Numerical Simulation Research on the Vibration of Helical Tube Arrays under Transverse Flow
Helical tube steam generators are often used in nuclear power plants because of their compact structure and high heat transfer efficiency. The impact of the internal fluid causes the vibration of the tube bundle, which leads to the failure of the integrity of the safety structure. Aiming at flow-ind...
Ausführliche Beschreibung
Autor*in: |
Zhenyu Ding [verfasserIn] Xilan Bai [verfasserIn] Yanfei Zhai [verfasserIn] Jiahuan Yang [verfasserIn] Dawei Liu [verfasserIn] Yin Yang [verfasserIn] Di Tang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Energies - MDPI AG, 2008, 15(2022), 23, p 9082 |
---|---|
Übergeordnetes Werk: |
volume:15 ; year:2022 ; number:23, p 9082 |
Links: |
---|
DOI / URN: |
10.3390/en15239082 |
---|
Katalog-ID: |
DOAJ085363405 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ085363405 | ||
003 | DE-627 | ||
005 | 20240414155710.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/en15239082 |2 doi | |
035 | |a (DE-627)DOAJ085363405 | ||
035 | |a (DE-599)DOAJc7342f906a254388b79c8efb048ece66 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Zhenyu Ding |e verfasserin |4 aut | |
245 | 1 | 0 | |a Numerical Simulation Research on the Vibration of Helical Tube Arrays under Transverse Flow |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Helical tube steam generators are often used in nuclear power plants because of their compact structure and high heat transfer efficiency. The impact of the internal fluid causes the vibration of the tube bundle, which leads to the failure of the integrity of the safety structure. Aiming at flow-induced vibration (FIV) of helical tube arrays, a finite element model of the helical tube was established to consider the constraint of the support structure. The computational fluid dynamics (CFD)/computational structural dynamics (CSD) coupling calculation method based on the superposition of three modes was used to study the FIV characteristics of helical tube arrays at different flow velocities. The influence of adjacent helical tubes’ vibration on the vibration of the target tube was also investigated. The results show that when FIV occurs in the helical tube, with the increase of inlet velocity, the axial amplitude will be greater than the radial at the same velocity. When some tubes vibrate, the vibration of the target tube will be enhanced; while adjacent tubes vibrate, it will weaken the impact of the fluid on the target tube and obviously weaken the vibration of the target tube. | ||
650 | 4 | |a helical tube steam generator | |
650 | 4 | |a flow-induced vibration | |
650 | 4 | |a mode superposition | |
650 | 4 | |a CFD/CSD coupling | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
700 | 0 | |a Xilan Bai |e verfasserin |4 aut | |
700 | 0 | |a Yanfei Zhai |e verfasserin |4 aut | |
700 | 0 | |a Jiahuan Yang |e verfasserin |4 aut | |
700 | 0 | |a Dawei Liu |e verfasserin |4 aut | |
700 | 0 | |a Yin Yang |e verfasserin |4 aut | |
700 | 0 | |a Di Tang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Energies |d MDPI AG, 2008 |g 15(2022), 23, p 9082 |w (DE-627)572083742 |w (DE-600)2437446-5 |x 19961073 |7 nnns |
773 | 1 | 8 | |g volume:15 |g year:2022 |g number:23, p 9082 |
856 | 4 | 0 | |u https://doi.org/10.3390/en15239082 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/c7342f906a254388b79c8efb048ece66 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1996-1073/15/23/9082 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1996-1073 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 15 |j 2022 |e 23, p 9082 |
author_variant |
z d zd x b xb y z yz j y jy d l dl y y yy d t dt |
---|---|
matchkey_str |
article:19961073:2022----::ueiasmltorsacoteirtoohlcluer |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.3390/en15239082 doi (DE-627)DOAJ085363405 (DE-599)DOAJc7342f906a254388b79c8efb048ece66 DE-627 ger DE-627 rakwb eng Zhenyu Ding verfasserin aut Numerical Simulation Research on the Vibration of Helical Tube Arrays under Transverse Flow 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Helical tube steam generators are often used in nuclear power plants because of their compact structure and high heat transfer efficiency. The impact of the internal fluid causes the vibration of the tube bundle, which leads to the failure of the integrity of the safety structure. Aiming at flow-induced vibration (FIV) of helical tube arrays, a finite element model of the helical tube was established to consider the constraint of the support structure. The computational fluid dynamics (CFD)/computational structural dynamics (CSD) coupling calculation method based on the superposition of three modes was used to study the FIV characteristics of helical tube arrays at different flow velocities. The influence of adjacent helical tubes’ vibration on the vibration of the target tube was also investigated. The results show that when FIV occurs in the helical tube, with the increase of inlet velocity, the axial amplitude will be greater than the radial at the same velocity. When some tubes vibrate, the vibration of the target tube will be enhanced; while adjacent tubes vibrate, it will weaken the impact of the fluid on the target tube and obviously weaken the vibration of the target tube. helical tube steam generator flow-induced vibration mode superposition CFD/CSD coupling Technology T Xilan Bai verfasserin aut Yanfei Zhai verfasserin aut Jiahuan Yang verfasserin aut Dawei Liu verfasserin aut Yin Yang verfasserin aut Di Tang verfasserin aut In Energies MDPI AG, 2008 15(2022), 23, p 9082 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:15 year:2022 number:23, p 9082 https://doi.org/10.3390/en15239082 kostenfrei https://doaj.org/article/c7342f906a254388b79c8efb048ece66 kostenfrei https://www.mdpi.com/1996-1073/15/23/9082 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 23, p 9082 |
spelling |
10.3390/en15239082 doi (DE-627)DOAJ085363405 (DE-599)DOAJc7342f906a254388b79c8efb048ece66 DE-627 ger DE-627 rakwb eng Zhenyu Ding verfasserin aut Numerical Simulation Research on the Vibration of Helical Tube Arrays under Transverse Flow 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Helical tube steam generators are often used in nuclear power plants because of their compact structure and high heat transfer efficiency. The impact of the internal fluid causes the vibration of the tube bundle, which leads to the failure of the integrity of the safety structure. Aiming at flow-induced vibration (FIV) of helical tube arrays, a finite element model of the helical tube was established to consider the constraint of the support structure. The computational fluid dynamics (CFD)/computational structural dynamics (CSD) coupling calculation method based on the superposition of three modes was used to study the FIV characteristics of helical tube arrays at different flow velocities. The influence of adjacent helical tubes’ vibration on the vibration of the target tube was also investigated. The results show that when FIV occurs in the helical tube, with the increase of inlet velocity, the axial amplitude will be greater than the radial at the same velocity. When some tubes vibrate, the vibration of the target tube will be enhanced; while adjacent tubes vibrate, it will weaken the impact of the fluid on the target tube and obviously weaken the vibration of the target tube. helical tube steam generator flow-induced vibration mode superposition CFD/CSD coupling Technology T Xilan Bai verfasserin aut Yanfei Zhai verfasserin aut Jiahuan Yang verfasserin aut Dawei Liu verfasserin aut Yin Yang verfasserin aut Di Tang verfasserin aut In Energies MDPI AG, 2008 15(2022), 23, p 9082 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:15 year:2022 number:23, p 9082 https://doi.org/10.3390/en15239082 kostenfrei https://doaj.org/article/c7342f906a254388b79c8efb048ece66 kostenfrei https://www.mdpi.com/1996-1073/15/23/9082 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 23, p 9082 |
allfields_unstemmed |
10.3390/en15239082 doi (DE-627)DOAJ085363405 (DE-599)DOAJc7342f906a254388b79c8efb048ece66 DE-627 ger DE-627 rakwb eng Zhenyu Ding verfasserin aut Numerical Simulation Research on the Vibration of Helical Tube Arrays under Transverse Flow 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Helical tube steam generators are often used in nuclear power plants because of their compact structure and high heat transfer efficiency. The impact of the internal fluid causes the vibration of the tube bundle, which leads to the failure of the integrity of the safety structure. Aiming at flow-induced vibration (FIV) of helical tube arrays, a finite element model of the helical tube was established to consider the constraint of the support structure. The computational fluid dynamics (CFD)/computational structural dynamics (CSD) coupling calculation method based on the superposition of three modes was used to study the FIV characteristics of helical tube arrays at different flow velocities. The influence of adjacent helical tubes’ vibration on the vibration of the target tube was also investigated. The results show that when FIV occurs in the helical tube, with the increase of inlet velocity, the axial amplitude will be greater than the radial at the same velocity. When some tubes vibrate, the vibration of the target tube will be enhanced; while adjacent tubes vibrate, it will weaken the impact of the fluid on the target tube and obviously weaken the vibration of the target tube. helical tube steam generator flow-induced vibration mode superposition CFD/CSD coupling Technology T Xilan Bai verfasserin aut Yanfei Zhai verfasserin aut Jiahuan Yang verfasserin aut Dawei Liu verfasserin aut Yin Yang verfasserin aut Di Tang verfasserin aut In Energies MDPI AG, 2008 15(2022), 23, p 9082 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:15 year:2022 number:23, p 9082 https://doi.org/10.3390/en15239082 kostenfrei https://doaj.org/article/c7342f906a254388b79c8efb048ece66 kostenfrei https://www.mdpi.com/1996-1073/15/23/9082 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 23, p 9082 |
allfieldsGer |
10.3390/en15239082 doi (DE-627)DOAJ085363405 (DE-599)DOAJc7342f906a254388b79c8efb048ece66 DE-627 ger DE-627 rakwb eng Zhenyu Ding verfasserin aut Numerical Simulation Research on the Vibration of Helical Tube Arrays under Transverse Flow 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Helical tube steam generators are often used in nuclear power plants because of their compact structure and high heat transfer efficiency. The impact of the internal fluid causes the vibration of the tube bundle, which leads to the failure of the integrity of the safety structure. Aiming at flow-induced vibration (FIV) of helical tube arrays, a finite element model of the helical tube was established to consider the constraint of the support structure. The computational fluid dynamics (CFD)/computational structural dynamics (CSD) coupling calculation method based on the superposition of three modes was used to study the FIV characteristics of helical tube arrays at different flow velocities. The influence of adjacent helical tubes’ vibration on the vibration of the target tube was also investigated. The results show that when FIV occurs in the helical tube, with the increase of inlet velocity, the axial amplitude will be greater than the radial at the same velocity. When some tubes vibrate, the vibration of the target tube will be enhanced; while adjacent tubes vibrate, it will weaken the impact of the fluid on the target tube and obviously weaken the vibration of the target tube. helical tube steam generator flow-induced vibration mode superposition CFD/CSD coupling Technology T Xilan Bai verfasserin aut Yanfei Zhai verfasserin aut Jiahuan Yang verfasserin aut Dawei Liu verfasserin aut Yin Yang verfasserin aut Di Tang verfasserin aut In Energies MDPI AG, 2008 15(2022), 23, p 9082 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:15 year:2022 number:23, p 9082 https://doi.org/10.3390/en15239082 kostenfrei https://doaj.org/article/c7342f906a254388b79c8efb048ece66 kostenfrei https://www.mdpi.com/1996-1073/15/23/9082 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 23, p 9082 |
allfieldsSound |
10.3390/en15239082 doi (DE-627)DOAJ085363405 (DE-599)DOAJc7342f906a254388b79c8efb048ece66 DE-627 ger DE-627 rakwb eng Zhenyu Ding verfasserin aut Numerical Simulation Research on the Vibration of Helical Tube Arrays under Transverse Flow 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Helical tube steam generators are often used in nuclear power plants because of their compact structure and high heat transfer efficiency. The impact of the internal fluid causes the vibration of the tube bundle, which leads to the failure of the integrity of the safety structure. Aiming at flow-induced vibration (FIV) of helical tube arrays, a finite element model of the helical tube was established to consider the constraint of the support structure. The computational fluid dynamics (CFD)/computational structural dynamics (CSD) coupling calculation method based on the superposition of three modes was used to study the FIV characteristics of helical tube arrays at different flow velocities. The influence of adjacent helical tubes’ vibration on the vibration of the target tube was also investigated. The results show that when FIV occurs in the helical tube, with the increase of inlet velocity, the axial amplitude will be greater than the radial at the same velocity. When some tubes vibrate, the vibration of the target tube will be enhanced; while adjacent tubes vibrate, it will weaken the impact of the fluid on the target tube and obviously weaken the vibration of the target tube. helical tube steam generator flow-induced vibration mode superposition CFD/CSD coupling Technology T Xilan Bai verfasserin aut Yanfei Zhai verfasserin aut Jiahuan Yang verfasserin aut Dawei Liu verfasserin aut Yin Yang verfasserin aut Di Tang verfasserin aut In Energies MDPI AG, 2008 15(2022), 23, p 9082 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:15 year:2022 number:23, p 9082 https://doi.org/10.3390/en15239082 kostenfrei https://doaj.org/article/c7342f906a254388b79c8efb048ece66 kostenfrei https://www.mdpi.com/1996-1073/15/23/9082 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 23, p 9082 |
language |
English |
source |
In Energies 15(2022), 23, p 9082 volume:15 year:2022 number:23, p 9082 |
sourceStr |
In Energies 15(2022), 23, p 9082 volume:15 year:2022 number:23, p 9082 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
helical tube steam generator flow-induced vibration mode superposition CFD/CSD coupling Technology T |
isfreeaccess_bool |
true |
container_title |
Energies |
authorswithroles_txt_mv |
Zhenyu Ding @@aut@@ Xilan Bai @@aut@@ Yanfei Zhai @@aut@@ Jiahuan Yang @@aut@@ Dawei Liu @@aut@@ Yin Yang @@aut@@ Di Tang @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
572083742 |
id |
DOAJ085363405 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ085363405</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414155710.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/en15239082</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ085363405</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJc7342f906a254388b79c8efb048ece66</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Zhenyu Ding</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical Simulation Research on the Vibration of Helical Tube Arrays under Transverse Flow</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Helical tube steam generators are often used in nuclear power plants because of their compact structure and high heat transfer efficiency. The impact of the internal fluid causes the vibration of the tube bundle, which leads to the failure of the integrity of the safety structure. Aiming at flow-induced vibration (FIV) of helical tube arrays, a finite element model of the helical tube was established to consider the constraint of the support structure. The computational fluid dynamics (CFD)/computational structural dynamics (CSD) coupling calculation method based on the superposition of three modes was used to study the FIV characteristics of helical tube arrays at different flow velocities. The influence of adjacent helical tubes’ vibration on the vibration of the target tube was also investigated. The results show that when FIV occurs in the helical tube, with the increase of inlet velocity, the axial amplitude will be greater than the radial at the same velocity. When some tubes vibrate, the vibration of the target tube will be enhanced; while adjacent tubes vibrate, it will weaken the impact of the fluid on the target tube and obviously weaken the vibration of the target tube.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">helical tube steam generator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">flow-induced vibration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mode superposition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CFD/CSD coupling</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xilan Bai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yanfei Zhai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiahuan Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dawei Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yin Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Di Tang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Energies</subfield><subfield code="d">MDPI AG, 2008</subfield><subfield code="g">15(2022), 23, p 9082</subfield><subfield code="w">(DE-627)572083742</subfield><subfield code="w">(DE-600)2437446-5</subfield><subfield code="x">19961073</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:23, p 9082</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/en15239082</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/c7342f906a254388b79c8efb048ece66</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1996-1073/15/23/9082</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1996-1073</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2022</subfield><subfield code="e">23, p 9082</subfield></datafield></record></collection>
|
author |
Zhenyu Ding |
spellingShingle |
Zhenyu Ding misc helical tube steam generator misc flow-induced vibration misc mode superposition misc CFD/CSD coupling misc Technology misc T Numerical Simulation Research on the Vibration of Helical Tube Arrays under Transverse Flow |
authorStr |
Zhenyu Ding |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)572083742 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
19961073 |
topic_title |
Numerical Simulation Research on the Vibration of Helical Tube Arrays under Transverse Flow helical tube steam generator flow-induced vibration mode superposition CFD/CSD coupling |
topic |
misc helical tube steam generator misc flow-induced vibration misc mode superposition misc CFD/CSD coupling misc Technology misc T |
topic_unstemmed |
misc helical tube steam generator misc flow-induced vibration misc mode superposition misc CFD/CSD coupling misc Technology misc T |
topic_browse |
misc helical tube steam generator misc flow-induced vibration misc mode superposition misc CFD/CSD coupling misc Technology misc T |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Energies |
hierarchy_parent_id |
572083742 |
hierarchy_top_title |
Energies |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)572083742 (DE-600)2437446-5 |
title |
Numerical Simulation Research on the Vibration of Helical Tube Arrays under Transverse Flow |
ctrlnum |
(DE-627)DOAJ085363405 (DE-599)DOAJc7342f906a254388b79c8efb048ece66 |
title_full |
Numerical Simulation Research on the Vibration of Helical Tube Arrays under Transverse Flow |
author_sort |
Zhenyu Ding |
journal |
Energies |
journalStr |
Energies |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Zhenyu Ding Xilan Bai Yanfei Zhai Jiahuan Yang Dawei Liu Yin Yang Di Tang |
container_volume |
15 |
format_se |
Elektronische Aufsätze |
author-letter |
Zhenyu Ding |
doi_str_mv |
10.3390/en15239082 |
author2-role |
verfasserin |
title_sort |
numerical simulation research on the vibration of helical tube arrays under transverse flow |
title_auth |
Numerical Simulation Research on the Vibration of Helical Tube Arrays under Transverse Flow |
abstract |
Helical tube steam generators are often used in nuclear power plants because of their compact structure and high heat transfer efficiency. The impact of the internal fluid causes the vibration of the tube bundle, which leads to the failure of the integrity of the safety structure. Aiming at flow-induced vibration (FIV) of helical tube arrays, a finite element model of the helical tube was established to consider the constraint of the support structure. The computational fluid dynamics (CFD)/computational structural dynamics (CSD) coupling calculation method based on the superposition of three modes was used to study the FIV characteristics of helical tube arrays at different flow velocities. The influence of adjacent helical tubes’ vibration on the vibration of the target tube was also investigated. The results show that when FIV occurs in the helical tube, with the increase of inlet velocity, the axial amplitude will be greater than the radial at the same velocity. When some tubes vibrate, the vibration of the target tube will be enhanced; while adjacent tubes vibrate, it will weaken the impact of the fluid on the target tube and obviously weaken the vibration of the target tube. |
abstractGer |
Helical tube steam generators are often used in nuclear power plants because of their compact structure and high heat transfer efficiency. The impact of the internal fluid causes the vibration of the tube bundle, which leads to the failure of the integrity of the safety structure. Aiming at flow-induced vibration (FIV) of helical tube arrays, a finite element model of the helical tube was established to consider the constraint of the support structure. The computational fluid dynamics (CFD)/computational structural dynamics (CSD) coupling calculation method based on the superposition of three modes was used to study the FIV characteristics of helical tube arrays at different flow velocities. The influence of adjacent helical tubes’ vibration on the vibration of the target tube was also investigated. The results show that when FIV occurs in the helical tube, with the increase of inlet velocity, the axial amplitude will be greater than the radial at the same velocity. When some tubes vibrate, the vibration of the target tube will be enhanced; while adjacent tubes vibrate, it will weaken the impact of the fluid on the target tube and obviously weaken the vibration of the target tube. |
abstract_unstemmed |
Helical tube steam generators are often used in nuclear power plants because of their compact structure and high heat transfer efficiency. The impact of the internal fluid causes the vibration of the tube bundle, which leads to the failure of the integrity of the safety structure. Aiming at flow-induced vibration (FIV) of helical tube arrays, a finite element model of the helical tube was established to consider the constraint of the support structure. The computational fluid dynamics (CFD)/computational structural dynamics (CSD) coupling calculation method based on the superposition of three modes was used to study the FIV characteristics of helical tube arrays at different flow velocities. The influence of adjacent helical tubes’ vibration on the vibration of the target tube was also investigated. The results show that when FIV occurs in the helical tube, with the increase of inlet velocity, the axial amplitude will be greater than the radial at the same velocity. When some tubes vibrate, the vibration of the target tube will be enhanced; while adjacent tubes vibrate, it will weaken the impact of the fluid on the target tube and obviously weaken the vibration of the target tube. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
23, p 9082 |
title_short |
Numerical Simulation Research on the Vibration of Helical Tube Arrays under Transverse Flow |
url |
https://doi.org/10.3390/en15239082 https://doaj.org/article/c7342f906a254388b79c8efb048ece66 https://www.mdpi.com/1996-1073/15/23/9082 https://doaj.org/toc/1996-1073 |
remote_bool |
true |
author2 |
Xilan Bai Yanfei Zhai Jiahuan Yang Dawei Liu Yin Yang Di Tang |
author2Str |
Xilan Bai Yanfei Zhai Jiahuan Yang Dawei Liu Yin Yang Di Tang |
ppnlink |
572083742 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/en15239082 |
up_date |
2024-07-03T14:18:04.937Z |
_version_ |
1803567795993051136 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ085363405</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414155710.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/en15239082</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ085363405</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJc7342f906a254388b79c8efb048ece66</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Zhenyu Ding</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical Simulation Research on the Vibration of Helical Tube Arrays under Transverse Flow</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Helical tube steam generators are often used in nuclear power plants because of their compact structure and high heat transfer efficiency. The impact of the internal fluid causes the vibration of the tube bundle, which leads to the failure of the integrity of the safety structure. Aiming at flow-induced vibration (FIV) of helical tube arrays, a finite element model of the helical tube was established to consider the constraint of the support structure. The computational fluid dynamics (CFD)/computational structural dynamics (CSD) coupling calculation method based on the superposition of three modes was used to study the FIV characteristics of helical tube arrays at different flow velocities. The influence of adjacent helical tubes’ vibration on the vibration of the target tube was also investigated. The results show that when FIV occurs in the helical tube, with the increase of inlet velocity, the axial amplitude will be greater than the radial at the same velocity. When some tubes vibrate, the vibration of the target tube will be enhanced; while adjacent tubes vibrate, it will weaken the impact of the fluid on the target tube and obviously weaken the vibration of the target tube.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">helical tube steam generator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">flow-induced vibration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mode superposition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CFD/CSD coupling</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xilan Bai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yanfei Zhai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiahuan Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dawei Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yin Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Di Tang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Energies</subfield><subfield code="d">MDPI AG, 2008</subfield><subfield code="g">15(2022), 23, p 9082</subfield><subfield code="w">(DE-627)572083742</subfield><subfield code="w">(DE-600)2437446-5</subfield><subfield code="x">19961073</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:23, p 9082</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/en15239082</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/c7342f906a254388b79c8efb048ece66</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1996-1073/15/23/9082</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1996-1073</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2022</subfield><subfield code="e">23, p 9082</subfield></datafield></record></collection>
|
score |
7.401638 |