Wind Power Ramps Driven by Windstorms and Cyclones
The increase in the wind power predictability assumes a very important role for secure power system operation at minimum costs, especially in situations with severe changes in wind power production. In order to improve the forecast of such events, also known as “wind power ramp events”, the underlyi...
Ausführliche Beschreibung
Autor*in: |
Madalena Lacerda [verfasserIn] António Couto [verfasserIn] Ana Estanqueiro [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Energies - MDPI AG, 2008, 10(2017), 10, p 1475 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2017 ; number:10, p 1475 |
Links: |
---|
DOI / URN: |
10.3390/en10101475 |
---|
Katalog-ID: |
DOAJ085652253 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ085652253 | ||
003 | DE-627 | ||
005 | 20230311040310.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/en10101475 |2 doi | |
035 | |a (DE-627)DOAJ085652253 | ||
035 | |a (DE-599)DOAJ88012ceef18145bfb5d7193681f23068 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Madalena Lacerda |e verfasserin |4 aut | |
245 | 1 | 0 | |a Wind Power Ramps Driven by Windstorms and Cyclones |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The increase in the wind power predictability assumes a very important role for secure power system operation at minimum costs, especially in situations with severe changes in wind power production. In order to improve the forecast of such events, also known as “wind power ramp events”, the underlying role of some severe meteorological phenomena in triggering wind power ramps must be clearly understood. In this paper, windstorm and cyclone detection algorithms are implemented using historical reanalysis data allowing the identification of key characteristics (e.g., location, intensity and trajectories) of the events with the highest impact on the wind power ramp events in Portugal. The results show a strong association between cyclones/windstorms and wind power ramp events. Moreover, the results highlight that it is possible to use some features of these meteorological phenomena to detect, in an early stage, severe wind power ramps thus creating the possibility to develop operational decision tools in order to support the security of power systems with high amounts of wind power generation. | ||
650 | 4 | |a wind power ramps | |
650 | 4 | |a cyclonic activity | |
650 | 4 | |a power generation system management | |
650 | 4 | |a weather conditions | |
650 | 4 | |a windstorms | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
700 | 0 | |a António Couto |e verfasserin |4 aut | |
700 | 0 | |a Ana Estanqueiro |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Energies |d MDPI AG, 2008 |g 10(2017), 10, p 1475 |w (DE-627)572083742 |w (DE-600)2437446-5 |x 19961073 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2017 |g number:10, p 1475 |
856 | 4 | 0 | |u https://doi.org/10.3390/en10101475 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/88012ceef18145bfb5d7193681f23068 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1996-1073/10/10/1475 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1996-1073 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2017 |e 10, p 1475 |
author_variant |
m l ml a c ac a e ae |
---|---|
matchkey_str |
article:19961073:2017----::idoermsrvnyidtr |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.3390/en10101475 doi (DE-627)DOAJ085652253 (DE-599)DOAJ88012ceef18145bfb5d7193681f23068 DE-627 ger DE-627 rakwb eng Madalena Lacerda verfasserin aut Wind Power Ramps Driven by Windstorms and Cyclones 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The increase in the wind power predictability assumes a very important role for secure power system operation at minimum costs, especially in situations with severe changes in wind power production. In order to improve the forecast of such events, also known as “wind power ramp events”, the underlying role of some severe meteorological phenomena in triggering wind power ramps must be clearly understood. In this paper, windstorm and cyclone detection algorithms are implemented using historical reanalysis data allowing the identification of key characteristics (e.g., location, intensity and trajectories) of the events with the highest impact on the wind power ramp events in Portugal. The results show a strong association between cyclones/windstorms and wind power ramp events. Moreover, the results highlight that it is possible to use some features of these meteorological phenomena to detect, in an early stage, severe wind power ramps thus creating the possibility to develop operational decision tools in order to support the security of power systems with high amounts of wind power generation. wind power ramps cyclonic activity power generation system management weather conditions windstorms Technology T António Couto verfasserin aut Ana Estanqueiro verfasserin aut In Energies MDPI AG, 2008 10(2017), 10, p 1475 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:10 year:2017 number:10, p 1475 https://doi.org/10.3390/en10101475 kostenfrei https://doaj.org/article/88012ceef18145bfb5d7193681f23068 kostenfrei https://www.mdpi.com/1996-1073/10/10/1475 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2017 10, p 1475 |
spelling |
10.3390/en10101475 doi (DE-627)DOAJ085652253 (DE-599)DOAJ88012ceef18145bfb5d7193681f23068 DE-627 ger DE-627 rakwb eng Madalena Lacerda verfasserin aut Wind Power Ramps Driven by Windstorms and Cyclones 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The increase in the wind power predictability assumes a very important role for secure power system operation at minimum costs, especially in situations with severe changes in wind power production. In order to improve the forecast of such events, also known as “wind power ramp events”, the underlying role of some severe meteorological phenomena in triggering wind power ramps must be clearly understood. In this paper, windstorm and cyclone detection algorithms are implemented using historical reanalysis data allowing the identification of key characteristics (e.g., location, intensity and trajectories) of the events with the highest impact on the wind power ramp events in Portugal. The results show a strong association between cyclones/windstorms and wind power ramp events. Moreover, the results highlight that it is possible to use some features of these meteorological phenomena to detect, in an early stage, severe wind power ramps thus creating the possibility to develop operational decision tools in order to support the security of power systems with high amounts of wind power generation. wind power ramps cyclonic activity power generation system management weather conditions windstorms Technology T António Couto verfasserin aut Ana Estanqueiro verfasserin aut In Energies MDPI AG, 2008 10(2017), 10, p 1475 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:10 year:2017 number:10, p 1475 https://doi.org/10.3390/en10101475 kostenfrei https://doaj.org/article/88012ceef18145bfb5d7193681f23068 kostenfrei https://www.mdpi.com/1996-1073/10/10/1475 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2017 10, p 1475 |
allfields_unstemmed |
10.3390/en10101475 doi (DE-627)DOAJ085652253 (DE-599)DOAJ88012ceef18145bfb5d7193681f23068 DE-627 ger DE-627 rakwb eng Madalena Lacerda verfasserin aut Wind Power Ramps Driven by Windstorms and Cyclones 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The increase in the wind power predictability assumes a very important role for secure power system operation at minimum costs, especially in situations with severe changes in wind power production. In order to improve the forecast of such events, also known as “wind power ramp events”, the underlying role of some severe meteorological phenomena in triggering wind power ramps must be clearly understood. In this paper, windstorm and cyclone detection algorithms are implemented using historical reanalysis data allowing the identification of key characteristics (e.g., location, intensity and trajectories) of the events with the highest impact on the wind power ramp events in Portugal. The results show a strong association between cyclones/windstorms and wind power ramp events. Moreover, the results highlight that it is possible to use some features of these meteorological phenomena to detect, in an early stage, severe wind power ramps thus creating the possibility to develop operational decision tools in order to support the security of power systems with high amounts of wind power generation. wind power ramps cyclonic activity power generation system management weather conditions windstorms Technology T António Couto verfasserin aut Ana Estanqueiro verfasserin aut In Energies MDPI AG, 2008 10(2017), 10, p 1475 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:10 year:2017 number:10, p 1475 https://doi.org/10.3390/en10101475 kostenfrei https://doaj.org/article/88012ceef18145bfb5d7193681f23068 kostenfrei https://www.mdpi.com/1996-1073/10/10/1475 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2017 10, p 1475 |
allfieldsGer |
10.3390/en10101475 doi (DE-627)DOAJ085652253 (DE-599)DOAJ88012ceef18145bfb5d7193681f23068 DE-627 ger DE-627 rakwb eng Madalena Lacerda verfasserin aut Wind Power Ramps Driven by Windstorms and Cyclones 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The increase in the wind power predictability assumes a very important role for secure power system operation at minimum costs, especially in situations with severe changes in wind power production. In order to improve the forecast of such events, also known as “wind power ramp events”, the underlying role of some severe meteorological phenomena in triggering wind power ramps must be clearly understood. In this paper, windstorm and cyclone detection algorithms are implemented using historical reanalysis data allowing the identification of key characteristics (e.g., location, intensity and trajectories) of the events with the highest impact on the wind power ramp events in Portugal. The results show a strong association between cyclones/windstorms and wind power ramp events. Moreover, the results highlight that it is possible to use some features of these meteorological phenomena to detect, in an early stage, severe wind power ramps thus creating the possibility to develop operational decision tools in order to support the security of power systems with high amounts of wind power generation. wind power ramps cyclonic activity power generation system management weather conditions windstorms Technology T António Couto verfasserin aut Ana Estanqueiro verfasserin aut In Energies MDPI AG, 2008 10(2017), 10, p 1475 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:10 year:2017 number:10, p 1475 https://doi.org/10.3390/en10101475 kostenfrei https://doaj.org/article/88012ceef18145bfb5d7193681f23068 kostenfrei https://www.mdpi.com/1996-1073/10/10/1475 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2017 10, p 1475 |
allfieldsSound |
10.3390/en10101475 doi (DE-627)DOAJ085652253 (DE-599)DOAJ88012ceef18145bfb5d7193681f23068 DE-627 ger DE-627 rakwb eng Madalena Lacerda verfasserin aut Wind Power Ramps Driven by Windstorms and Cyclones 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The increase in the wind power predictability assumes a very important role for secure power system operation at minimum costs, especially in situations with severe changes in wind power production. In order to improve the forecast of such events, also known as “wind power ramp events”, the underlying role of some severe meteorological phenomena in triggering wind power ramps must be clearly understood. In this paper, windstorm and cyclone detection algorithms are implemented using historical reanalysis data allowing the identification of key characteristics (e.g., location, intensity and trajectories) of the events with the highest impact on the wind power ramp events in Portugal. The results show a strong association between cyclones/windstorms and wind power ramp events. Moreover, the results highlight that it is possible to use some features of these meteorological phenomena to detect, in an early stage, severe wind power ramps thus creating the possibility to develop operational decision tools in order to support the security of power systems with high amounts of wind power generation. wind power ramps cyclonic activity power generation system management weather conditions windstorms Technology T António Couto verfasserin aut Ana Estanqueiro verfasserin aut In Energies MDPI AG, 2008 10(2017), 10, p 1475 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:10 year:2017 number:10, p 1475 https://doi.org/10.3390/en10101475 kostenfrei https://doaj.org/article/88012ceef18145bfb5d7193681f23068 kostenfrei https://www.mdpi.com/1996-1073/10/10/1475 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2017 10, p 1475 |
language |
English |
source |
In Energies 10(2017), 10, p 1475 volume:10 year:2017 number:10, p 1475 |
sourceStr |
In Energies 10(2017), 10, p 1475 volume:10 year:2017 number:10, p 1475 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
wind power ramps cyclonic activity power generation system management weather conditions windstorms Technology T |
isfreeaccess_bool |
true |
container_title |
Energies |
authorswithroles_txt_mv |
Madalena Lacerda @@aut@@ António Couto @@aut@@ Ana Estanqueiro @@aut@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
572083742 |
id |
DOAJ085652253 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ085652253</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230311040310.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/en10101475</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ085652253</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ88012ceef18145bfb5d7193681f23068</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Madalena Lacerda</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Wind Power Ramps Driven by Windstorms and Cyclones</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The increase in the wind power predictability assumes a very important role for secure power system operation at minimum costs, especially in situations with severe changes in wind power production. In order to improve the forecast of such events, also known as “wind power ramp events”, the underlying role of some severe meteorological phenomena in triggering wind power ramps must be clearly understood. In this paper, windstorm and cyclone detection algorithms are implemented using historical reanalysis data allowing the identification of key characteristics (e.g., location, intensity and trajectories) of the events with the highest impact on the wind power ramp events in Portugal. The results show a strong association between cyclones/windstorms and wind power ramp events. Moreover, the results highlight that it is possible to use some features of these meteorological phenomena to detect, in an early stage, severe wind power ramps thus creating the possibility to develop operational decision tools in order to support the security of power systems with high amounts of wind power generation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wind power ramps</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cyclonic activity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">power generation system management</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">weather conditions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">windstorms</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">António Couto</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ana Estanqueiro</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Energies</subfield><subfield code="d">MDPI AG, 2008</subfield><subfield code="g">10(2017), 10, p 1475</subfield><subfield code="w">(DE-627)572083742</subfield><subfield code="w">(DE-600)2437446-5</subfield><subfield code="x">19961073</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:10, p 1475</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/en10101475</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/88012ceef18145bfb5d7193681f23068</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1996-1073/10/10/1475</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1996-1073</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2017</subfield><subfield code="e">10, p 1475</subfield></datafield></record></collection>
|
author |
Madalena Lacerda |
spellingShingle |
Madalena Lacerda misc wind power ramps misc cyclonic activity misc power generation system management misc weather conditions misc windstorms misc Technology misc T Wind Power Ramps Driven by Windstorms and Cyclones |
authorStr |
Madalena Lacerda |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)572083742 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
19961073 |
topic_title |
Wind Power Ramps Driven by Windstorms and Cyclones wind power ramps cyclonic activity power generation system management weather conditions windstorms |
topic |
misc wind power ramps misc cyclonic activity misc power generation system management misc weather conditions misc windstorms misc Technology misc T |
topic_unstemmed |
misc wind power ramps misc cyclonic activity misc power generation system management misc weather conditions misc windstorms misc Technology misc T |
topic_browse |
misc wind power ramps misc cyclonic activity misc power generation system management misc weather conditions misc windstorms misc Technology misc T |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Energies |
hierarchy_parent_id |
572083742 |
hierarchy_top_title |
Energies |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)572083742 (DE-600)2437446-5 |
title |
Wind Power Ramps Driven by Windstorms and Cyclones |
ctrlnum |
(DE-627)DOAJ085652253 (DE-599)DOAJ88012ceef18145bfb5d7193681f23068 |
title_full |
Wind Power Ramps Driven by Windstorms and Cyclones |
author_sort |
Madalena Lacerda |
journal |
Energies |
journalStr |
Energies |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
author_browse |
Madalena Lacerda António Couto Ana Estanqueiro |
container_volume |
10 |
format_se |
Elektronische Aufsätze |
author-letter |
Madalena Lacerda |
doi_str_mv |
10.3390/en10101475 |
author2-role |
verfasserin |
title_sort |
wind power ramps driven by windstorms and cyclones |
title_auth |
Wind Power Ramps Driven by Windstorms and Cyclones |
abstract |
The increase in the wind power predictability assumes a very important role for secure power system operation at minimum costs, especially in situations with severe changes in wind power production. In order to improve the forecast of such events, also known as “wind power ramp events”, the underlying role of some severe meteorological phenomena in triggering wind power ramps must be clearly understood. In this paper, windstorm and cyclone detection algorithms are implemented using historical reanalysis data allowing the identification of key characteristics (e.g., location, intensity and trajectories) of the events with the highest impact on the wind power ramp events in Portugal. The results show a strong association between cyclones/windstorms and wind power ramp events. Moreover, the results highlight that it is possible to use some features of these meteorological phenomena to detect, in an early stage, severe wind power ramps thus creating the possibility to develop operational decision tools in order to support the security of power systems with high amounts of wind power generation. |
abstractGer |
The increase in the wind power predictability assumes a very important role for secure power system operation at minimum costs, especially in situations with severe changes in wind power production. In order to improve the forecast of such events, also known as “wind power ramp events”, the underlying role of some severe meteorological phenomena in triggering wind power ramps must be clearly understood. In this paper, windstorm and cyclone detection algorithms are implemented using historical reanalysis data allowing the identification of key characteristics (e.g., location, intensity and trajectories) of the events with the highest impact on the wind power ramp events in Portugal. The results show a strong association between cyclones/windstorms and wind power ramp events. Moreover, the results highlight that it is possible to use some features of these meteorological phenomena to detect, in an early stage, severe wind power ramps thus creating the possibility to develop operational decision tools in order to support the security of power systems with high amounts of wind power generation. |
abstract_unstemmed |
The increase in the wind power predictability assumes a very important role for secure power system operation at minimum costs, especially in situations with severe changes in wind power production. In order to improve the forecast of such events, also known as “wind power ramp events”, the underlying role of some severe meteorological phenomena in triggering wind power ramps must be clearly understood. In this paper, windstorm and cyclone detection algorithms are implemented using historical reanalysis data allowing the identification of key characteristics (e.g., location, intensity and trajectories) of the events with the highest impact on the wind power ramp events in Portugal. The results show a strong association between cyclones/windstorms and wind power ramp events. Moreover, the results highlight that it is possible to use some features of these meteorological phenomena to detect, in an early stage, severe wind power ramps thus creating the possibility to develop operational decision tools in order to support the security of power systems with high amounts of wind power generation. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
10, p 1475 |
title_short |
Wind Power Ramps Driven by Windstorms and Cyclones |
url |
https://doi.org/10.3390/en10101475 https://doaj.org/article/88012ceef18145bfb5d7193681f23068 https://www.mdpi.com/1996-1073/10/10/1475 https://doaj.org/toc/1996-1073 |
remote_bool |
true |
author2 |
António Couto Ana Estanqueiro |
author2Str |
António Couto Ana Estanqueiro |
ppnlink |
572083742 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/en10101475 |
up_date |
2024-07-03T16:03:54.814Z |
_version_ |
1803574454329016320 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ085652253</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230311040310.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/en10101475</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ085652253</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ88012ceef18145bfb5d7193681f23068</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Madalena Lacerda</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Wind Power Ramps Driven by Windstorms and Cyclones</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The increase in the wind power predictability assumes a very important role for secure power system operation at minimum costs, especially in situations with severe changes in wind power production. In order to improve the forecast of such events, also known as “wind power ramp events”, the underlying role of some severe meteorological phenomena in triggering wind power ramps must be clearly understood. In this paper, windstorm and cyclone detection algorithms are implemented using historical reanalysis data allowing the identification of key characteristics (e.g., location, intensity and trajectories) of the events with the highest impact on the wind power ramp events in Portugal. The results show a strong association between cyclones/windstorms and wind power ramp events. Moreover, the results highlight that it is possible to use some features of these meteorological phenomena to detect, in an early stage, severe wind power ramps thus creating the possibility to develop operational decision tools in order to support the security of power systems with high amounts of wind power generation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wind power ramps</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cyclonic activity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">power generation system management</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">weather conditions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">windstorms</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">António Couto</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ana Estanqueiro</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Energies</subfield><subfield code="d">MDPI AG, 2008</subfield><subfield code="g">10(2017), 10, p 1475</subfield><subfield code="w">(DE-627)572083742</subfield><subfield code="w">(DE-600)2437446-5</subfield><subfield code="x">19961073</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:10, p 1475</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/en10101475</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/88012ceef18145bfb5d7193681f23068</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1996-1073/10/10/1475</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1996-1073</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2017</subfield><subfield code="e">10, p 1475</subfield></datafield></record></collection>
|
score |
7.400936 |