Implementation of System Pharmacology and Molecular Docking Approaches to Explore Active Compounds and Mechanism of Ocimum Sanctum against Tuberculosis
Worldwide, Tuberculosis (TB) is caused by <i<Mycobacterium tuberculosis</i< bacteria. <i<Ocimum sanctum</i<, commonly known as holy basil (Tulsi), is an herbaceous perennial that belongs to the family Lamiaceae and is considered one of the most important sources of medicine a...
Ausführliche Beschreibung
Autor*in: |
Sana Tabassum [verfasserIn] Hafiz Rameez Khalid [verfasserIn] Waqar ul Haq [verfasserIn] Sidra Aslam [verfasserIn] Abdulrahman Alshammari [verfasserIn] Metab Alharbi [verfasserIn] Muhammad Shahid Riaz Rajoka [verfasserIn] Mohsin Khurshid [verfasserIn] Usman Ali Ashfaq [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Processes - MDPI AG, 2013, 10(2022), 298, p 298 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2022 ; number:298, p 298 |
Links: |
---|
DOI / URN: |
10.3390/pr10020298 |
---|
Katalog-ID: |
DOAJ085597260 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ085597260 | ||
003 | DE-627 | ||
005 | 20230311035855.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/pr10020298 |2 doi | |
035 | |a (DE-627)DOAJ085597260 | ||
035 | |a (DE-599)DOAJf00f0251980d46f4b01ed2143bc24b2c | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TP1-1185 | |
050 | 0 | |a QD1-999 | |
100 | 0 | |a Sana Tabassum |e verfasserin |4 aut | |
245 | 1 | 0 | |a Implementation of System Pharmacology and Molecular Docking Approaches to Explore Active Compounds and Mechanism of Ocimum Sanctum against Tuberculosis |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Worldwide, Tuberculosis (TB) is caused by <i<Mycobacterium tuberculosis</i< bacteria. <i<Ocimum sanctum</i<, commonly known as holy basil (Tulsi), is an herbaceous perennial that belongs to the family Lamiaceae and is considered one of the most important sources of medicine and drugs for the treatment of various diseases. The presented study aims to discover the potential phenomenon of <i<Ocimum sanctum</i< in the medicament of tuberculosis using a network pharmacology approach. Active ingredients of <i<Ocimum sanctum</i< were fetched through two different databases and from literature review and then targets of these compounds were harvested by SwissTargetPrediction. Potential targets of TB were downloaded from GeneCards and DisGNet databases. After screening of mutual targets, enrichment analysis through DAVID was performed. Protein–protein interaction was performed using the String database and visualized by Cytoscape. Then the target-compound-pathway network was constructed with Cytoscape. In the end, molecular docking was performed to get the potential active ingredients against tuberculosis. Eight active ingredients with 776 potential therapeutic targets were obtained from <i<O. sanctum</i<, 632 intersected targets from two databases were found in TB, 72 common potential targets were found from TB and <i<O. sanctum</i<. The topological analysis exposes those ten targets that formed the core PPI network. Furthermore, molecular docking analysis reveals that active compounds have the greater binding ability with the potential target to suppress TB. | ||
650 | 4 | |a <i<Ocimum sanctum</i< | |
650 | 4 | |a tuberculosis | |
650 | 4 | |a network pharmacology | |
653 | 0 | |a Chemical technology | |
653 | 0 | |a Chemistry | |
700 | 0 | |a Hafiz Rameez Khalid |e verfasserin |4 aut | |
700 | 0 | |a Waqar ul Haq |e verfasserin |4 aut | |
700 | 0 | |a Sidra Aslam |e verfasserin |4 aut | |
700 | 0 | |a Abdulrahman Alshammari |e verfasserin |4 aut | |
700 | 0 | |a Metab Alharbi |e verfasserin |4 aut | |
700 | 0 | |a Muhammad Shahid Riaz Rajoka |e verfasserin |4 aut | |
700 | 0 | |a Mohsin Khurshid |e verfasserin |4 aut | |
700 | 0 | |a Usman Ali Ashfaq |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Processes |d MDPI AG, 2013 |g 10(2022), 298, p 298 |w (DE-627)750371439 |w (DE-600)2720994-5 |x 22279717 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2022 |g number:298, p 298 |
856 | 4 | 0 | |u https://doi.org/10.3390/pr10020298 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/f00f0251980d46f4b01ed2143bc24b2c |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2227-9717/10/2/298 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2227-9717 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2022 |e 298, p 298 |
author_variant |
s t st h r k hrk w u h wuh s a sa a a aa m a ma m s r r msrr m k mk u a a uaa |
---|---|
matchkey_str |
article:22279717:2022----::mlmnainfytmhraooynmlclroknapocetepoecieopudadehns |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TP |
publishDate |
2022 |
allfields |
10.3390/pr10020298 doi (DE-627)DOAJ085597260 (DE-599)DOAJf00f0251980d46f4b01ed2143bc24b2c DE-627 ger DE-627 rakwb eng TP1-1185 QD1-999 Sana Tabassum verfasserin aut Implementation of System Pharmacology and Molecular Docking Approaches to Explore Active Compounds and Mechanism of Ocimum Sanctum against Tuberculosis 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Worldwide, Tuberculosis (TB) is caused by <i<Mycobacterium tuberculosis</i< bacteria. <i<Ocimum sanctum</i<, commonly known as holy basil (Tulsi), is an herbaceous perennial that belongs to the family Lamiaceae and is considered one of the most important sources of medicine and drugs for the treatment of various diseases. The presented study aims to discover the potential phenomenon of <i<Ocimum sanctum</i< in the medicament of tuberculosis using a network pharmacology approach. Active ingredients of <i<Ocimum sanctum</i< were fetched through two different databases and from literature review and then targets of these compounds were harvested by SwissTargetPrediction. Potential targets of TB were downloaded from GeneCards and DisGNet databases. After screening of mutual targets, enrichment analysis through DAVID was performed. Protein–protein interaction was performed using the String database and visualized by Cytoscape. Then the target-compound-pathway network was constructed with Cytoscape. In the end, molecular docking was performed to get the potential active ingredients against tuberculosis. Eight active ingredients with 776 potential therapeutic targets were obtained from <i<O. sanctum</i<, 632 intersected targets from two databases were found in TB, 72 common potential targets were found from TB and <i<O. sanctum</i<. The topological analysis exposes those ten targets that formed the core PPI network. Furthermore, molecular docking analysis reveals that active compounds have the greater binding ability with the potential target to suppress TB. <i<Ocimum sanctum</i< tuberculosis network pharmacology Chemical technology Chemistry Hafiz Rameez Khalid verfasserin aut Waqar ul Haq verfasserin aut Sidra Aslam verfasserin aut Abdulrahman Alshammari verfasserin aut Metab Alharbi verfasserin aut Muhammad Shahid Riaz Rajoka verfasserin aut Mohsin Khurshid verfasserin aut Usman Ali Ashfaq verfasserin aut In Processes MDPI AG, 2013 10(2022), 298, p 298 (DE-627)750371439 (DE-600)2720994-5 22279717 nnns volume:10 year:2022 number:298, p 298 https://doi.org/10.3390/pr10020298 kostenfrei https://doaj.org/article/f00f0251980d46f4b01ed2143bc24b2c kostenfrei https://www.mdpi.com/2227-9717/10/2/298 kostenfrei https://doaj.org/toc/2227-9717 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 298, p 298 |
spelling |
10.3390/pr10020298 doi (DE-627)DOAJ085597260 (DE-599)DOAJf00f0251980d46f4b01ed2143bc24b2c DE-627 ger DE-627 rakwb eng TP1-1185 QD1-999 Sana Tabassum verfasserin aut Implementation of System Pharmacology and Molecular Docking Approaches to Explore Active Compounds and Mechanism of Ocimum Sanctum against Tuberculosis 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Worldwide, Tuberculosis (TB) is caused by <i<Mycobacterium tuberculosis</i< bacteria. <i<Ocimum sanctum</i<, commonly known as holy basil (Tulsi), is an herbaceous perennial that belongs to the family Lamiaceae and is considered one of the most important sources of medicine and drugs for the treatment of various diseases. The presented study aims to discover the potential phenomenon of <i<Ocimum sanctum</i< in the medicament of tuberculosis using a network pharmacology approach. Active ingredients of <i<Ocimum sanctum</i< were fetched through two different databases and from literature review and then targets of these compounds were harvested by SwissTargetPrediction. Potential targets of TB were downloaded from GeneCards and DisGNet databases. After screening of mutual targets, enrichment analysis through DAVID was performed. Protein–protein interaction was performed using the String database and visualized by Cytoscape. Then the target-compound-pathway network was constructed with Cytoscape. In the end, molecular docking was performed to get the potential active ingredients against tuberculosis. Eight active ingredients with 776 potential therapeutic targets were obtained from <i<O. sanctum</i<, 632 intersected targets from two databases were found in TB, 72 common potential targets were found from TB and <i<O. sanctum</i<. The topological analysis exposes those ten targets that formed the core PPI network. Furthermore, molecular docking analysis reveals that active compounds have the greater binding ability with the potential target to suppress TB. <i<Ocimum sanctum</i< tuberculosis network pharmacology Chemical technology Chemistry Hafiz Rameez Khalid verfasserin aut Waqar ul Haq verfasserin aut Sidra Aslam verfasserin aut Abdulrahman Alshammari verfasserin aut Metab Alharbi verfasserin aut Muhammad Shahid Riaz Rajoka verfasserin aut Mohsin Khurshid verfasserin aut Usman Ali Ashfaq verfasserin aut In Processes MDPI AG, 2013 10(2022), 298, p 298 (DE-627)750371439 (DE-600)2720994-5 22279717 nnns volume:10 year:2022 number:298, p 298 https://doi.org/10.3390/pr10020298 kostenfrei https://doaj.org/article/f00f0251980d46f4b01ed2143bc24b2c kostenfrei https://www.mdpi.com/2227-9717/10/2/298 kostenfrei https://doaj.org/toc/2227-9717 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 298, p 298 |
allfields_unstemmed |
10.3390/pr10020298 doi (DE-627)DOAJ085597260 (DE-599)DOAJf00f0251980d46f4b01ed2143bc24b2c DE-627 ger DE-627 rakwb eng TP1-1185 QD1-999 Sana Tabassum verfasserin aut Implementation of System Pharmacology and Molecular Docking Approaches to Explore Active Compounds and Mechanism of Ocimum Sanctum against Tuberculosis 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Worldwide, Tuberculosis (TB) is caused by <i<Mycobacterium tuberculosis</i< bacteria. <i<Ocimum sanctum</i<, commonly known as holy basil (Tulsi), is an herbaceous perennial that belongs to the family Lamiaceae and is considered one of the most important sources of medicine and drugs for the treatment of various diseases. The presented study aims to discover the potential phenomenon of <i<Ocimum sanctum</i< in the medicament of tuberculosis using a network pharmacology approach. Active ingredients of <i<Ocimum sanctum</i< were fetched through two different databases and from literature review and then targets of these compounds were harvested by SwissTargetPrediction. Potential targets of TB were downloaded from GeneCards and DisGNet databases. After screening of mutual targets, enrichment analysis through DAVID was performed. Protein–protein interaction was performed using the String database and visualized by Cytoscape. Then the target-compound-pathway network was constructed with Cytoscape. In the end, molecular docking was performed to get the potential active ingredients against tuberculosis. Eight active ingredients with 776 potential therapeutic targets were obtained from <i<O. sanctum</i<, 632 intersected targets from two databases were found in TB, 72 common potential targets were found from TB and <i<O. sanctum</i<. The topological analysis exposes those ten targets that formed the core PPI network. Furthermore, molecular docking analysis reveals that active compounds have the greater binding ability with the potential target to suppress TB. <i<Ocimum sanctum</i< tuberculosis network pharmacology Chemical technology Chemistry Hafiz Rameez Khalid verfasserin aut Waqar ul Haq verfasserin aut Sidra Aslam verfasserin aut Abdulrahman Alshammari verfasserin aut Metab Alharbi verfasserin aut Muhammad Shahid Riaz Rajoka verfasserin aut Mohsin Khurshid verfasserin aut Usman Ali Ashfaq verfasserin aut In Processes MDPI AG, 2013 10(2022), 298, p 298 (DE-627)750371439 (DE-600)2720994-5 22279717 nnns volume:10 year:2022 number:298, p 298 https://doi.org/10.3390/pr10020298 kostenfrei https://doaj.org/article/f00f0251980d46f4b01ed2143bc24b2c kostenfrei https://www.mdpi.com/2227-9717/10/2/298 kostenfrei https://doaj.org/toc/2227-9717 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 298, p 298 |
allfieldsGer |
10.3390/pr10020298 doi (DE-627)DOAJ085597260 (DE-599)DOAJf00f0251980d46f4b01ed2143bc24b2c DE-627 ger DE-627 rakwb eng TP1-1185 QD1-999 Sana Tabassum verfasserin aut Implementation of System Pharmacology and Molecular Docking Approaches to Explore Active Compounds and Mechanism of Ocimum Sanctum against Tuberculosis 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Worldwide, Tuberculosis (TB) is caused by <i<Mycobacterium tuberculosis</i< bacteria. <i<Ocimum sanctum</i<, commonly known as holy basil (Tulsi), is an herbaceous perennial that belongs to the family Lamiaceae and is considered one of the most important sources of medicine and drugs for the treatment of various diseases. The presented study aims to discover the potential phenomenon of <i<Ocimum sanctum</i< in the medicament of tuberculosis using a network pharmacology approach. Active ingredients of <i<Ocimum sanctum</i< were fetched through two different databases and from literature review and then targets of these compounds were harvested by SwissTargetPrediction. Potential targets of TB were downloaded from GeneCards and DisGNet databases. After screening of mutual targets, enrichment analysis through DAVID was performed. Protein–protein interaction was performed using the String database and visualized by Cytoscape. Then the target-compound-pathway network was constructed with Cytoscape. In the end, molecular docking was performed to get the potential active ingredients against tuberculosis. Eight active ingredients with 776 potential therapeutic targets were obtained from <i<O. sanctum</i<, 632 intersected targets from two databases were found in TB, 72 common potential targets were found from TB and <i<O. sanctum</i<. The topological analysis exposes those ten targets that formed the core PPI network. Furthermore, molecular docking analysis reveals that active compounds have the greater binding ability with the potential target to suppress TB. <i<Ocimum sanctum</i< tuberculosis network pharmacology Chemical technology Chemistry Hafiz Rameez Khalid verfasserin aut Waqar ul Haq verfasserin aut Sidra Aslam verfasserin aut Abdulrahman Alshammari verfasserin aut Metab Alharbi verfasserin aut Muhammad Shahid Riaz Rajoka verfasserin aut Mohsin Khurshid verfasserin aut Usman Ali Ashfaq verfasserin aut In Processes MDPI AG, 2013 10(2022), 298, p 298 (DE-627)750371439 (DE-600)2720994-5 22279717 nnns volume:10 year:2022 number:298, p 298 https://doi.org/10.3390/pr10020298 kostenfrei https://doaj.org/article/f00f0251980d46f4b01ed2143bc24b2c kostenfrei https://www.mdpi.com/2227-9717/10/2/298 kostenfrei https://doaj.org/toc/2227-9717 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 298, p 298 |
allfieldsSound |
10.3390/pr10020298 doi (DE-627)DOAJ085597260 (DE-599)DOAJf00f0251980d46f4b01ed2143bc24b2c DE-627 ger DE-627 rakwb eng TP1-1185 QD1-999 Sana Tabassum verfasserin aut Implementation of System Pharmacology and Molecular Docking Approaches to Explore Active Compounds and Mechanism of Ocimum Sanctum against Tuberculosis 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Worldwide, Tuberculosis (TB) is caused by <i<Mycobacterium tuberculosis</i< bacteria. <i<Ocimum sanctum</i<, commonly known as holy basil (Tulsi), is an herbaceous perennial that belongs to the family Lamiaceae and is considered one of the most important sources of medicine and drugs for the treatment of various diseases. The presented study aims to discover the potential phenomenon of <i<Ocimum sanctum</i< in the medicament of tuberculosis using a network pharmacology approach. Active ingredients of <i<Ocimum sanctum</i< were fetched through two different databases and from literature review and then targets of these compounds were harvested by SwissTargetPrediction. Potential targets of TB were downloaded from GeneCards and DisGNet databases. After screening of mutual targets, enrichment analysis through DAVID was performed. Protein–protein interaction was performed using the String database and visualized by Cytoscape. Then the target-compound-pathway network was constructed with Cytoscape. In the end, molecular docking was performed to get the potential active ingredients against tuberculosis. Eight active ingredients with 776 potential therapeutic targets were obtained from <i<O. sanctum</i<, 632 intersected targets from two databases were found in TB, 72 common potential targets were found from TB and <i<O. sanctum</i<. The topological analysis exposes those ten targets that formed the core PPI network. Furthermore, molecular docking analysis reveals that active compounds have the greater binding ability with the potential target to suppress TB. <i<Ocimum sanctum</i< tuberculosis network pharmacology Chemical technology Chemistry Hafiz Rameez Khalid verfasserin aut Waqar ul Haq verfasserin aut Sidra Aslam verfasserin aut Abdulrahman Alshammari verfasserin aut Metab Alharbi verfasserin aut Muhammad Shahid Riaz Rajoka verfasserin aut Mohsin Khurshid verfasserin aut Usman Ali Ashfaq verfasserin aut In Processes MDPI AG, 2013 10(2022), 298, p 298 (DE-627)750371439 (DE-600)2720994-5 22279717 nnns volume:10 year:2022 number:298, p 298 https://doi.org/10.3390/pr10020298 kostenfrei https://doaj.org/article/f00f0251980d46f4b01ed2143bc24b2c kostenfrei https://www.mdpi.com/2227-9717/10/2/298 kostenfrei https://doaj.org/toc/2227-9717 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 298, p 298 |
language |
English |
source |
In Processes 10(2022), 298, p 298 volume:10 year:2022 number:298, p 298 |
sourceStr |
In Processes 10(2022), 298, p 298 volume:10 year:2022 number:298, p 298 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
<i<Ocimum sanctum</i< tuberculosis network pharmacology Chemical technology Chemistry |
isfreeaccess_bool |
true |
container_title |
Processes |
authorswithroles_txt_mv |
Sana Tabassum @@aut@@ Hafiz Rameez Khalid @@aut@@ Waqar ul Haq @@aut@@ Sidra Aslam @@aut@@ Abdulrahman Alshammari @@aut@@ Metab Alharbi @@aut@@ Muhammad Shahid Riaz Rajoka @@aut@@ Mohsin Khurshid @@aut@@ Usman Ali Ashfaq @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
750371439 |
id |
DOAJ085597260 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ085597260</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230311035855.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/pr10020298</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ085597260</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJf00f0251980d46f4b01ed2143bc24b2c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Sana Tabassum</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Implementation of System Pharmacology and Molecular Docking Approaches to Explore Active Compounds and Mechanism of Ocimum Sanctum against Tuberculosis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Worldwide, Tuberculosis (TB) is caused by <i<Mycobacterium tuberculosis</i< bacteria. <i<Ocimum sanctum</i<, commonly known as holy basil (Tulsi), is an herbaceous perennial that belongs to the family Lamiaceae and is considered one of the most important sources of medicine and drugs for the treatment of various diseases. The presented study aims to discover the potential phenomenon of <i<Ocimum sanctum</i< in the medicament of tuberculosis using a network pharmacology approach. Active ingredients of <i<Ocimum sanctum</i< were fetched through two different databases and from literature review and then targets of these compounds were harvested by SwissTargetPrediction. Potential targets of TB were downloaded from GeneCards and DisGNet databases. After screening of mutual targets, enrichment analysis through DAVID was performed. Protein–protein interaction was performed using the String database and visualized by Cytoscape. Then the target-compound-pathway network was constructed with Cytoscape. In the end, molecular docking was performed to get the potential active ingredients against tuberculosis. Eight active ingredients with 776 potential therapeutic targets were obtained from <i<O. sanctum</i<, 632 intersected targets from two databases were found in TB, 72 common potential targets were found from TB and <i<O. sanctum</i<. The topological analysis exposes those ten targets that formed the core PPI network. Furthermore, molecular docking analysis reveals that active compounds have the greater binding ability with the potential target to suppress TB.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<Ocimum sanctum</i<</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">tuberculosis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">network pharmacology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hafiz Rameez Khalid</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Waqar ul Haq</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sidra Aslam</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Abdulrahman Alshammari</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Metab Alharbi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Muhammad Shahid Riaz Rajoka</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mohsin Khurshid</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Usman Ali Ashfaq</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Processes</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">10(2022), 298, p 298</subfield><subfield code="w">(DE-627)750371439</subfield><subfield code="w">(DE-600)2720994-5</subfield><subfield code="x">22279717</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:298, p 298</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/pr10020298</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/f00f0251980d46f4b01ed2143bc24b2c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2227-9717/10/2/298</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2227-9717</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield><subfield code="e">298, p 298</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Sana Tabassum |
spellingShingle |
Sana Tabassum misc TP1-1185 misc QD1-999 misc <i<Ocimum sanctum</i< misc tuberculosis misc network pharmacology misc Chemical technology misc Chemistry Implementation of System Pharmacology and Molecular Docking Approaches to Explore Active Compounds and Mechanism of Ocimum Sanctum against Tuberculosis |
authorStr |
Sana Tabassum |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)750371439 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TP1-1185 |
illustrated |
Not Illustrated |
issn |
22279717 |
topic_title |
TP1-1185 QD1-999 Implementation of System Pharmacology and Molecular Docking Approaches to Explore Active Compounds and Mechanism of Ocimum Sanctum against Tuberculosis <i<Ocimum sanctum</i< tuberculosis network pharmacology |
topic |
misc TP1-1185 misc QD1-999 misc <i<Ocimum sanctum</i< misc tuberculosis misc network pharmacology misc Chemical technology misc Chemistry |
topic_unstemmed |
misc TP1-1185 misc QD1-999 misc <i<Ocimum sanctum</i< misc tuberculosis misc network pharmacology misc Chemical technology misc Chemistry |
topic_browse |
misc TP1-1185 misc QD1-999 misc <i<Ocimum sanctum</i< misc tuberculosis misc network pharmacology misc Chemical technology misc Chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Processes |
hierarchy_parent_id |
750371439 |
hierarchy_top_title |
Processes |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)750371439 (DE-600)2720994-5 |
title |
Implementation of System Pharmacology and Molecular Docking Approaches to Explore Active Compounds and Mechanism of Ocimum Sanctum against Tuberculosis |
ctrlnum |
(DE-627)DOAJ085597260 (DE-599)DOAJf00f0251980d46f4b01ed2143bc24b2c |
title_full |
Implementation of System Pharmacology and Molecular Docking Approaches to Explore Active Compounds and Mechanism of Ocimum Sanctum against Tuberculosis |
author_sort |
Sana Tabassum |
journal |
Processes |
journalStr |
Processes |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Sana Tabassum Hafiz Rameez Khalid Waqar ul Haq Sidra Aslam Abdulrahman Alshammari Metab Alharbi Muhammad Shahid Riaz Rajoka Mohsin Khurshid Usman Ali Ashfaq |
container_volume |
10 |
class |
TP1-1185 QD1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Sana Tabassum |
doi_str_mv |
10.3390/pr10020298 |
author2-role |
verfasserin |
title_sort |
implementation of system pharmacology and molecular docking approaches to explore active compounds and mechanism of ocimum sanctum against tuberculosis |
callnumber |
TP1-1185 |
title_auth |
Implementation of System Pharmacology and Molecular Docking Approaches to Explore Active Compounds and Mechanism of Ocimum Sanctum against Tuberculosis |
abstract |
Worldwide, Tuberculosis (TB) is caused by <i<Mycobacterium tuberculosis</i< bacteria. <i<Ocimum sanctum</i<, commonly known as holy basil (Tulsi), is an herbaceous perennial that belongs to the family Lamiaceae and is considered one of the most important sources of medicine and drugs for the treatment of various diseases. The presented study aims to discover the potential phenomenon of <i<Ocimum sanctum</i< in the medicament of tuberculosis using a network pharmacology approach. Active ingredients of <i<Ocimum sanctum</i< were fetched through two different databases and from literature review and then targets of these compounds were harvested by SwissTargetPrediction. Potential targets of TB were downloaded from GeneCards and DisGNet databases. After screening of mutual targets, enrichment analysis through DAVID was performed. Protein–protein interaction was performed using the String database and visualized by Cytoscape. Then the target-compound-pathway network was constructed with Cytoscape. In the end, molecular docking was performed to get the potential active ingredients against tuberculosis. Eight active ingredients with 776 potential therapeutic targets were obtained from <i<O. sanctum</i<, 632 intersected targets from two databases were found in TB, 72 common potential targets were found from TB and <i<O. sanctum</i<. The topological analysis exposes those ten targets that formed the core PPI network. Furthermore, molecular docking analysis reveals that active compounds have the greater binding ability with the potential target to suppress TB. |
abstractGer |
Worldwide, Tuberculosis (TB) is caused by <i<Mycobacterium tuberculosis</i< bacteria. <i<Ocimum sanctum</i<, commonly known as holy basil (Tulsi), is an herbaceous perennial that belongs to the family Lamiaceae and is considered one of the most important sources of medicine and drugs for the treatment of various diseases. The presented study aims to discover the potential phenomenon of <i<Ocimum sanctum</i< in the medicament of tuberculosis using a network pharmacology approach. Active ingredients of <i<Ocimum sanctum</i< were fetched through two different databases and from literature review and then targets of these compounds were harvested by SwissTargetPrediction. Potential targets of TB were downloaded from GeneCards and DisGNet databases. After screening of mutual targets, enrichment analysis through DAVID was performed. Protein–protein interaction was performed using the String database and visualized by Cytoscape. Then the target-compound-pathway network was constructed with Cytoscape. In the end, molecular docking was performed to get the potential active ingredients against tuberculosis. Eight active ingredients with 776 potential therapeutic targets were obtained from <i<O. sanctum</i<, 632 intersected targets from two databases were found in TB, 72 common potential targets were found from TB and <i<O. sanctum</i<. The topological analysis exposes those ten targets that formed the core PPI network. Furthermore, molecular docking analysis reveals that active compounds have the greater binding ability with the potential target to suppress TB. |
abstract_unstemmed |
Worldwide, Tuberculosis (TB) is caused by <i<Mycobacterium tuberculosis</i< bacteria. <i<Ocimum sanctum</i<, commonly known as holy basil (Tulsi), is an herbaceous perennial that belongs to the family Lamiaceae and is considered one of the most important sources of medicine and drugs for the treatment of various diseases. The presented study aims to discover the potential phenomenon of <i<Ocimum sanctum</i< in the medicament of tuberculosis using a network pharmacology approach. Active ingredients of <i<Ocimum sanctum</i< were fetched through two different databases and from literature review and then targets of these compounds were harvested by SwissTargetPrediction. Potential targets of TB were downloaded from GeneCards and DisGNet databases. After screening of mutual targets, enrichment analysis through DAVID was performed. Protein–protein interaction was performed using the String database and visualized by Cytoscape. Then the target-compound-pathway network was constructed with Cytoscape. In the end, molecular docking was performed to get the potential active ingredients against tuberculosis. Eight active ingredients with 776 potential therapeutic targets were obtained from <i<O. sanctum</i<, 632 intersected targets from two databases were found in TB, 72 common potential targets were found from TB and <i<O. sanctum</i<. The topological analysis exposes those ten targets that formed the core PPI network. Furthermore, molecular docking analysis reveals that active compounds have the greater binding ability with the potential target to suppress TB. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
298, p 298 |
title_short |
Implementation of System Pharmacology and Molecular Docking Approaches to Explore Active Compounds and Mechanism of Ocimum Sanctum against Tuberculosis |
url |
https://doi.org/10.3390/pr10020298 https://doaj.org/article/f00f0251980d46f4b01ed2143bc24b2c https://www.mdpi.com/2227-9717/10/2/298 https://doaj.org/toc/2227-9717 |
remote_bool |
true |
author2 |
Hafiz Rameez Khalid Waqar ul Haq Sidra Aslam Abdulrahman Alshammari Metab Alharbi Muhammad Shahid Riaz Rajoka Mohsin Khurshid Usman Ali Ashfaq |
author2Str |
Hafiz Rameez Khalid Waqar ul Haq Sidra Aslam Abdulrahman Alshammari Metab Alharbi Muhammad Shahid Riaz Rajoka Mohsin Khurshid Usman Ali Ashfaq |
ppnlink |
750371439 |
callnumber-subject |
TP - Chemical Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/pr10020298 |
callnumber-a |
TP1-1185 |
up_date |
2024-07-03T15:43:43.441Z |
_version_ |
1803573184109215744 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ085597260</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230311035855.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/pr10020298</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ085597260</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJf00f0251980d46f4b01ed2143bc24b2c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Sana Tabassum</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Implementation of System Pharmacology and Molecular Docking Approaches to Explore Active Compounds and Mechanism of Ocimum Sanctum against Tuberculosis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Worldwide, Tuberculosis (TB) is caused by <i<Mycobacterium tuberculosis</i< bacteria. <i<Ocimum sanctum</i<, commonly known as holy basil (Tulsi), is an herbaceous perennial that belongs to the family Lamiaceae and is considered one of the most important sources of medicine and drugs for the treatment of various diseases. The presented study aims to discover the potential phenomenon of <i<Ocimum sanctum</i< in the medicament of tuberculosis using a network pharmacology approach. Active ingredients of <i<Ocimum sanctum</i< were fetched through two different databases and from literature review and then targets of these compounds were harvested by SwissTargetPrediction. Potential targets of TB were downloaded from GeneCards and DisGNet databases. After screening of mutual targets, enrichment analysis through DAVID was performed. Protein–protein interaction was performed using the String database and visualized by Cytoscape. Then the target-compound-pathway network was constructed with Cytoscape. In the end, molecular docking was performed to get the potential active ingredients against tuberculosis. Eight active ingredients with 776 potential therapeutic targets were obtained from <i<O. sanctum</i<, 632 intersected targets from two databases were found in TB, 72 common potential targets were found from TB and <i<O. sanctum</i<. The topological analysis exposes those ten targets that formed the core PPI network. Furthermore, molecular docking analysis reveals that active compounds have the greater binding ability with the potential target to suppress TB.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<Ocimum sanctum</i<</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">tuberculosis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">network pharmacology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hafiz Rameez Khalid</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Waqar ul Haq</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sidra Aslam</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Abdulrahman Alshammari</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Metab Alharbi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Muhammad Shahid Riaz Rajoka</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mohsin Khurshid</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Usman Ali Ashfaq</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Processes</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">10(2022), 298, p 298</subfield><subfield code="w">(DE-627)750371439</subfield><subfield code="w">(DE-600)2720994-5</subfield><subfield code="x">22279717</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:298, p 298</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/pr10020298</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/f00f0251980d46f4b01ed2143bc24b2c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2227-9717/10/2/298</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2227-9717</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield><subfield code="e">298, p 298</subfield></datafield></record></collection>
|
score |
7.4016523 |