Common Fixed Point for Meir–Keeler Type Contraction in Bipolar Metric Space
In mathematical analysis, the Hausdorff derivatives or the fractal derivatives play an important role. Fixed-point theorems and metric fixed-point theory have varied applications in establishing a unique common solution to differential equations and integral equations. In the present work, some fixe...
Ausführliche Beschreibung
Autor*in: |
Penumarthy Parvateesam Murthy [verfasserIn] Chandra Prakash Dhuri [verfasserIn] Santosh Kumar [verfasserIn] Rajagopalan Ramaswamy [verfasserIn] Muhannad Abdullah Saud Alaskar [verfasserIn] Stojan Radenovi’c [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Fractal and Fractional - MDPI AG, 2018, 6(2022), 11, p 649 |
---|---|
Übergeordnetes Werk: |
volume:6 ; year:2022 ; number:11, p 649 |
Links: |
---|
DOI / URN: |
10.3390/fractalfract6110649 |
---|
Katalog-ID: |
DOAJ085536857 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ085536857 | ||
003 | DE-627 | ||
005 | 20240414172442.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/fractalfract6110649 |2 doi | |
035 | |a (DE-627)DOAJ085536857 | ||
035 | |a (DE-599)DOAJ2de027d8a8094f0c8896d4f1e15f5108 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QC310.15-319 | |
050 | 0 | |a QA1-939 | |
050 | 0 | |a QA299.6-433 | |
100 | 0 | |a Penumarthy Parvateesam Murthy |e verfasserin |4 aut | |
245 | 1 | 0 | |a Common Fixed Point for Meir–Keeler Type Contraction in Bipolar Metric Space |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In mathematical analysis, the Hausdorff derivatives or the fractal derivatives play an important role. Fixed-point theorems and metric fixed-point theory have varied applications in establishing a unique common solution to differential equations and integral equations. In the present work, some fixed-point theorems using the extension of Meir–Keeler contraction in the setting of bipolar metric spaces have been proved. The derived results have been supplemented with non-trivial examples. Our results extend and generalise the results established in the past. We have provided an application to find an analytical solution to an Integral Equation to supplement the derived result. | ||
650 | 4 | |a fixed points | |
650 | 4 | |a bipolar metric space | |
650 | 4 | |a covariant map | |
650 | 4 | |a compatible maps | |
650 | 4 | |a Cauchy bisequence | |
653 | 0 | |a Thermodynamics | |
653 | 0 | |a Mathematics | |
653 | 0 | |a Analysis | |
700 | 0 | |a Chandra Prakash Dhuri |e verfasserin |4 aut | |
700 | 0 | |a Santosh Kumar |e verfasserin |4 aut | |
700 | 0 | |a Rajagopalan Ramaswamy |e verfasserin |4 aut | |
700 | 0 | |a Muhannad Abdullah Saud Alaskar |e verfasserin |4 aut | |
700 | 0 | |a Stojan Radenovi’c |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Fractal and Fractional |d MDPI AG, 2018 |g 6(2022), 11, p 649 |w (DE-627)897435656 |w (DE-600)2905371-7 |x 25043110 |7 nnns |
773 | 1 | 8 | |g volume:6 |g year:2022 |g number:11, p 649 |
856 | 4 | 0 | |u https://doi.org/10.3390/fractalfract6110649 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/2de027d8a8094f0c8896d4f1e15f5108 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2504-3110/6/11/649 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2504-3110 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 6 |j 2022 |e 11, p 649 |
author_variant |
p p m ppm c p d cpd s k sk r r rr m a s a masa s r sr |
---|---|
matchkey_str |
article:25043110:2022----::omniepitomikeetpcnrcinni |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
QC |
publishDate |
2022 |
allfields |
10.3390/fractalfract6110649 doi (DE-627)DOAJ085536857 (DE-599)DOAJ2de027d8a8094f0c8896d4f1e15f5108 DE-627 ger DE-627 rakwb eng QC310.15-319 QA1-939 QA299.6-433 Penumarthy Parvateesam Murthy verfasserin aut Common Fixed Point for Meir–Keeler Type Contraction in Bipolar Metric Space 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In mathematical analysis, the Hausdorff derivatives or the fractal derivatives play an important role. Fixed-point theorems and metric fixed-point theory have varied applications in establishing a unique common solution to differential equations and integral equations. In the present work, some fixed-point theorems using the extension of Meir–Keeler contraction in the setting of bipolar metric spaces have been proved. The derived results have been supplemented with non-trivial examples. Our results extend and generalise the results established in the past. We have provided an application to find an analytical solution to an Integral Equation to supplement the derived result. fixed points bipolar metric space covariant map compatible maps Cauchy bisequence Thermodynamics Mathematics Analysis Chandra Prakash Dhuri verfasserin aut Santosh Kumar verfasserin aut Rajagopalan Ramaswamy verfasserin aut Muhannad Abdullah Saud Alaskar verfasserin aut Stojan Radenovi’c verfasserin aut In Fractal and Fractional MDPI AG, 2018 6(2022), 11, p 649 (DE-627)897435656 (DE-600)2905371-7 25043110 nnns volume:6 year:2022 number:11, p 649 https://doi.org/10.3390/fractalfract6110649 kostenfrei https://doaj.org/article/2de027d8a8094f0c8896d4f1e15f5108 kostenfrei https://www.mdpi.com/2504-3110/6/11/649 kostenfrei https://doaj.org/toc/2504-3110 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2022 11, p 649 |
spelling |
10.3390/fractalfract6110649 doi (DE-627)DOAJ085536857 (DE-599)DOAJ2de027d8a8094f0c8896d4f1e15f5108 DE-627 ger DE-627 rakwb eng QC310.15-319 QA1-939 QA299.6-433 Penumarthy Parvateesam Murthy verfasserin aut Common Fixed Point for Meir–Keeler Type Contraction in Bipolar Metric Space 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In mathematical analysis, the Hausdorff derivatives or the fractal derivatives play an important role. Fixed-point theorems and metric fixed-point theory have varied applications in establishing a unique common solution to differential equations and integral equations. In the present work, some fixed-point theorems using the extension of Meir–Keeler contraction in the setting of bipolar metric spaces have been proved. The derived results have been supplemented with non-trivial examples. Our results extend and generalise the results established in the past. We have provided an application to find an analytical solution to an Integral Equation to supplement the derived result. fixed points bipolar metric space covariant map compatible maps Cauchy bisequence Thermodynamics Mathematics Analysis Chandra Prakash Dhuri verfasserin aut Santosh Kumar verfasserin aut Rajagopalan Ramaswamy verfasserin aut Muhannad Abdullah Saud Alaskar verfasserin aut Stojan Radenovi’c verfasserin aut In Fractal and Fractional MDPI AG, 2018 6(2022), 11, p 649 (DE-627)897435656 (DE-600)2905371-7 25043110 nnns volume:6 year:2022 number:11, p 649 https://doi.org/10.3390/fractalfract6110649 kostenfrei https://doaj.org/article/2de027d8a8094f0c8896d4f1e15f5108 kostenfrei https://www.mdpi.com/2504-3110/6/11/649 kostenfrei https://doaj.org/toc/2504-3110 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2022 11, p 649 |
allfields_unstemmed |
10.3390/fractalfract6110649 doi (DE-627)DOAJ085536857 (DE-599)DOAJ2de027d8a8094f0c8896d4f1e15f5108 DE-627 ger DE-627 rakwb eng QC310.15-319 QA1-939 QA299.6-433 Penumarthy Parvateesam Murthy verfasserin aut Common Fixed Point for Meir–Keeler Type Contraction in Bipolar Metric Space 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In mathematical analysis, the Hausdorff derivatives or the fractal derivatives play an important role. Fixed-point theorems and metric fixed-point theory have varied applications in establishing a unique common solution to differential equations and integral equations. In the present work, some fixed-point theorems using the extension of Meir–Keeler contraction in the setting of bipolar metric spaces have been proved. The derived results have been supplemented with non-trivial examples. Our results extend and generalise the results established in the past. We have provided an application to find an analytical solution to an Integral Equation to supplement the derived result. fixed points bipolar metric space covariant map compatible maps Cauchy bisequence Thermodynamics Mathematics Analysis Chandra Prakash Dhuri verfasserin aut Santosh Kumar verfasserin aut Rajagopalan Ramaswamy verfasserin aut Muhannad Abdullah Saud Alaskar verfasserin aut Stojan Radenovi’c verfasserin aut In Fractal and Fractional MDPI AG, 2018 6(2022), 11, p 649 (DE-627)897435656 (DE-600)2905371-7 25043110 nnns volume:6 year:2022 number:11, p 649 https://doi.org/10.3390/fractalfract6110649 kostenfrei https://doaj.org/article/2de027d8a8094f0c8896d4f1e15f5108 kostenfrei https://www.mdpi.com/2504-3110/6/11/649 kostenfrei https://doaj.org/toc/2504-3110 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2022 11, p 649 |
allfieldsGer |
10.3390/fractalfract6110649 doi (DE-627)DOAJ085536857 (DE-599)DOAJ2de027d8a8094f0c8896d4f1e15f5108 DE-627 ger DE-627 rakwb eng QC310.15-319 QA1-939 QA299.6-433 Penumarthy Parvateesam Murthy verfasserin aut Common Fixed Point for Meir–Keeler Type Contraction in Bipolar Metric Space 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In mathematical analysis, the Hausdorff derivatives or the fractal derivatives play an important role. Fixed-point theorems and metric fixed-point theory have varied applications in establishing a unique common solution to differential equations and integral equations. In the present work, some fixed-point theorems using the extension of Meir–Keeler contraction in the setting of bipolar metric spaces have been proved. The derived results have been supplemented with non-trivial examples. Our results extend and generalise the results established in the past. We have provided an application to find an analytical solution to an Integral Equation to supplement the derived result. fixed points bipolar metric space covariant map compatible maps Cauchy bisequence Thermodynamics Mathematics Analysis Chandra Prakash Dhuri verfasserin aut Santosh Kumar verfasserin aut Rajagopalan Ramaswamy verfasserin aut Muhannad Abdullah Saud Alaskar verfasserin aut Stojan Radenovi’c verfasserin aut In Fractal and Fractional MDPI AG, 2018 6(2022), 11, p 649 (DE-627)897435656 (DE-600)2905371-7 25043110 nnns volume:6 year:2022 number:11, p 649 https://doi.org/10.3390/fractalfract6110649 kostenfrei https://doaj.org/article/2de027d8a8094f0c8896d4f1e15f5108 kostenfrei https://www.mdpi.com/2504-3110/6/11/649 kostenfrei https://doaj.org/toc/2504-3110 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2022 11, p 649 |
allfieldsSound |
10.3390/fractalfract6110649 doi (DE-627)DOAJ085536857 (DE-599)DOAJ2de027d8a8094f0c8896d4f1e15f5108 DE-627 ger DE-627 rakwb eng QC310.15-319 QA1-939 QA299.6-433 Penumarthy Parvateesam Murthy verfasserin aut Common Fixed Point for Meir–Keeler Type Contraction in Bipolar Metric Space 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In mathematical analysis, the Hausdorff derivatives or the fractal derivatives play an important role. Fixed-point theorems and metric fixed-point theory have varied applications in establishing a unique common solution to differential equations and integral equations. In the present work, some fixed-point theorems using the extension of Meir–Keeler contraction in the setting of bipolar metric spaces have been proved. The derived results have been supplemented with non-trivial examples. Our results extend and generalise the results established in the past. We have provided an application to find an analytical solution to an Integral Equation to supplement the derived result. fixed points bipolar metric space covariant map compatible maps Cauchy bisequence Thermodynamics Mathematics Analysis Chandra Prakash Dhuri verfasserin aut Santosh Kumar verfasserin aut Rajagopalan Ramaswamy verfasserin aut Muhannad Abdullah Saud Alaskar verfasserin aut Stojan Radenovi’c verfasserin aut In Fractal and Fractional MDPI AG, 2018 6(2022), 11, p 649 (DE-627)897435656 (DE-600)2905371-7 25043110 nnns volume:6 year:2022 number:11, p 649 https://doi.org/10.3390/fractalfract6110649 kostenfrei https://doaj.org/article/2de027d8a8094f0c8896d4f1e15f5108 kostenfrei https://www.mdpi.com/2504-3110/6/11/649 kostenfrei https://doaj.org/toc/2504-3110 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2022 11, p 649 |
language |
English |
source |
In Fractal and Fractional 6(2022), 11, p 649 volume:6 year:2022 number:11, p 649 |
sourceStr |
In Fractal and Fractional 6(2022), 11, p 649 volume:6 year:2022 number:11, p 649 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
fixed points bipolar metric space covariant map compatible maps Cauchy bisequence Thermodynamics Mathematics Analysis |
isfreeaccess_bool |
true |
container_title |
Fractal and Fractional |
authorswithroles_txt_mv |
Penumarthy Parvateesam Murthy @@aut@@ Chandra Prakash Dhuri @@aut@@ Santosh Kumar @@aut@@ Rajagopalan Ramaswamy @@aut@@ Muhannad Abdullah Saud Alaskar @@aut@@ Stojan Radenovi’c @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
897435656 |
id |
DOAJ085536857 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ085536857</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414172442.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/fractalfract6110649</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ085536857</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ2de027d8a8094f0c8896d4f1e15f5108</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC310.15-319</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA299.6-433</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Penumarthy Parvateesam Murthy</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Common Fixed Point for Meir–Keeler Type Contraction in Bipolar Metric Space</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In mathematical analysis, the Hausdorff derivatives or the fractal derivatives play an important role. Fixed-point theorems and metric fixed-point theory have varied applications in establishing a unique common solution to differential equations and integral equations. In the present work, some fixed-point theorems using the extension of Meir–Keeler contraction in the setting of bipolar metric spaces have been proved. The derived results have been supplemented with non-trivial examples. Our results extend and generalise the results established in the past. We have provided an application to find an analytical solution to an Integral Equation to supplement the derived result.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fixed points</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bipolar metric space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">covariant map</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">compatible maps</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cauchy bisequence</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Thermodynamics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Analysis</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chandra Prakash Dhuri</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Santosh Kumar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rajagopalan Ramaswamy</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Muhannad Abdullah Saud Alaskar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Stojan Radenovi’c</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Fractal and Fractional</subfield><subfield code="d">MDPI AG, 2018</subfield><subfield code="g">6(2022), 11, p 649</subfield><subfield code="w">(DE-627)897435656</subfield><subfield code="w">(DE-600)2905371-7</subfield><subfield code="x">25043110</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:11, p 649</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/fractalfract6110649</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/2de027d8a8094f0c8896d4f1e15f5108</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2504-3110/6/11/649</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2504-3110</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2022</subfield><subfield code="e">11, p 649</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Penumarthy Parvateesam Murthy |
spellingShingle |
Penumarthy Parvateesam Murthy misc QC310.15-319 misc QA1-939 misc QA299.6-433 misc fixed points misc bipolar metric space misc covariant map misc compatible maps misc Cauchy bisequence misc Thermodynamics misc Mathematics misc Analysis Common Fixed Point for Meir–Keeler Type Contraction in Bipolar Metric Space |
authorStr |
Penumarthy Parvateesam Murthy |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)897435656 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QC310 |
illustrated |
Not Illustrated |
issn |
25043110 |
topic_title |
QC310.15-319 QA1-939 QA299.6-433 Common Fixed Point for Meir–Keeler Type Contraction in Bipolar Metric Space fixed points bipolar metric space covariant map compatible maps Cauchy bisequence |
topic |
misc QC310.15-319 misc QA1-939 misc QA299.6-433 misc fixed points misc bipolar metric space misc covariant map misc compatible maps misc Cauchy bisequence misc Thermodynamics misc Mathematics misc Analysis |
topic_unstemmed |
misc QC310.15-319 misc QA1-939 misc QA299.6-433 misc fixed points misc bipolar metric space misc covariant map misc compatible maps misc Cauchy bisequence misc Thermodynamics misc Mathematics misc Analysis |
topic_browse |
misc QC310.15-319 misc QA1-939 misc QA299.6-433 misc fixed points misc bipolar metric space misc covariant map misc compatible maps misc Cauchy bisequence misc Thermodynamics misc Mathematics misc Analysis |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Fractal and Fractional |
hierarchy_parent_id |
897435656 |
hierarchy_top_title |
Fractal and Fractional |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)897435656 (DE-600)2905371-7 |
title |
Common Fixed Point for Meir–Keeler Type Contraction in Bipolar Metric Space |
ctrlnum |
(DE-627)DOAJ085536857 (DE-599)DOAJ2de027d8a8094f0c8896d4f1e15f5108 |
title_full |
Common Fixed Point for Meir–Keeler Type Contraction in Bipolar Metric Space |
author_sort |
Penumarthy Parvateesam Murthy |
journal |
Fractal and Fractional |
journalStr |
Fractal and Fractional |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Penumarthy Parvateesam Murthy Chandra Prakash Dhuri Santosh Kumar Rajagopalan Ramaswamy Muhannad Abdullah Saud Alaskar Stojan Radenovi’c |
container_volume |
6 |
class |
QC310.15-319 QA1-939 QA299.6-433 |
format_se |
Elektronische Aufsätze |
author-letter |
Penumarthy Parvateesam Murthy |
doi_str_mv |
10.3390/fractalfract6110649 |
author2-role |
verfasserin |
title_sort |
common fixed point for meir–keeler type contraction in bipolar metric space |
callnumber |
QC310.15-319 |
title_auth |
Common Fixed Point for Meir–Keeler Type Contraction in Bipolar Metric Space |
abstract |
In mathematical analysis, the Hausdorff derivatives or the fractal derivatives play an important role. Fixed-point theorems and metric fixed-point theory have varied applications in establishing a unique common solution to differential equations and integral equations. In the present work, some fixed-point theorems using the extension of Meir–Keeler contraction in the setting of bipolar metric spaces have been proved. The derived results have been supplemented with non-trivial examples. Our results extend and generalise the results established in the past. We have provided an application to find an analytical solution to an Integral Equation to supplement the derived result. |
abstractGer |
In mathematical analysis, the Hausdorff derivatives or the fractal derivatives play an important role. Fixed-point theorems and metric fixed-point theory have varied applications in establishing a unique common solution to differential equations and integral equations. In the present work, some fixed-point theorems using the extension of Meir–Keeler contraction in the setting of bipolar metric spaces have been proved. The derived results have been supplemented with non-trivial examples. Our results extend and generalise the results established in the past. We have provided an application to find an analytical solution to an Integral Equation to supplement the derived result. |
abstract_unstemmed |
In mathematical analysis, the Hausdorff derivatives or the fractal derivatives play an important role. Fixed-point theorems and metric fixed-point theory have varied applications in establishing a unique common solution to differential equations and integral equations. In the present work, some fixed-point theorems using the extension of Meir–Keeler contraction in the setting of bipolar metric spaces have been proved. The derived results have been supplemented with non-trivial examples. Our results extend and generalise the results established in the past. We have provided an application to find an analytical solution to an Integral Equation to supplement the derived result. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
11, p 649 |
title_short |
Common Fixed Point for Meir–Keeler Type Contraction in Bipolar Metric Space |
url |
https://doi.org/10.3390/fractalfract6110649 https://doaj.org/article/2de027d8a8094f0c8896d4f1e15f5108 https://www.mdpi.com/2504-3110/6/11/649 https://doaj.org/toc/2504-3110 |
remote_bool |
true |
author2 |
Chandra Prakash Dhuri Santosh Kumar Rajagopalan Ramaswamy Muhannad Abdullah Saud Alaskar Stojan Radenovi’c |
author2Str |
Chandra Prakash Dhuri Santosh Kumar Rajagopalan Ramaswamy Muhannad Abdullah Saud Alaskar Stojan Radenovi’c |
ppnlink |
897435656 |
callnumber-subject |
QC - Physics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/fractalfract6110649 |
callnumber-a |
QC310.15-319 |
up_date |
2024-07-03T15:20:32.353Z |
_version_ |
1803571725450870784 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ085536857</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414172442.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/fractalfract6110649</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ085536857</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ2de027d8a8094f0c8896d4f1e15f5108</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC310.15-319</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA299.6-433</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Penumarthy Parvateesam Murthy</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Common Fixed Point for Meir–Keeler Type Contraction in Bipolar Metric Space</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In mathematical analysis, the Hausdorff derivatives or the fractal derivatives play an important role. Fixed-point theorems and metric fixed-point theory have varied applications in establishing a unique common solution to differential equations and integral equations. In the present work, some fixed-point theorems using the extension of Meir–Keeler contraction in the setting of bipolar metric spaces have been proved. The derived results have been supplemented with non-trivial examples. Our results extend and generalise the results established in the past. We have provided an application to find an analytical solution to an Integral Equation to supplement the derived result.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fixed points</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bipolar metric space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">covariant map</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">compatible maps</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cauchy bisequence</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Thermodynamics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Analysis</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chandra Prakash Dhuri</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Santosh Kumar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rajagopalan Ramaswamy</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Muhannad Abdullah Saud Alaskar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Stojan Radenovi’c</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Fractal and Fractional</subfield><subfield code="d">MDPI AG, 2018</subfield><subfield code="g">6(2022), 11, p 649</subfield><subfield code="w">(DE-627)897435656</subfield><subfield code="w">(DE-600)2905371-7</subfield><subfield code="x">25043110</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:11, p 649</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/fractalfract6110649</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/2de027d8a8094f0c8896d4f1e15f5108</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2504-3110/6/11/649</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2504-3110</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2022</subfield><subfield code="e">11, p 649</subfield></datafield></record></collection>
|
score |
7.4012985 |