppressing the bias resulting from non-line-of-sight (NLSO) scenarios is the main issue for a wireless location network. The artificial bee colony (ABC) algorithm, based on the depiction of bee swarm’s foraging characteristics, is widely applied to solve optimization problems in several fields. Based on three measurements of time-of-arrival (TOA), an objective function is used to quantify the additional NLOS error on the MS positioning scheme. The ABC algorithm is adopted to locate the most precise MS location by minimizing the objective function value. The performance of the proposed positioning methods is verified under various error distributions through computer simulations. Meanwhile, the localization accuracy achieved by other existing methods is also investigated. According to the simulation results, accurate estimation of the MS position is derived and therefore the efficiency of the localization process is increased. time of arrival (TOA) non-line-of-sight (NLOS) artificial bee colony (ABC) mobile station (MS) base station (BS) Chemical technology Jen-Fa Huang verfasserin aut Nan-Chun Huang verfasserin aut Kai-Sheng Chen verfasserin aut In Sensors MDPI AG, 2003 20(2020), 19, p 5597 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:20 year:2020 number:19, p 5597 https://doi.org/10.3390/s20195597 kostenfrei https://doaj.org/article/2a1a72c8f5184d4d985f621ed8926486 kostenfrei https://www.mdpi.com/1424-8220/20/19/5597 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2020 19, p 5597 |
spelling |
10.3390/s20195597 doi (DE-627)DOAJ085327301 (DE-599)DOAJ2a1a72c8f5184d4d985f621ed8926486 DE-627 ger DE-627 rakwb eng TP1-1185 Chien-Sheng Chen verfasserin aut MS Location Estimation Based on the Artificial Bee Colony Algorithm 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With the mature technology of wireless communications, the function of estimating the mobile station (MS) position has become essential. Suppressing the bias resulting from non-line-of-sight (NLSO) scenarios is the main issue for a wireless location network. The artificial bee colony (ABC) algorithm, based on the depiction of bee swarm’s foraging characteristics, is widely applied to solve optimization problems in several fields. Based on three measurements of time-of-arrival (TOA), an objective function is used to quantify the additional NLOS error on the MS positioning scheme. The ABC algorithm is adopted to locate the most precise MS location by minimizing the objective function value. The performance of the proposed positioning methods is verified under various error distributions through computer simulations. Meanwhile, the localization accuracy achieved by other existing methods is also investigated. According to the simulation results, accurate estimation of the MS position is derived and therefore the efficiency of the localization process is increased. time of arrival (TOA) non-line-of-sight (NLOS) artificial bee colony (ABC) mobile station (MS) base station (BS) Chemical technology Jen-Fa Huang verfasserin aut Nan-Chun Huang verfasserin aut Kai-Sheng Chen verfasserin aut In Sensors MDPI AG, 2003 20(2020), 19, p 5597 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:20 year:2020 number:19, p 5597 https://doi.org/10.3390/s20195597 kostenfrei https://doaj.org/article/2a1a72c8f5184d4d985f621ed8926486 kostenfrei https://www.mdpi.com/1424-8220/20/19/5597 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2020 19, p 5597 |
allfields_unstemmed |
10.3390/s20195597 doi (DE-627)DOAJ085327301 (DE-599)DOAJ2a1a72c8f5184d4d985f621ed8926486 DE-627 ger DE-627 rakwb eng TP1-1185 Chien-Sheng Chen verfasserin aut MS Location Estimation Based on the Artificial Bee Colony Algorithm 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With the mature technology of wireless communications, the function of estimating the mobile station (MS) position has become essential. Suppressing the bias resulting from non-line-of-sight (NLSO) scenarios is the main issue for a wireless location network. The artificial bee colony (ABC) algorithm, based on the depiction of bee swarm’s foraging characteristics, is widely applied to solve optimization problems in several fields. Based on three measurements of time-of-arrival (TOA), an objective function is used to quantify the additional NLOS error on the MS positioning scheme. The ABC algorithm is adopted to locate the most precise MS location by minimizing the objective function value. The performance of the proposed positioning methods is verified under various error distributions through computer simulations. Meanwhile, the localization accuracy achieved by other existing methods is also investigated. According to the simulation results, accurate estimation of the MS position is derived and therefore the efficiency of the localization process is increased. time of arrival (TOA) non-line-of-sight (NLOS) artificial bee colony (ABC) mobile station (MS) base station (BS) Chemical technology Jen-Fa Huang verfasserin aut Nan-Chun Huang verfasserin aut Kai-Sheng Chen verfasserin aut In Sensors MDPI AG, 2003 20(2020), 19, p 5597 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:20 year:2020 number:19, p 5597 https://doi.org/10.3390/s20195597 kostenfrei https://doaj.org/article/2a1a72c8f5184d4d985f621ed8926486 kostenfrei https://www.mdpi.com/1424-8220/20/19/5597 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2020 19, p 5597 |
allfieldsGer |
10.3390/s20195597 doi (DE-627)DOAJ085327301 (DE-599)DOAJ2a1a72c8f5184d4d985f621ed8926486 DE-627 ger DE-627 rakwb eng TP1-1185 Chien-Sheng Chen verfasserin aut MS Location Estimation Based on the Artificial Bee Colony Algorithm 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With the mature technology of wireless communications, the function of estimating the mobile station (MS) position has become essential. Suppressing the bias resulting from non-line-of-sight (NLSO) scenarios is the main issue for a wireless location network. The artificial bee colony (ABC) algorithm, based on the depiction of bee swarm’s foraging characteristics, is widely applied to solve optimization problems in several fields. Based on three measurements of time-of-arrival (TOA), an objective function is used to quantify the additional NLOS error on the MS positioning scheme. The ABC algorithm is adopted to locate the most precise MS location by minimizing the objective function value. The performance of the proposed positioning methods is verified under various error distributions through computer simulations. Meanwhile, the localization accuracy achieved by other existing methods is also investigated. According to the simulation results, accurate estimation of the MS position is derived and therefore the efficiency of the localization process is increased. time of arrival (TOA) non-line-of-sight (NLOS) artificial bee colony (ABC) mobile station (MS) base station (BS) Chemical technology Jen-Fa Huang verfasserin aut Nan-Chun Huang verfasserin aut Kai-Sheng Chen verfasserin aut In Sensors MDPI AG, 2003 20(2020), 19, p 5597 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:20 year:2020 number:19, p 5597 https://doi.org/10.3390/s20195597 kostenfrei https://doaj.org/article/2a1a72c8f5184d4d985f621ed8926486 kostenfrei https://www.mdpi.com/1424-8220/20/19/5597 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2020 19, p 5597 |
allfieldsSound |
10.3390/s20195597 doi (DE-627)DOAJ085327301 (DE-599)DOAJ2a1a72c8f5184d4d985f621ed8926486 DE-627 ger DE-627 rakwb eng TP1-1185 Chien-Sheng Chen verfasserin aut MS Location Estimation Based on the Artificial Bee Colony Algorithm 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With the mature technology of wireless communications, the function of estimating the mobile station (MS) position has become essential. Suppressing the bias resulting from non-line-of-sight (NLSO) scenarios is the main issue for a wireless location network. The artificial bee colony (ABC) algorithm, based on the depiction of bee swarm’s foraging characteristics, is widely applied to solve optimization problems in several fields. Based on three measurements of time-of-arrival (TOA), an objective function is used to quantify the additional NLOS error on the MS positioning scheme. The ABC algorithm is adopted to locate the most precise MS location by minimizing the objective function value. The performance of the proposed positioning methods is verified under various error distributions through computer simulations. Meanwhile, the localization accuracy achieved by other existing methods is also investigated. According to the simulation results, accurate estimation of the MS position is derived and therefore the efficiency of the localization process is increased. time of arrival (TOA) non-line-of-sight (NLOS) artificial bee colony (ABC) mobile station (MS) base station (BS) Chemical technology Jen-Fa Huang verfasserin aut Nan-Chun Huang verfasserin aut Kai-Sheng Chen verfasserin aut In Sensors MDPI AG, 2003 20(2020), 19, p 5597 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:20 year:2020 number:19, p 5597 https://doi.org/10.3390/s20195597 kostenfrei https://doaj.org/article/2a1a72c8f5184d4d985f621ed8926486 kostenfrei https://www.mdpi.com/1424-8220/20/19/5597 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2020 19, p 5597 |
language |
English |
source |
In Sensors 20(2020), 19, p 5597 volume:20 year:2020 number:19, p 5597 |
sourceStr |
In Sensors 20(2020), 19, p 5597 volume:20 year:2020 number:19, p 5597 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
time of arrival (TOA) non-line-of-sight (NLOS) artificial bee colony (ABC) mobile station (MS) base station (BS) Chemical technology |
isfreeaccess_bool |
true |
container_title |
Sensors |
authorswithroles_txt_mv |
Chien-Sheng Chen @@aut@@ Jen-Fa Huang @@aut@@ Nan-Chun Huang @@aut@@ Kai-Sheng Chen @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
331640910 |
id |
DOAJ085327301 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ085327301</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412212552.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/s20195597</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ085327301</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ2a1a72c8f5184d4d985f621ed8926486</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Chien-Sheng Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">MS Location Estimation Based on the Artificial Bee Colony Algorithm</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">With the mature technology of wireless communications, the function of estimating the mobile station (MS) position has become essential. Suppressing the bias resulting from non-line-of-sight (NLSO) scenarios is the main issue for a wireless location network. The artificial bee colony (ABC) algorithm, based on the depiction of bee swarm’s foraging characteristics, is widely applied to solve optimization problems in several fields. Based on three measurements of time-of-arrival (TOA), an objective function is used to quantify the additional NLOS error on the MS positioning scheme. The ABC algorithm is adopted to locate the most precise MS location by minimizing the objective function value. The performance of the proposed positioning methods is verified under various error distributions through computer simulations. Meanwhile, the localization accuracy achieved by other existing methods is also investigated. According to the simulation results, accurate estimation of the MS position is derived and therefore the efficiency of the localization process is increased.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">time of arrival (TOA)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">non-line-of-sight (NLOS)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">artificial bee colony (ABC)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mobile station (MS)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">base station (BS)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jen-Fa Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nan-Chun Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kai-Sheng Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sensors</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">20(2020), 19, p 5597</subfield><subfield code="w">(DE-627)331640910</subfield><subfield code="w">(DE-600)2052857-7</subfield><subfield code="x">14248220</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:19, p 5597</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/s20195597</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/2a1a72c8f5184d4d985f621ed8926486</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1424-8220/20/19/5597</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1424-8220</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">2020</subfield><subfield code="e">19, p 5597</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Chien-Sheng Chen |
spellingShingle |
Chien-Sheng Chen misc TP1-1185 misc time of arrival (TOA) misc non-line-of-sight (NLOS) misc artificial bee colony (ABC) misc mobile station (MS) misc base station (BS) misc Chemical technology MS Location Estimation Based on the Artificial Bee Colony Algorithm |
authorStr |
Chien-Sheng Chen |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)331640910 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TP1-1185 |
illustrated |
Not Illustrated |
issn |
14248220 |
topic_title |
TP1-1185 MS Location Estimation Based on the Artificial Bee Colony Algorithm time of arrival (TOA) non-line-of-sight (NLOS) artificial bee colony (ABC) mobile station (MS) base station (BS) |
topic |
misc TP1-1185 misc time of arrival (TOA) misc non-line-of-sight (NLOS) misc artificial bee colony (ABC) misc mobile station (MS) misc base station (BS) misc Chemical technology |
topic_unstemmed |
misc TP1-1185 misc time of arrival (TOA) misc non-line-of-sight (NLOS) misc artificial bee colony (ABC) misc mobile station (MS) misc base station (BS) misc Chemical technology |
topic_browse |
misc TP1-1185 misc time of arrival (TOA) misc non-line-of-sight (NLOS) misc artificial bee colony (ABC) misc mobile station (MS) misc base station (BS) misc Chemical technology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Sensors |
hierarchy_parent_id |
331640910 |
hierarchy_top_title |
Sensors |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)331640910 (DE-600)2052857-7 |
title |
MS Location Estimation Based on the Artificial Bee Colony Algorithm |
ctrlnum |
(DE-627)DOAJ085327301 (DE-599)DOAJ2a1a72c8f5184d4d985f621ed8926486 |
title_full |
MS Location Estimation Based on the Artificial Bee Colony Algorithm |
author_sort |
Chien-Sheng Chen |
journal |
Sensors |
journalStr |
Sensors |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Chien-Sheng Chen Jen-Fa Huang Nan-Chun Huang Kai-Sheng Chen |
container_volume |
20 |
class |
TP1-1185 |
format_se |
Elektronische Aufsätze |
author-letter |
Chien-Sheng Chen |
doi_str_mv |
10.3390/s20195597 |
author2-role |
verfasserin |
title_sort |
ms location estimation based on the artificial bee colony algorithm |
callnumber |
TP1-1185 |
title_auth |
MS Location Estimation Based on the Artificial Bee Colony Algorithm |
abstract |
With the mature technology of wireless communications, the function of estimating the mobile station (MS) position has become essential. Suppressing the bias resulting from non-line-of-sight (NLSO) scenarios is the main issue for a wireless location network. The artificial bee colony (ABC) algorithm, based on the depiction of bee swarm’s foraging characteristics, is widely applied to solve optimization problems in several fields. Based on three measurements of time-of-arrival (TOA), an objective function is used to quantify the additional NLOS error on the MS positioning scheme. The ABC algorithm is adopted to locate the most precise MS location by minimizing the objective function value. The performance of the proposed positioning methods is verified under various error distributions through computer simulations. Meanwhile, the localization accuracy achieved by other existing methods is also investigated. According to the simulation results, accurate estimation of the MS position is derived and therefore the efficiency of the localization process is increased. |
abstractGer |
With the mature technology of wireless communications, the function of estimating the mobile station (MS) position has become essential. Suppressing the bias resulting from non-line-of-sight (NLSO) scenarios is the main issue for a wireless location network. The artificial bee colony (ABC) algorithm, based on the depiction of bee swarm’s foraging characteristics, is widely applied to solve optimization problems in several fields. Based on three measurements of time-of-arrival (TOA), an objective function is used to quantify the additional NLOS error on the MS positioning scheme. The ABC algorithm is adopted to locate the most precise MS location by minimizing the objective function value. The performance of the proposed positioning methods is verified under various error distributions through computer simulations. Meanwhile, the localization accuracy achieved by other existing methods is also investigated. According to the simulation results, accurate estimation of the MS position is derived and therefore the efficiency of the localization process is increased. |
abstract_unstemmed |
With the mature technology of wireless communications, the function of estimating the mobile station (MS) position has become essential. Suppressing the bias resulting from non-line-of-sight (NLSO) scenarios is the main issue for a wireless location network. The artificial bee colony (ABC) algorithm, based on the depiction of bee swarm’s foraging characteristics, is widely applied to solve optimization problems in several fields. Based on three measurements of time-of-arrival (TOA), an objective function is used to quantify the additional NLOS error on the MS positioning scheme. The ABC algorithm is adopted to locate the most precise MS location by minimizing the objective function value. The performance of the proposed positioning methods is verified under various error distributions through computer simulations. Meanwhile, the localization accuracy achieved by other existing methods is also investigated. According to the simulation results, accurate estimation of the MS position is derived and therefore the efficiency of the localization process is increased. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
19, p 5597 |
title_short |
MS Location Estimation Based on the Artificial Bee Colony Algorithm |
url |
https://doi.org/10.3390/s20195597 https://doaj.org/article/2a1a72c8f5184d4d985f621ed8926486 https://www.mdpi.com/1424-8220/20/19/5597 https://doaj.org/toc/1424-8220 |
remote_bool |
true |
author2 |
Jen-Fa Huang Nan-Chun Huang Kai-Sheng Chen |
author2Str |
Jen-Fa Huang Nan-Chun Huang Kai-Sheng Chen |
ppnlink |
331640910 |
callnumber-subject |
TP - Chemical Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/s20195597 |
callnumber-a |
TP1-1185 |
up_date |
2024-07-03T14:04:45.633Z |
_version_ |
1803566957867302912 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ085327301</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412212552.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/s20195597</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ085327301</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ2a1a72c8f5184d4d985f621ed8926486</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Chien-Sheng Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">MS Location Estimation Based on the Artificial Bee Colony Algorithm</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">With the mature technology of wireless communications, the function of estimating the mobile station (MS) position has become essential. Suppressing the bias resulting from non-line-of-sight (NLSO) scenarios is the main issue for a wireless location network. The artificial bee colony (ABC) algorithm, based on the depiction of bee swarm’s foraging characteristics, is widely applied to solve optimization problems in several fields. Based on three measurements of time-of-arrival (TOA), an objective function is used to quantify the additional NLOS error on the MS positioning scheme. The ABC algorithm is adopted to locate the most precise MS location by minimizing the objective function value. The performance of the proposed positioning methods is verified under various error distributions through computer simulations. Meanwhile, the localization accuracy achieved by other existing methods is also investigated. According to the simulation results, accurate estimation of the MS position is derived and therefore the efficiency of the localization process is increased.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">time of arrival (TOA)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">non-line-of-sight (NLOS)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">artificial bee colony (ABC)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mobile station (MS)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">base station (BS)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jen-Fa Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nan-Chun Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kai-Sheng Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sensors</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">20(2020), 19, p 5597</subfield><subfield code="w">(DE-627)331640910</subfield><subfield code="w">(DE-600)2052857-7</subfield><subfield code="x">14248220</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:19, p 5597</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/s20195597</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/2a1a72c8f5184d4d985f621ed8926486</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1424-8220/20/19/5597</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1424-8220</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">2020</subfield><subfield code="e">19, p 5597</subfield></datafield></record></collection>
|
score |
7.401187 |