On Conditional Tsallis Entropy
There is no generally accepted definition for conditional Tsallis entropy. The standard definition of (unconditional) Tsallis entropy depends on a parameter <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi<α&...
Ausführliche Beschreibung
Autor*in: |
Andreia Teixeira [verfasserIn] André Souto [verfasserIn] Luís Antunes [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Entropy - MDPI AG, 2003, 23(2021), 11, p 1427 |
---|---|
Übergeordnetes Werk: |
volume:23 ; year:2021 ; number:11, p 1427 |
Links: |
---|
DOI / URN: |
10.3390/e23111427 |
---|
Katalog-ID: |
DOAJ085538566 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ085538566 | ||
003 | DE-627 | ||
005 | 20240412132426.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/e23111427 |2 doi | |
035 | |a (DE-627)DOAJ085538566 | ||
035 | |a (DE-599)DOAJ965806f6defb429e9413af8f9c7ff709 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QB460-466 | |
050 | 0 | |a QC1-999 | |
100 | 0 | |a Andreia Teixeira |e verfasserin |4 aut | |
245 | 1 | 0 | |a On Conditional Tsallis Entropy |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a There is no generally accepted definition for conditional Tsallis entropy. The standard definition of (unconditional) Tsallis entropy depends on a parameter <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi<α</mi<</semantics<</math<</inline-formula< that converges to the Shannon entropy as <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi<α</mi<</semantics<</math<</inline-formula< approaches 1. In this paper, we describe three proposed definitions of conditional Tsallis entropy suggested in the literature—their properties are studied and their values, as a function of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi<α</mi<</semantics<</math<</inline-formula<, are compared. We also consider another natural proposal for conditional Tsallis entropy and compare it with the existing ones. Lastly, we present an online tool to compute the four conditional Tsallis entropies, given the probability distributions and the value of the parameter <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi<α</mi<</semantics<</math<</inline-formula<. | ||
650 | 4 | |a Tsallis entropy | |
650 | 4 | |a conditional Tsallis entropies | |
650 | 4 | |a Generalizations of Shannon entropy | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
653 | 0 | |a Astrophysics | |
653 | 0 | |a Physics | |
700 | 0 | |a André Souto |e verfasserin |4 aut | |
700 | 0 | |a Luís Antunes |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Entropy |d MDPI AG, 2003 |g 23(2021), 11, p 1427 |w (DE-627)316340359 |w (DE-600)2014734-X |x 10994300 |7 nnns |
773 | 1 | 8 | |g volume:23 |g year:2021 |g number:11, p 1427 |
856 | 4 | 0 | |u https://doi.org/10.3390/e23111427 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/965806f6defb429e9413af8f9c7ff709 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1099-4300/23/11/1427 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1099-4300 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 23 |j 2021 |e 11, p 1427 |
author_variant |
a t at a s as l a la |
---|---|
matchkey_str |
article:10994300:2021----::nodtoatal |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
QB |
publishDate |
2021 |
allfields |
10.3390/e23111427 doi (DE-627)DOAJ085538566 (DE-599)DOAJ965806f6defb429e9413af8f9c7ff709 DE-627 ger DE-627 rakwb eng QB460-466 QC1-999 Andreia Teixeira verfasserin aut On Conditional Tsallis Entropy 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier There is no generally accepted definition for conditional Tsallis entropy. The standard definition of (unconditional) Tsallis entropy depends on a parameter <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi<α</mi<</semantics<</math<</inline-formula< that converges to the Shannon entropy as <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi<α</mi<</semantics<</math<</inline-formula< approaches 1. In this paper, we describe three proposed definitions of conditional Tsallis entropy suggested in the literature—their properties are studied and their values, as a function of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi<α</mi<</semantics<</math<</inline-formula<, are compared. We also consider another natural proposal for conditional Tsallis entropy and compare it with the existing ones. Lastly, we present an online tool to compute the four conditional Tsallis entropies, given the probability distributions and the value of the parameter <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi<α</mi<</semantics<</math<</inline-formula<. Tsallis entropy conditional Tsallis entropies Generalizations of Shannon entropy Science Q Astrophysics Physics André Souto verfasserin aut Luís Antunes verfasserin aut In Entropy MDPI AG, 2003 23(2021), 11, p 1427 (DE-627)316340359 (DE-600)2014734-X 10994300 nnns volume:23 year:2021 number:11, p 1427 https://doi.org/10.3390/e23111427 kostenfrei https://doaj.org/article/965806f6defb429e9413af8f9c7ff709 kostenfrei https://www.mdpi.com/1099-4300/23/11/1427 kostenfrei https://doaj.org/toc/1099-4300 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2021 11, p 1427 |
spelling |
10.3390/e23111427 doi (DE-627)DOAJ085538566 (DE-599)DOAJ965806f6defb429e9413af8f9c7ff709 DE-627 ger DE-627 rakwb eng QB460-466 QC1-999 Andreia Teixeira verfasserin aut On Conditional Tsallis Entropy 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier There is no generally accepted definition for conditional Tsallis entropy. The standard definition of (unconditional) Tsallis entropy depends on a parameter <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi<α</mi<</semantics<</math<</inline-formula< that converges to the Shannon entropy as <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi<α</mi<</semantics<</math<</inline-formula< approaches 1. In this paper, we describe three proposed definitions of conditional Tsallis entropy suggested in the literature—their properties are studied and their values, as a function of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi<α</mi<</semantics<</math<</inline-formula<, are compared. We also consider another natural proposal for conditional Tsallis entropy and compare it with the existing ones. Lastly, we present an online tool to compute the four conditional Tsallis entropies, given the probability distributions and the value of the parameter <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi<α</mi<</semantics<</math<</inline-formula<. Tsallis entropy conditional Tsallis entropies Generalizations of Shannon entropy Science Q Astrophysics Physics André Souto verfasserin aut Luís Antunes verfasserin aut In Entropy MDPI AG, 2003 23(2021), 11, p 1427 (DE-627)316340359 (DE-600)2014734-X 10994300 nnns volume:23 year:2021 number:11, p 1427 https://doi.org/10.3390/e23111427 kostenfrei https://doaj.org/article/965806f6defb429e9413af8f9c7ff709 kostenfrei https://www.mdpi.com/1099-4300/23/11/1427 kostenfrei https://doaj.org/toc/1099-4300 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2021 11, p 1427 |
allfields_unstemmed |
10.3390/e23111427 doi (DE-627)DOAJ085538566 (DE-599)DOAJ965806f6defb429e9413af8f9c7ff709 DE-627 ger DE-627 rakwb eng QB460-466 QC1-999 Andreia Teixeira verfasserin aut On Conditional Tsallis Entropy 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier There is no generally accepted definition for conditional Tsallis entropy. The standard definition of (unconditional) Tsallis entropy depends on a parameter <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi<α</mi<</semantics<</math<</inline-formula< that converges to the Shannon entropy as <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi<α</mi<</semantics<</math<</inline-formula< approaches 1. In this paper, we describe three proposed definitions of conditional Tsallis entropy suggested in the literature—their properties are studied and their values, as a function of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi<α</mi<</semantics<</math<</inline-formula<, are compared. We also consider another natural proposal for conditional Tsallis entropy and compare it with the existing ones. Lastly, we present an online tool to compute the four conditional Tsallis entropies, given the probability distributions and the value of the parameter <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi<α</mi<</semantics<</math<</inline-formula<. Tsallis entropy conditional Tsallis entropies Generalizations of Shannon entropy Science Q Astrophysics Physics André Souto verfasserin aut Luís Antunes verfasserin aut In Entropy MDPI AG, 2003 23(2021), 11, p 1427 (DE-627)316340359 (DE-600)2014734-X 10994300 nnns volume:23 year:2021 number:11, p 1427 https://doi.org/10.3390/e23111427 kostenfrei https://doaj.org/article/965806f6defb429e9413af8f9c7ff709 kostenfrei https://www.mdpi.com/1099-4300/23/11/1427 kostenfrei https://doaj.org/toc/1099-4300 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2021 11, p 1427 |
allfieldsGer |
10.3390/e23111427 doi (DE-627)DOAJ085538566 (DE-599)DOAJ965806f6defb429e9413af8f9c7ff709 DE-627 ger DE-627 rakwb eng QB460-466 QC1-999 Andreia Teixeira verfasserin aut On Conditional Tsallis Entropy 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier There is no generally accepted definition for conditional Tsallis entropy. The standard definition of (unconditional) Tsallis entropy depends on a parameter <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi<α</mi<</semantics<</math<</inline-formula< that converges to the Shannon entropy as <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi<α</mi<</semantics<</math<</inline-formula< approaches 1. In this paper, we describe three proposed definitions of conditional Tsallis entropy suggested in the literature—their properties are studied and their values, as a function of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi<α</mi<</semantics<</math<</inline-formula<, are compared. We also consider another natural proposal for conditional Tsallis entropy and compare it with the existing ones. Lastly, we present an online tool to compute the four conditional Tsallis entropies, given the probability distributions and the value of the parameter <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi<α</mi<</semantics<</math<</inline-formula<. Tsallis entropy conditional Tsallis entropies Generalizations of Shannon entropy Science Q Astrophysics Physics André Souto verfasserin aut Luís Antunes verfasserin aut In Entropy MDPI AG, 2003 23(2021), 11, p 1427 (DE-627)316340359 (DE-600)2014734-X 10994300 nnns volume:23 year:2021 number:11, p 1427 https://doi.org/10.3390/e23111427 kostenfrei https://doaj.org/article/965806f6defb429e9413af8f9c7ff709 kostenfrei https://www.mdpi.com/1099-4300/23/11/1427 kostenfrei https://doaj.org/toc/1099-4300 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2021 11, p 1427 |
allfieldsSound |
10.3390/e23111427 doi (DE-627)DOAJ085538566 (DE-599)DOAJ965806f6defb429e9413af8f9c7ff709 DE-627 ger DE-627 rakwb eng QB460-466 QC1-999 Andreia Teixeira verfasserin aut On Conditional Tsallis Entropy 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier There is no generally accepted definition for conditional Tsallis entropy. The standard definition of (unconditional) Tsallis entropy depends on a parameter <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi<α</mi<</semantics<</math<</inline-formula< that converges to the Shannon entropy as <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi<α</mi<</semantics<</math<</inline-formula< approaches 1. In this paper, we describe three proposed definitions of conditional Tsallis entropy suggested in the literature—their properties are studied and their values, as a function of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi<α</mi<</semantics<</math<</inline-formula<, are compared. We also consider another natural proposal for conditional Tsallis entropy and compare it with the existing ones. Lastly, we present an online tool to compute the four conditional Tsallis entropies, given the probability distributions and the value of the parameter <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi<α</mi<</semantics<</math<</inline-formula<. Tsallis entropy conditional Tsallis entropies Generalizations of Shannon entropy Science Q Astrophysics Physics André Souto verfasserin aut Luís Antunes verfasserin aut In Entropy MDPI AG, 2003 23(2021), 11, p 1427 (DE-627)316340359 (DE-600)2014734-X 10994300 nnns volume:23 year:2021 number:11, p 1427 https://doi.org/10.3390/e23111427 kostenfrei https://doaj.org/article/965806f6defb429e9413af8f9c7ff709 kostenfrei https://www.mdpi.com/1099-4300/23/11/1427 kostenfrei https://doaj.org/toc/1099-4300 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2021 11, p 1427 |
language |
English |
source |
In Entropy 23(2021), 11, p 1427 volume:23 year:2021 number:11, p 1427 |
sourceStr |
In Entropy 23(2021), 11, p 1427 volume:23 year:2021 number:11, p 1427 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Tsallis entropy conditional Tsallis entropies Generalizations of Shannon entropy Science Q Astrophysics Physics |
isfreeaccess_bool |
true |
container_title |
Entropy |
authorswithroles_txt_mv |
Andreia Teixeira @@aut@@ André Souto @@aut@@ Luís Antunes @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
316340359 |
id |
DOAJ085538566 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ085538566</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412132426.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/e23111427</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ085538566</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ965806f6defb429e9413af8f9c7ff709</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QB460-466</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Andreia Teixeira</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On Conditional Tsallis Entropy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">There is no generally accepted definition for conditional Tsallis entropy. The standard definition of (unconditional) Tsallis entropy depends on a parameter <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi<α</mi<</semantics<</math<</inline-formula< that converges to the Shannon entropy as <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi<α</mi<</semantics<</math<</inline-formula< approaches 1. In this paper, we describe three proposed definitions of conditional Tsallis entropy suggested in the literature—their properties are studied and their values, as a function of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi<α</mi<</semantics<</math<</inline-formula<, are compared. We also consider another natural proposal for conditional Tsallis entropy and compare it with the existing ones. Lastly, we present an online tool to compute the four conditional Tsallis entropies, given the probability distributions and the value of the parameter <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi<α</mi<</semantics<</math<</inline-formula<.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tsallis entropy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">conditional Tsallis entropies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Generalizations of Shannon entropy</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Astrophysics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">André Souto</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Luís Antunes</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Entropy</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">23(2021), 11, p 1427</subfield><subfield code="w">(DE-627)316340359</subfield><subfield code="w">(DE-600)2014734-X</subfield><subfield code="x">10994300</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:11, p 1427</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/e23111427</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/965806f6defb429e9413af8f9c7ff709</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1099-4300/23/11/1427</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1099-4300</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2021</subfield><subfield code="e">11, p 1427</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Andreia Teixeira |
spellingShingle |
Andreia Teixeira misc QB460-466 misc QC1-999 misc Tsallis entropy misc conditional Tsallis entropies misc Generalizations of Shannon entropy misc Science misc Q misc Astrophysics misc Physics On Conditional Tsallis Entropy |
authorStr |
Andreia Teixeira |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)316340359 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QB460-466 |
illustrated |
Not Illustrated |
issn |
10994300 |
topic_title |
QB460-466 QC1-999 On Conditional Tsallis Entropy Tsallis entropy conditional Tsallis entropies Generalizations of Shannon entropy |
topic |
misc QB460-466 misc QC1-999 misc Tsallis entropy misc conditional Tsallis entropies misc Generalizations of Shannon entropy misc Science misc Q misc Astrophysics misc Physics |
topic_unstemmed |
misc QB460-466 misc QC1-999 misc Tsallis entropy misc conditional Tsallis entropies misc Generalizations of Shannon entropy misc Science misc Q misc Astrophysics misc Physics |
topic_browse |
misc QB460-466 misc QC1-999 misc Tsallis entropy misc conditional Tsallis entropies misc Generalizations of Shannon entropy misc Science misc Q misc Astrophysics misc Physics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Entropy |
hierarchy_parent_id |
316340359 |
hierarchy_top_title |
Entropy |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)316340359 (DE-600)2014734-X |
title |
On Conditional Tsallis Entropy |
ctrlnum |
(DE-627)DOAJ085538566 (DE-599)DOAJ965806f6defb429e9413af8f9c7ff709 |
title_full |
On Conditional Tsallis Entropy |
author_sort |
Andreia Teixeira |
journal |
Entropy |
journalStr |
Entropy |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Andreia Teixeira André Souto Luís Antunes |
container_volume |
23 |
class |
QB460-466 QC1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Andreia Teixeira |
doi_str_mv |
10.3390/e23111427 |
author2-role |
verfasserin |
title_sort |
on conditional tsallis entropy |
callnumber |
QB460-466 |
title_auth |
On Conditional Tsallis Entropy |
abstract |
There is no generally accepted definition for conditional Tsallis entropy. The standard definition of (unconditional) Tsallis entropy depends on a parameter <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi<α</mi<</semantics<</math<</inline-formula< that converges to the Shannon entropy as <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi<α</mi<</semantics<</math<</inline-formula< approaches 1. In this paper, we describe three proposed definitions of conditional Tsallis entropy suggested in the literature—their properties are studied and their values, as a function of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi<α</mi<</semantics<</math<</inline-formula<, are compared. We also consider another natural proposal for conditional Tsallis entropy and compare it with the existing ones. Lastly, we present an online tool to compute the four conditional Tsallis entropies, given the probability distributions and the value of the parameter <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi<α</mi<</semantics<</math<</inline-formula<. |
abstractGer |
There is no generally accepted definition for conditional Tsallis entropy. The standard definition of (unconditional) Tsallis entropy depends on a parameter <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi<α</mi<</semantics<</math<</inline-formula< that converges to the Shannon entropy as <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi<α</mi<</semantics<</math<</inline-formula< approaches 1. In this paper, we describe three proposed definitions of conditional Tsallis entropy suggested in the literature—their properties are studied and their values, as a function of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi<α</mi<</semantics<</math<</inline-formula<, are compared. We also consider another natural proposal for conditional Tsallis entropy and compare it with the existing ones. Lastly, we present an online tool to compute the four conditional Tsallis entropies, given the probability distributions and the value of the parameter <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi<α</mi<</semantics<</math<</inline-formula<. |
abstract_unstemmed |
There is no generally accepted definition for conditional Tsallis entropy. The standard definition of (unconditional) Tsallis entropy depends on a parameter <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi<α</mi<</semantics<</math<</inline-formula< that converges to the Shannon entropy as <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi<α</mi<</semantics<</math<</inline-formula< approaches 1. In this paper, we describe three proposed definitions of conditional Tsallis entropy suggested in the literature—their properties are studied and their values, as a function of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi<α</mi<</semantics<</math<</inline-formula<, are compared. We also consider another natural proposal for conditional Tsallis entropy and compare it with the existing ones. Lastly, we present an online tool to compute the four conditional Tsallis entropies, given the probability distributions and the value of the parameter <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi<α</mi<</semantics<</math<</inline-formula<. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
11, p 1427 |
title_short |
On Conditional Tsallis Entropy |
url |
https://doi.org/10.3390/e23111427 https://doaj.org/article/965806f6defb429e9413af8f9c7ff709 https://www.mdpi.com/1099-4300/23/11/1427 https://doaj.org/toc/1099-4300 |
remote_bool |
true |
author2 |
André Souto Luís Antunes |
author2Str |
André Souto Luís Antunes |
ppnlink |
316340359 |
callnumber-subject |
QB - Astronomy |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/e23111427 |
callnumber-a |
QB460-466 |
up_date |
2024-07-03T15:21:09.202Z |
_version_ |
1803571764092993536 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ085538566</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412132426.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/e23111427</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ085538566</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ965806f6defb429e9413af8f9c7ff709</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QB460-466</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Andreia Teixeira</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On Conditional Tsallis Entropy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">There is no generally accepted definition for conditional Tsallis entropy. The standard definition of (unconditional) Tsallis entropy depends on a parameter <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi<α</mi<</semantics<</math<</inline-formula< that converges to the Shannon entropy as <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi<α</mi<</semantics<</math<</inline-formula< approaches 1. In this paper, we describe three proposed definitions of conditional Tsallis entropy suggested in the literature—their properties are studied and their values, as a function of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi<α</mi<</semantics<</math<</inline-formula<, are compared. We also consider another natural proposal for conditional Tsallis entropy and compare it with the existing ones. Lastly, we present an online tool to compute the four conditional Tsallis entropies, given the probability distributions and the value of the parameter <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi<α</mi<</semantics<</math<</inline-formula<.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tsallis entropy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">conditional Tsallis entropies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Generalizations of Shannon entropy</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Astrophysics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">André Souto</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Luís Antunes</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Entropy</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">23(2021), 11, p 1427</subfield><subfield code="w">(DE-627)316340359</subfield><subfield code="w">(DE-600)2014734-X</subfield><subfield code="x">10994300</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:11, p 1427</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/e23111427</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/965806f6defb429e9413af8f9c7ff709</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1099-4300/23/11/1427</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1099-4300</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2021</subfield><subfield code="e">11, p 1427</subfield></datafield></record></collection>
|
score |
7.400997 |