Dynamic Pollution Prediction Model of Insulators Based on Atmospheric Environmental Parameters
Pollution-induced flashover is one of the most serious power accidents, and the pollution degree of insulators depends on atmospheric environmental parameters. The pollution models used in the power system research are usually static, but the environmental parameters are dynamic. Therefore, the stud...
Ausführliche Beschreibung
Autor*in: |
Siyi Chen [verfasserIn] Zhijin Zhang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Energies - MDPI AG, 2008, 13(2020), 12, p 3066 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2020 ; number:12, p 3066 |
Links: |
---|
DOI / URN: |
10.3390/en13123066 |
---|
Katalog-ID: |
DOAJ085336890 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ085336890 | ||
003 | DE-627 | ||
005 | 20240412231745.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/en13123066 |2 doi | |
035 | |a (DE-627)DOAJ085336890 | ||
035 | |a (DE-599)DOAJ8f22ffe6db4b455c9f16b133de65be05 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Siyi Chen |e verfasserin |4 aut | |
245 | 1 | 0 | |a Dynamic Pollution Prediction Model of Insulators Based on Atmospheric Environmental Parameters |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Pollution-induced flashover is one of the most serious power accidents, and the pollution degree of insulators depends on atmospheric environmental parameters. The pollution models used in the power system research are usually static, but the environmental parameters are dynamic. Therefore, the study on the dynamic pollution prediction model is of great importance. In this paper, the dynamic pollution prediction model of insulators based on atmospheric environmental parameters was built, and insulators’ structure coefficients were proposed based on the model. Firstly, the insulator dynamic pollution model based on meteorological data (PM2.5, PM10, TSP (total suspended particulate), and wind speed) was proposed, and natural pollution tests were also conducted as verification tests. Furthermore, insulator structure coefficients <i<c</i<1, <i<c</i<2 (<i<c</i<1: pollution ratio of U210BP/170 to XP-160; <i<c</i<2: calculated pollution ratio of U210BP/170T to XP-160) were then obtained, and their influence factors were discussed. At last, insulator structure coefficients were calculated, and it can be seen that the calculated error of insulator structure coefficients was acceptable, with the average <i<re</i< (relative errors) at 9.0% (<i<c</i<1) and 13.5% (<i<c</i<2), which verifies the feasibility of the model. Based on the results in this paper, the NSDD (non-soluble deposit density) of insulators with different structures can be obtained using the insulators’ structure coefficient and the reference XP-160 insulator’s NSDD. | ||
650 | 4 | |a dynamic pollution model | |
650 | 4 | |a reference insulators | |
650 | 4 | |a insulator structure coefficient | |
650 | 4 | |a natural pollution tests | |
650 | 4 | |a finite element method | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
700 | 0 | |a Zhijin Zhang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Energies |d MDPI AG, 2008 |g 13(2020), 12, p 3066 |w (DE-627)572083742 |w (DE-600)2437446-5 |x 19961073 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2020 |g number:12, p 3066 |
856 | 4 | 0 | |u https://doi.org/10.3390/en13123066 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/8f22ffe6db4b455c9f16b133de65be05 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1996-1073/13/12/3066 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1996-1073 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2020 |e 12, p 3066 |
author_variant |
s c sc z z zz |
---|---|
matchkey_str |
article:19961073:2020----::yaipluinrdcinoeoisltrbsdntopeie |
hierarchy_sort_str |
2020 |
publishDate |
2020 |
allfields |
10.3390/en13123066 doi (DE-627)DOAJ085336890 (DE-599)DOAJ8f22ffe6db4b455c9f16b133de65be05 DE-627 ger DE-627 rakwb eng Siyi Chen verfasserin aut Dynamic Pollution Prediction Model of Insulators Based on Atmospheric Environmental Parameters 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Pollution-induced flashover is one of the most serious power accidents, and the pollution degree of insulators depends on atmospheric environmental parameters. The pollution models used in the power system research are usually static, but the environmental parameters are dynamic. Therefore, the study on the dynamic pollution prediction model is of great importance. In this paper, the dynamic pollution prediction model of insulators based on atmospheric environmental parameters was built, and insulators’ structure coefficients were proposed based on the model. Firstly, the insulator dynamic pollution model based on meteorological data (PM2.5, PM10, TSP (total suspended particulate), and wind speed) was proposed, and natural pollution tests were also conducted as verification tests. Furthermore, insulator structure coefficients <i<c</i<1, <i<c</i<2 (<i<c</i<1: pollution ratio of U210BP/170 to XP-160; <i<c</i<2: calculated pollution ratio of U210BP/170T to XP-160) were then obtained, and their influence factors were discussed. At last, insulator structure coefficients were calculated, and it can be seen that the calculated error of insulator structure coefficients was acceptable, with the average <i<re</i< (relative errors) at 9.0% (<i<c</i<1) and 13.5% (<i<c</i<2), which verifies the feasibility of the model. Based on the results in this paper, the NSDD (non-soluble deposit density) of insulators with different structures can be obtained using the insulators’ structure coefficient and the reference XP-160 insulator’s NSDD. dynamic pollution model reference insulators insulator structure coefficient natural pollution tests finite element method Technology T Zhijin Zhang verfasserin aut In Energies MDPI AG, 2008 13(2020), 12, p 3066 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:13 year:2020 number:12, p 3066 https://doi.org/10.3390/en13123066 kostenfrei https://doaj.org/article/8f22ffe6db4b455c9f16b133de65be05 kostenfrei https://www.mdpi.com/1996-1073/13/12/3066 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2020 12, p 3066 |
spelling |
10.3390/en13123066 doi (DE-627)DOAJ085336890 (DE-599)DOAJ8f22ffe6db4b455c9f16b133de65be05 DE-627 ger DE-627 rakwb eng Siyi Chen verfasserin aut Dynamic Pollution Prediction Model of Insulators Based on Atmospheric Environmental Parameters 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Pollution-induced flashover is one of the most serious power accidents, and the pollution degree of insulators depends on atmospheric environmental parameters. The pollution models used in the power system research are usually static, but the environmental parameters are dynamic. Therefore, the study on the dynamic pollution prediction model is of great importance. In this paper, the dynamic pollution prediction model of insulators based on atmospheric environmental parameters was built, and insulators’ structure coefficients were proposed based on the model. Firstly, the insulator dynamic pollution model based on meteorological data (PM2.5, PM10, TSP (total suspended particulate), and wind speed) was proposed, and natural pollution tests were also conducted as verification tests. Furthermore, insulator structure coefficients <i<c</i<1, <i<c</i<2 (<i<c</i<1: pollution ratio of U210BP/170 to XP-160; <i<c</i<2: calculated pollution ratio of U210BP/170T to XP-160) were then obtained, and their influence factors were discussed. At last, insulator structure coefficients were calculated, and it can be seen that the calculated error of insulator structure coefficients was acceptable, with the average <i<re</i< (relative errors) at 9.0% (<i<c</i<1) and 13.5% (<i<c</i<2), which verifies the feasibility of the model. Based on the results in this paper, the NSDD (non-soluble deposit density) of insulators with different structures can be obtained using the insulators’ structure coefficient and the reference XP-160 insulator’s NSDD. dynamic pollution model reference insulators insulator structure coefficient natural pollution tests finite element method Technology T Zhijin Zhang verfasserin aut In Energies MDPI AG, 2008 13(2020), 12, p 3066 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:13 year:2020 number:12, p 3066 https://doi.org/10.3390/en13123066 kostenfrei https://doaj.org/article/8f22ffe6db4b455c9f16b133de65be05 kostenfrei https://www.mdpi.com/1996-1073/13/12/3066 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2020 12, p 3066 |
allfields_unstemmed |
10.3390/en13123066 doi (DE-627)DOAJ085336890 (DE-599)DOAJ8f22ffe6db4b455c9f16b133de65be05 DE-627 ger DE-627 rakwb eng Siyi Chen verfasserin aut Dynamic Pollution Prediction Model of Insulators Based on Atmospheric Environmental Parameters 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Pollution-induced flashover is one of the most serious power accidents, and the pollution degree of insulators depends on atmospheric environmental parameters. The pollution models used in the power system research are usually static, but the environmental parameters are dynamic. Therefore, the study on the dynamic pollution prediction model is of great importance. In this paper, the dynamic pollution prediction model of insulators based on atmospheric environmental parameters was built, and insulators’ structure coefficients were proposed based on the model. Firstly, the insulator dynamic pollution model based on meteorological data (PM2.5, PM10, TSP (total suspended particulate), and wind speed) was proposed, and natural pollution tests were also conducted as verification tests. Furthermore, insulator structure coefficients <i<c</i<1, <i<c</i<2 (<i<c</i<1: pollution ratio of U210BP/170 to XP-160; <i<c</i<2: calculated pollution ratio of U210BP/170T to XP-160) were then obtained, and their influence factors were discussed. At last, insulator structure coefficients were calculated, and it can be seen that the calculated error of insulator structure coefficients was acceptable, with the average <i<re</i< (relative errors) at 9.0% (<i<c</i<1) and 13.5% (<i<c</i<2), which verifies the feasibility of the model. Based on the results in this paper, the NSDD (non-soluble deposit density) of insulators with different structures can be obtained using the insulators’ structure coefficient and the reference XP-160 insulator’s NSDD. dynamic pollution model reference insulators insulator structure coefficient natural pollution tests finite element method Technology T Zhijin Zhang verfasserin aut In Energies MDPI AG, 2008 13(2020), 12, p 3066 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:13 year:2020 number:12, p 3066 https://doi.org/10.3390/en13123066 kostenfrei https://doaj.org/article/8f22ffe6db4b455c9f16b133de65be05 kostenfrei https://www.mdpi.com/1996-1073/13/12/3066 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2020 12, p 3066 |
allfieldsGer |
10.3390/en13123066 doi (DE-627)DOAJ085336890 (DE-599)DOAJ8f22ffe6db4b455c9f16b133de65be05 DE-627 ger DE-627 rakwb eng Siyi Chen verfasserin aut Dynamic Pollution Prediction Model of Insulators Based on Atmospheric Environmental Parameters 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Pollution-induced flashover is one of the most serious power accidents, and the pollution degree of insulators depends on atmospheric environmental parameters. The pollution models used in the power system research are usually static, but the environmental parameters are dynamic. Therefore, the study on the dynamic pollution prediction model is of great importance. In this paper, the dynamic pollution prediction model of insulators based on atmospheric environmental parameters was built, and insulators’ structure coefficients were proposed based on the model. Firstly, the insulator dynamic pollution model based on meteorological data (PM2.5, PM10, TSP (total suspended particulate), and wind speed) was proposed, and natural pollution tests were also conducted as verification tests. Furthermore, insulator structure coefficients <i<c</i<1, <i<c</i<2 (<i<c</i<1: pollution ratio of U210BP/170 to XP-160; <i<c</i<2: calculated pollution ratio of U210BP/170T to XP-160) were then obtained, and their influence factors were discussed. At last, insulator structure coefficients were calculated, and it can be seen that the calculated error of insulator structure coefficients was acceptable, with the average <i<re</i< (relative errors) at 9.0% (<i<c</i<1) and 13.5% (<i<c</i<2), which verifies the feasibility of the model. Based on the results in this paper, the NSDD (non-soluble deposit density) of insulators with different structures can be obtained using the insulators’ structure coefficient and the reference XP-160 insulator’s NSDD. dynamic pollution model reference insulators insulator structure coefficient natural pollution tests finite element method Technology T Zhijin Zhang verfasserin aut In Energies MDPI AG, 2008 13(2020), 12, p 3066 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:13 year:2020 number:12, p 3066 https://doi.org/10.3390/en13123066 kostenfrei https://doaj.org/article/8f22ffe6db4b455c9f16b133de65be05 kostenfrei https://www.mdpi.com/1996-1073/13/12/3066 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2020 12, p 3066 |
allfieldsSound |
10.3390/en13123066 doi (DE-627)DOAJ085336890 (DE-599)DOAJ8f22ffe6db4b455c9f16b133de65be05 DE-627 ger DE-627 rakwb eng Siyi Chen verfasserin aut Dynamic Pollution Prediction Model of Insulators Based on Atmospheric Environmental Parameters 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Pollution-induced flashover is one of the most serious power accidents, and the pollution degree of insulators depends on atmospheric environmental parameters. The pollution models used in the power system research are usually static, but the environmental parameters are dynamic. Therefore, the study on the dynamic pollution prediction model is of great importance. In this paper, the dynamic pollution prediction model of insulators based on atmospheric environmental parameters was built, and insulators’ structure coefficients were proposed based on the model. Firstly, the insulator dynamic pollution model based on meteorological data (PM2.5, PM10, TSP (total suspended particulate), and wind speed) was proposed, and natural pollution tests were also conducted as verification tests. Furthermore, insulator structure coefficients <i<c</i<1, <i<c</i<2 (<i<c</i<1: pollution ratio of U210BP/170 to XP-160; <i<c</i<2: calculated pollution ratio of U210BP/170T to XP-160) were then obtained, and their influence factors were discussed. At last, insulator structure coefficients were calculated, and it can be seen that the calculated error of insulator structure coefficients was acceptable, with the average <i<re</i< (relative errors) at 9.0% (<i<c</i<1) and 13.5% (<i<c</i<2), which verifies the feasibility of the model. Based on the results in this paper, the NSDD (non-soluble deposit density) of insulators with different structures can be obtained using the insulators’ structure coefficient and the reference XP-160 insulator’s NSDD. dynamic pollution model reference insulators insulator structure coefficient natural pollution tests finite element method Technology T Zhijin Zhang verfasserin aut In Energies MDPI AG, 2008 13(2020), 12, p 3066 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:13 year:2020 number:12, p 3066 https://doi.org/10.3390/en13123066 kostenfrei https://doaj.org/article/8f22ffe6db4b455c9f16b133de65be05 kostenfrei https://www.mdpi.com/1996-1073/13/12/3066 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2020 12, p 3066 |
language |
English |
source |
In Energies 13(2020), 12, p 3066 volume:13 year:2020 number:12, p 3066 |
sourceStr |
In Energies 13(2020), 12, p 3066 volume:13 year:2020 number:12, p 3066 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
dynamic pollution model reference insulators insulator structure coefficient natural pollution tests finite element method Technology T |
isfreeaccess_bool |
true |
container_title |
Energies |
authorswithroles_txt_mv |
Siyi Chen @@aut@@ Zhijin Zhang @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
572083742 |
id |
DOAJ085336890 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ085336890</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412231745.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/en13123066</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ085336890</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ8f22ffe6db4b455c9f16b133de65be05</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Siyi Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dynamic Pollution Prediction Model of Insulators Based on Atmospheric Environmental Parameters</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Pollution-induced flashover is one of the most serious power accidents, and the pollution degree of insulators depends on atmospheric environmental parameters. The pollution models used in the power system research are usually static, but the environmental parameters are dynamic. Therefore, the study on the dynamic pollution prediction model is of great importance. In this paper, the dynamic pollution prediction model of insulators based on atmospheric environmental parameters was built, and insulators’ structure coefficients were proposed based on the model. Firstly, the insulator dynamic pollution model based on meteorological data (PM2.5, PM10, TSP (total suspended particulate), and wind speed) was proposed, and natural pollution tests were also conducted as verification tests. Furthermore, insulator structure coefficients <i<c</i<1, <i<c</i<2 (<i<c</i<1: pollution ratio of U210BP/170 to XP-160; <i<c</i<2: calculated pollution ratio of U210BP/170T to XP-160) were then obtained, and their influence factors were discussed. At last, insulator structure coefficients were calculated, and it can be seen that the calculated error of insulator structure coefficients was acceptable, with the average <i<re</i< (relative errors) at 9.0% (<i<c</i<1) and 13.5% (<i<c</i<2), which verifies the feasibility of the model. Based on the results in this paper, the NSDD (non-soluble deposit density) of insulators with different structures can be obtained using the insulators’ structure coefficient and the reference XP-160 insulator’s NSDD.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dynamic pollution model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">reference insulators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">insulator structure coefficient</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">natural pollution tests</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">finite element method</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhijin Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Energies</subfield><subfield code="d">MDPI AG, 2008</subfield><subfield code="g">13(2020), 12, p 3066</subfield><subfield code="w">(DE-627)572083742</subfield><subfield code="w">(DE-600)2437446-5</subfield><subfield code="x">19961073</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:12, p 3066</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/en13123066</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/8f22ffe6db4b455c9f16b133de65be05</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1996-1073/13/12/3066</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1996-1073</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2020</subfield><subfield code="e">12, p 3066</subfield></datafield></record></collection>
|
author |
Siyi Chen |
spellingShingle |
Siyi Chen misc dynamic pollution model misc reference insulators misc insulator structure coefficient misc natural pollution tests misc finite element method misc Technology misc T Dynamic Pollution Prediction Model of Insulators Based on Atmospheric Environmental Parameters |
authorStr |
Siyi Chen |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)572083742 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
19961073 |
topic_title |
Dynamic Pollution Prediction Model of Insulators Based on Atmospheric Environmental Parameters dynamic pollution model reference insulators insulator structure coefficient natural pollution tests finite element method |
topic |
misc dynamic pollution model misc reference insulators misc insulator structure coefficient misc natural pollution tests misc finite element method misc Technology misc T |
topic_unstemmed |
misc dynamic pollution model misc reference insulators misc insulator structure coefficient misc natural pollution tests misc finite element method misc Technology misc T |
topic_browse |
misc dynamic pollution model misc reference insulators misc insulator structure coefficient misc natural pollution tests misc finite element method misc Technology misc T |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Energies |
hierarchy_parent_id |
572083742 |
hierarchy_top_title |
Energies |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)572083742 (DE-600)2437446-5 |
title |
Dynamic Pollution Prediction Model of Insulators Based on Atmospheric Environmental Parameters |
ctrlnum |
(DE-627)DOAJ085336890 (DE-599)DOAJ8f22ffe6db4b455c9f16b133de65be05 |
title_full |
Dynamic Pollution Prediction Model of Insulators Based on Atmospheric Environmental Parameters |
author_sort |
Siyi Chen |
journal |
Energies |
journalStr |
Energies |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Siyi Chen Zhijin Zhang |
container_volume |
13 |
format_se |
Elektronische Aufsätze |
author-letter |
Siyi Chen |
doi_str_mv |
10.3390/en13123066 |
author2-role |
verfasserin |
title_sort |
dynamic pollution prediction model of insulators based on atmospheric environmental parameters |
title_auth |
Dynamic Pollution Prediction Model of Insulators Based on Atmospheric Environmental Parameters |
abstract |
Pollution-induced flashover is one of the most serious power accidents, and the pollution degree of insulators depends on atmospheric environmental parameters. The pollution models used in the power system research are usually static, but the environmental parameters are dynamic. Therefore, the study on the dynamic pollution prediction model is of great importance. In this paper, the dynamic pollution prediction model of insulators based on atmospheric environmental parameters was built, and insulators’ structure coefficients were proposed based on the model. Firstly, the insulator dynamic pollution model based on meteorological data (PM2.5, PM10, TSP (total suspended particulate), and wind speed) was proposed, and natural pollution tests were also conducted as verification tests. Furthermore, insulator structure coefficients <i<c</i<1, <i<c</i<2 (<i<c</i<1: pollution ratio of U210BP/170 to XP-160; <i<c</i<2: calculated pollution ratio of U210BP/170T to XP-160) were then obtained, and their influence factors were discussed. At last, insulator structure coefficients were calculated, and it can be seen that the calculated error of insulator structure coefficients was acceptable, with the average <i<re</i< (relative errors) at 9.0% (<i<c</i<1) and 13.5% (<i<c</i<2), which verifies the feasibility of the model. Based on the results in this paper, the NSDD (non-soluble deposit density) of insulators with different structures can be obtained using the insulators’ structure coefficient and the reference XP-160 insulator’s NSDD. |
abstractGer |
Pollution-induced flashover is one of the most serious power accidents, and the pollution degree of insulators depends on atmospheric environmental parameters. The pollution models used in the power system research are usually static, but the environmental parameters are dynamic. Therefore, the study on the dynamic pollution prediction model is of great importance. In this paper, the dynamic pollution prediction model of insulators based on atmospheric environmental parameters was built, and insulators’ structure coefficients were proposed based on the model. Firstly, the insulator dynamic pollution model based on meteorological data (PM2.5, PM10, TSP (total suspended particulate), and wind speed) was proposed, and natural pollution tests were also conducted as verification tests. Furthermore, insulator structure coefficients <i<c</i<1, <i<c</i<2 (<i<c</i<1: pollution ratio of U210BP/170 to XP-160; <i<c</i<2: calculated pollution ratio of U210BP/170T to XP-160) were then obtained, and their influence factors were discussed. At last, insulator structure coefficients were calculated, and it can be seen that the calculated error of insulator structure coefficients was acceptable, with the average <i<re</i< (relative errors) at 9.0% (<i<c</i<1) and 13.5% (<i<c</i<2), which verifies the feasibility of the model. Based on the results in this paper, the NSDD (non-soluble deposit density) of insulators with different structures can be obtained using the insulators’ structure coefficient and the reference XP-160 insulator’s NSDD. |
abstract_unstemmed |
Pollution-induced flashover is one of the most serious power accidents, and the pollution degree of insulators depends on atmospheric environmental parameters. The pollution models used in the power system research are usually static, but the environmental parameters are dynamic. Therefore, the study on the dynamic pollution prediction model is of great importance. In this paper, the dynamic pollution prediction model of insulators based on atmospheric environmental parameters was built, and insulators’ structure coefficients were proposed based on the model. Firstly, the insulator dynamic pollution model based on meteorological data (PM2.5, PM10, TSP (total suspended particulate), and wind speed) was proposed, and natural pollution tests were also conducted as verification tests. Furthermore, insulator structure coefficients <i<c</i<1, <i<c</i<2 (<i<c</i<1: pollution ratio of U210BP/170 to XP-160; <i<c</i<2: calculated pollution ratio of U210BP/170T to XP-160) were then obtained, and their influence factors were discussed. At last, insulator structure coefficients were calculated, and it can be seen that the calculated error of insulator structure coefficients was acceptable, with the average <i<re</i< (relative errors) at 9.0% (<i<c</i<1) and 13.5% (<i<c</i<2), which verifies the feasibility of the model. Based on the results in this paper, the NSDD (non-soluble deposit density) of insulators with different structures can be obtained using the insulators’ structure coefficient and the reference XP-160 insulator’s NSDD. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
12, p 3066 |
title_short |
Dynamic Pollution Prediction Model of Insulators Based on Atmospheric Environmental Parameters |
url |
https://doi.org/10.3390/en13123066 https://doaj.org/article/8f22ffe6db4b455c9f16b133de65be05 https://www.mdpi.com/1996-1073/13/12/3066 https://doaj.org/toc/1996-1073 |
remote_bool |
true |
author2 |
Zhijin Zhang |
author2Str |
Zhijin Zhang |
ppnlink |
572083742 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/en13123066 |
up_date |
2024-07-03T14:08:18.231Z |
_version_ |
1803567180791414784 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ085336890</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412231745.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/en13123066</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ085336890</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ8f22ffe6db4b455c9f16b133de65be05</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Siyi Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dynamic Pollution Prediction Model of Insulators Based on Atmospheric Environmental Parameters</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Pollution-induced flashover is one of the most serious power accidents, and the pollution degree of insulators depends on atmospheric environmental parameters. The pollution models used in the power system research are usually static, but the environmental parameters are dynamic. Therefore, the study on the dynamic pollution prediction model is of great importance. In this paper, the dynamic pollution prediction model of insulators based on atmospheric environmental parameters was built, and insulators’ structure coefficients were proposed based on the model. Firstly, the insulator dynamic pollution model based on meteorological data (PM2.5, PM10, TSP (total suspended particulate), and wind speed) was proposed, and natural pollution tests were also conducted as verification tests. Furthermore, insulator structure coefficients <i<c</i<1, <i<c</i<2 (<i<c</i<1: pollution ratio of U210BP/170 to XP-160; <i<c</i<2: calculated pollution ratio of U210BP/170T to XP-160) were then obtained, and their influence factors were discussed. At last, insulator structure coefficients were calculated, and it can be seen that the calculated error of insulator structure coefficients was acceptable, with the average <i<re</i< (relative errors) at 9.0% (<i<c</i<1) and 13.5% (<i<c</i<2), which verifies the feasibility of the model. Based on the results in this paper, the NSDD (non-soluble deposit density) of insulators with different structures can be obtained using the insulators’ structure coefficient and the reference XP-160 insulator’s NSDD.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dynamic pollution model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">reference insulators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">insulator structure coefficient</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">natural pollution tests</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">finite element method</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhijin Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Energies</subfield><subfield code="d">MDPI AG, 2008</subfield><subfield code="g">13(2020), 12, p 3066</subfield><subfield code="w">(DE-627)572083742</subfield><subfield code="w">(DE-600)2437446-5</subfield><subfield code="x">19961073</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:12, p 3066</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/en13123066</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/8f22ffe6db4b455c9f16b133de65be05</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1996-1073/13/12/3066</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1996-1073</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2020</subfield><subfield code="e">12, p 3066</subfield></datafield></record></collection>
|
score |
7.402958 |