Thermal correction to entanglement spectrum for conformal field theories
Abstract We calculate the thermal correction to the entanglement spectrum for separating a single interval of two dimensional conformal field theories. Our derivation is a direct extension of the thermal correction to the Rényi entropy. Within a low-temperature expansion by including only the first...
Ausführliche Beschreibung
Autor*in: |
Yin Tang [verfasserIn] Qicheng Tang [verfasserIn] W. Zhu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Journal of High Energy Physics - SpringerOpen, 2016, (2022), 8, Seite 19 |
---|---|
Übergeordnetes Werk: |
year:2022 ; number:8 ; pages:19 |
Links: |
---|
DOI / URN: |
10.1007/JHEP08(2022)239 |
---|
Katalog-ID: |
DOAJ085730637 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ085730637 | ||
003 | DE-627 | ||
005 | 20230311041018.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/JHEP08(2022)239 |2 doi | |
035 | |a (DE-627)DOAJ085730637 | ||
035 | |a (DE-599)DOAJ6a14341c80134330818f6b28ac1e1667 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QC770-798 | |
100 | 0 | |a Yin Tang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Thermal correction to entanglement spectrum for conformal field theories |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract We calculate the thermal correction to the entanglement spectrum for separating a single interval of two dimensional conformal field theories. Our derivation is a direct extension of the thermal correction to the Rényi entropy. Within a low-temperature expansion by including only the first excited state in the thermal density matrix, we approach analytical results of the thermal correction to the entanglement spectrum at both of the small and large interval limit. We find the temperature correction reduces the large eigenvalues in the entanglement spectrum while increases the small eigenvalues in the entanglement spectrum, leading to an overall crossover changing pattern of the entanglement spectrum. Crucially, at low-temperature limit, the thermal corrections are dominated by the first excited state and depend on its scaling dimension ∆ and degeneracy g. This opens an avenue to extract universal information of underlying conformal data via the thermal entanglement spectrum. All of these analytical computation is supported from numerical simulations using 1+1 dimensional free fermion. Finally, we extend our calculation to resolve the thermal correction to the symmetry-resolved entanglement spectrum. | ||
650 | 4 | |a Conformal and W Symmetry | |
650 | 4 | |a Field Theories in Lower Dimensions | |
650 | 4 | |a Thermal Field Theory | |
653 | 0 | |a Nuclear and particle physics. Atomic energy. Radioactivity | |
700 | 0 | |a Qicheng Tang |e verfasserin |4 aut | |
700 | 0 | |a W. Zhu |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Journal of High Energy Physics |d SpringerOpen, 2016 |g (2022), 8, Seite 19 |w (DE-627)320910571 |w (DE-600)2027350-2 |x 10298479 |7 nnns |
773 | 1 | 8 | |g year:2022 |g number:8 |g pages:19 |
856 | 4 | 0 | |u https://doi.org/10.1007/JHEP08(2022)239 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/6a14341c80134330818f6b28ac1e1667 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1007/JHEP08(2022)239 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1029-8479 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |j 2022 |e 8 |h 19 |
author_variant |
y t yt q t qt w z wz |
---|---|
matchkey_str |
article:10298479:2022----::hracretotetnlmnsetufrofr |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
QC |
publishDate |
2022 |
allfields |
10.1007/JHEP08(2022)239 doi (DE-627)DOAJ085730637 (DE-599)DOAJ6a14341c80134330818f6b28ac1e1667 DE-627 ger DE-627 rakwb eng QC770-798 Yin Tang verfasserin aut Thermal correction to entanglement spectrum for conformal field theories 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract We calculate the thermal correction to the entanglement spectrum for separating a single interval of two dimensional conformal field theories. Our derivation is a direct extension of the thermal correction to the Rényi entropy. Within a low-temperature expansion by including only the first excited state in the thermal density matrix, we approach analytical results of the thermal correction to the entanglement spectrum at both of the small and large interval limit. We find the temperature correction reduces the large eigenvalues in the entanglement spectrum while increases the small eigenvalues in the entanglement spectrum, leading to an overall crossover changing pattern of the entanglement spectrum. Crucially, at low-temperature limit, the thermal corrections are dominated by the first excited state and depend on its scaling dimension ∆ and degeneracy g. This opens an avenue to extract universal information of underlying conformal data via the thermal entanglement spectrum. All of these analytical computation is supported from numerical simulations using 1+1 dimensional free fermion. Finally, we extend our calculation to resolve the thermal correction to the symmetry-resolved entanglement spectrum. Conformal and W Symmetry Field Theories in Lower Dimensions Thermal Field Theory Nuclear and particle physics. Atomic energy. Radioactivity Qicheng Tang verfasserin aut W. Zhu verfasserin aut In Journal of High Energy Physics SpringerOpen, 2016 (2022), 8, Seite 19 (DE-627)320910571 (DE-600)2027350-2 10298479 nnns year:2022 number:8 pages:19 https://doi.org/10.1007/JHEP08(2022)239 kostenfrei https://doaj.org/article/6a14341c80134330818f6b28ac1e1667 kostenfrei https://doi.org/10.1007/JHEP08(2022)239 kostenfrei https://doaj.org/toc/1029-8479 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2022 8 19 |
spelling |
10.1007/JHEP08(2022)239 doi (DE-627)DOAJ085730637 (DE-599)DOAJ6a14341c80134330818f6b28ac1e1667 DE-627 ger DE-627 rakwb eng QC770-798 Yin Tang verfasserin aut Thermal correction to entanglement spectrum for conformal field theories 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract We calculate the thermal correction to the entanglement spectrum for separating a single interval of two dimensional conformal field theories. Our derivation is a direct extension of the thermal correction to the Rényi entropy. Within a low-temperature expansion by including only the first excited state in the thermal density matrix, we approach analytical results of the thermal correction to the entanglement spectrum at both of the small and large interval limit. We find the temperature correction reduces the large eigenvalues in the entanglement spectrum while increases the small eigenvalues in the entanglement spectrum, leading to an overall crossover changing pattern of the entanglement spectrum. Crucially, at low-temperature limit, the thermal corrections are dominated by the first excited state and depend on its scaling dimension ∆ and degeneracy g. This opens an avenue to extract universal information of underlying conformal data via the thermal entanglement spectrum. All of these analytical computation is supported from numerical simulations using 1+1 dimensional free fermion. Finally, we extend our calculation to resolve the thermal correction to the symmetry-resolved entanglement spectrum. Conformal and W Symmetry Field Theories in Lower Dimensions Thermal Field Theory Nuclear and particle physics. Atomic energy. Radioactivity Qicheng Tang verfasserin aut W. Zhu verfasserin aut In Journal of High Energy Physics SpringerOpen, 2016 (2022), 8, Seite 19 (DE-627)320910571 (DE-600)2027350-2 10298479 nnns year:2022 number:8 pages:19 https://doi.org/10.1007/JHEP08(2022)239 kostenfrei https://doaj.org/article/6a14341c80134330818f6b28ac1e1667 kostenfrei https://doi.org/10.1007/JHEP08(2022)239 kostenfrei https://doaj.org/toc/1029-8479 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2022 8 19 |
allfields_unstemmed |
10.1007/JHEP08(2022)239 doi (DE-627)DOAJ085730637 (DE-599)DOAJ6a14341c80134330818f6b28ac1e1667 DE-627 ger DE-627 rakwb eng QC770-798 Yin Tang verfasserin aut Thermal correction to entanglement spectrum for conformal field theories 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract We calculate the thermal correction to the entanglement spectrum for separating a single interval of two dimensional conformal field theories. Our derivation is a direct extension of the thermal correction to the Rényi entropy. Within a low-temperature expansion by including only the first excited state in the thermal density matrix, we approach analytical results of the thermal correction to the entanglement spectrum at both of the small and large interval limit. We find the temperature correction reduces the large eigenvalues in the entanglement spectrum while increases the small eigenvalues in the entanglement spectrum, leading to an overall crossover changing pattern of the entanglement spectrum. Crucially, at low-temperature limit, the thermal corrections are dominated by the first excited state and depend on its scaling dimension ∆ and degeneracy g. This opens an avenue to extract universal information of underlying conformal data via the thermal entanglement spectrum. All of these analytical computation is supported from numerical simulations using 1+1 dimensional free fermion. Finally, we extend our calculation to resolve the thermal correction to the symmetry-resolved entanglement spectrum. Conformal and W Symmetry Field Theories in Lower Dimensions Thermal Field Theory Nuclear and particle physics. Atomic energy. Radioactivity Qicheng Tang verfasserin aut W. Zhu verfasserin aut In Journal of High Energy Physics SpringerOpen, 2016 (2022), 8, Seite 19 (DE-627)320910571 (DE-600)2027350-2 10298479 nnns year:2022 number:8 pages:19 https://doi.org/10.1007/JHEP08(2022)239 kostenfrei https://doaj.org/article/6a14341c80134330818f6b28ac1e1667 kostenfrei https://doi.org/10.1007/JHEP08(2022)239 kostenfrei https://doaj.org/toc/1029-8479 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2022 8 19 |
allfieldsGer |
10.1007/JHEP08(2022)239 doi (DE-627)DOAJ085730637 (DE-599)DOAJ6a14341c80134330818f6b28ac1e1667 DE-627 ger DE-627 rakwb eng QC770-798 Yin Tang verfasserin aut Thermal correction to entanglement spectrum for conformal field theories 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract We calculate the thermal correction to the entanglement spectrum for separating a single interval of two dimensional conformal field theories. Our derivation is a direct extension of the thermal correction to the Rényi entropy. Within a low-temperature expansion by including only the first excited state in the thermal density matrix, we approach analytical results of the thermal correction to the entanglement spectrum at both of the small and large interval limit. We find the temperature correction reduces the large eigenvalues in the entanglement spectrum while increases the small eigenvalues in the entanglement spectrum, leading to an overall crossover changing pattern of the entanglement spectrum. Crucially, at low-temperature limit, the thermal corrections are dominated by the first excited state and depend on its scaling dimension ∆ and degeneracy g. This opens an avenue to extract universal information of underlying conformal data via the thermal entanglement spectrum. All of these analytical computation is supported from numerical simulations using 1+1 dimensional free fermion. Finally, we extend our calculation to resolve the thermal correction to the symmetry-resolved entanglement spectrum. Conformal and W Symmetry Field Theories in Lower Dimensions Thermal Field Theory Nuclear and particle physics. Atomic energy. Radioactivity Qicheng Tang verfasserin aut W. Zhu verfasserin aut In Journal of High Energy Physics SpringerOpen, 2016 (2022), 8, Seite 19 (DE-627)320910571 (DE-600)2027350-2 10298479 nnns year:2022 number:8 pages:19 https://doi.org/10.1007/JHEP08(2022)239 kostenfrei https://doaj.org/article/6a14341c80134330818f6b28ac1e1667 kostenfrei https://doi.org/10.1007/JHEP08(2022)239 kostenfrei https://doaj.org/toc/1029-8479 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2022 8 19 |
allfieldsSound |
10.1007/JHEP08(2022)239 doi (DE-627)DOAJ085730637 (DE-599)DOAJ6a14341c80134330818f6b28ac1e1667 DE-627 ger DE-627 rakwb eng QC770-798 Yin Tang verfasserin aut Thermal correction to entanglement spectrum for conformal field theories 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract We calculate the thermal correction to the entanglement spectrum for separating a single interval of two dimensional conformal field theories. Our derivation is a direct extension of the thermal correction to the Rényi entropy. Within a low-temperature expansion by including only the first excited state in the thermal density matrix, we approach analytical results of the thermal correction to the entanglement spectrum at both of the small and large interval limit. We find the temperature correction reduces the large eigenvalues in the entanglement spectrum while increases the small eigenvalues in the entanglement spectrum, leading to an overall crossover changing pattern of the entanglement spectrum. Crucially, at low-temperature limit, the thermal corrections are dominated by the first excited state and depend on its scaling dimension ∆ and degeneracy g. This opens an avenue to extract universal information of underlying conformal data via the thermal entanglement spectrum. All of these analytical computation is supported from numerical simulations using 1+1 dimensional free fermion. Finally, we extend our calculation to resolve the thermal correction to the symmetry-resolved entanglement spectrum. Conformal and W Symmetry Field Theories in Lower Dimensions Thermal Field Theory Nuclear and particle physics. Atomic energy. Radioactivity Qicheng Tang verfasserin aut W. Zhu verfasserin aut In Journal of High Energy Physics SpringerOpen, 2016 (2022), 8, Seite 19 (DE-627)320910571 (DE-600)2027350-2 10298479 nnns year:2022 number:8 pages:19 https://doi.org/10.1007/JHEP08(2022)239 kostenfrei https://doaj.org/article/6a14341c80134330818f6b28ac1e1667 kostenfrei https://doi.org/10.1007/JHEP08(2022)239 kostenfrei https://doaj.org/toc/1029-8479 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2022 8 19 |
language |
English |
source |
In Journal of High Energy Physics (2022), 8, Seite 19 year:2022 number:8 pages:19 |
sourceStr |
In Journal of High Energy Physics (2022), 8, Seite 19 year:2022 number:8 pages:19 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Conformal and W Symmetry Field Theories in Lower Dimensions Thermal Field Theory Nuclear and particle physics. Atomic energy. Radioactivity |
isfreeaccess_bool |
true |
container_title |
Journal of High Energy Physics |
authorswithroles_txt_mv |
Yin Tang @@aut@@ Qicheng Tang @@aut@@ W. Zhu @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
320910571 |
id |
DOAJ085730637 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ085730637</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230311041018.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/JHEP08(2022)239</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ085730637</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6a14341c80134330818f6b28ac1e1667</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC770-798</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yin Tang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Thermal correction to entanglement spectrum for conformal field theories</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We calculate the thermal correction to the entanglement spectrum for separating a single interval of two dimensional conformal field theories. Our derivation is a direct extension of the thermal correction to the Rényi entropy. Within a low-temperature expansion by including only the first excited state in the thermal density matrix, we approach analytical results of the thermal correction to the entanglement spectrum at both of the small and large interval limit. We find the temperature correction reduces the large eigenvalues in the entanglement spectrum while increases the small eigenvalues in the entanglement spectrum, leading to an overall crossover changing pattern of the entanglement spectrum. Crucially, at low-temperature limit, the thermal corrections are dominated by the first excited state and depend on its scaling dimension ∆ and degeneracy g. This opens an avenue to extract universal information of underlying conformal data via the thermal entanglement spectrum. All of these analytical computation is supported from numerical simulations using 1+1 dimensional free fermion. Finally, we extend our calculation to resolve the thermal correction to the symmetry-resolved entanglement spectrum.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conformal and W Symmetry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Field Theories in Lower Dimensions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal Field Theory</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Nuclear and particle physics. Atomic energy. Radioactivity</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qicheng Tang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">W. Zhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of High Energy Physics</subfield><subfield code="d">SpringerOpen, 2016</subfield><subfield code="g">(2022), 8, Seite 19</subfield><subfield code="w">(DE-627)320910571</subfield><subfield code="w">(DE-600)2027350-2</subfield><subfield code="x">10298479</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2022</subfield><subfield code="g">number:8</subfield><subfield code="g">pages:19</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/JHEP08(2022)239</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6a14341c80134330818f6b28ac1e1667</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/JHEP08(2022)239</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1029-8479</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2022</subfield><subfield code="e">8</subfield><subfield code="h">19</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Yin Tang |
spellingShingle |
Yin Tang misc QC770-798 misc Conformal and W Symmetry misc Field Theories in Lower Dimensions misc Thermal Field Theory misc Nuclear and particle physics. Atomic energy. Radioactivity Thermal correction to entanglement spectrum for conformal field theories |
authorStr |
Yin Tang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320910571 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QC770-798 |
illustrated |
Not Illustrated |
issn |
10298479 |
topic_title |
QC770-798 Thermal correction to entanglement spectrum for conformal field theories Conformal and W Symmetry Field Theories in Lower Dimensions Thermal Field Theory |
topic |
misc QC770-798 misc Conformal and W Symmetry misc Field Theories in Lower Dimensions misc Thermal Field Theory misc Nuclear and particle physics. Atomic energy. Radioactivity |
topic_unstemmed |
misc QC770-798 misc Conformal and W Symmetry misc Field Theories in Lower Dimensions misc Thermal Field Theory misc Nuclear and particle physics. Atomic energy. Radioactivity |
topic_browse |
misc QC770-798 misc Conformal and W Symmetry misc Field Theories in Lower Dimensions misc Thermal Field Theory misc Nuclear and particle physics. Atomic energy. Radioactivity |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of High Energy Physics |
hierarchy_parent_id |
320910571 |
hierarchy_top_title |
Journal of High Energy Physics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)320910571 (DE-600)2027350-2 |
title |
Thermal correction to entanglement spectrum for conformal field theories |
ctrlnum |
(DE-627)DOAJ085730637 (DE-599)DOAJ6a14341c80134330818f6b28ac1e1667 |
title_full |
Thermal correction to entanglement spectrum for conformal field theories |
author_sort |
Yin Tang |
journal |
Journal of High Energy Physics |
journalStr |
Journal of High Energy Physics |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
19 |
author_browse |
Yin Tang Qicheng Tang W. Zhu |
class |
QC770-798 |
format_se |
Elektronische Aufsätze |
author-letter |
Yin Tang |
doi_str_mv |
10.1007/JHEP08(2022)239 |
author2-role |
verfasserin |
title_sort |
thermal correction to entanglement spectrum for conformal field theories |
callnumber |
QC770-798 |
title_auth |
Thermal correction to entanglement spectrum for conformal field theories |
abstract |
Abstract We calculate the thermal correction to the entanglement spectrum for separating a single interval of two dimensional conformal field theories. Our derivation is a direct extension of the thermal correction to the Rényi entropy. Within a low-temperature expansion by including only the first excited state in the thermal density matrix, we approach analytical results of the thermal correction to the entanglement spectrum at both of the small and large interval limit. We find the temperature correction reduces the large eigenvalues in the entanglement spectrum while increases the small eigenvalues in the entanglement spectrum, leading to an overall crossover changing pattern of the entanglement spectrum. Crucially, at low-temperature limit, the thermal corrections are dominated by the first excited state and depend on its scaling dimension ∆ and degeneracy g. This opens an avenue to extract universal information of underlying conformal data via the thermal entanglement spectrum. All of these analytical computation is supported from numerical simulations using 1+1 dimensional free fermion. Finally, we extend our calculation to resolve the thermal correction to the symmetry-resolved entanglement spectrum. |
abstractGer |
Abstract We calculate the thermal correction to the entanglement spectrum for separating a single interval of two dimensional conformal field theories. Our derivation is a direct extension of the thermal correction to the Rényi entropy. Within a low-temperature expansion by including only the first excited state in the thermal density matrix, we approach analytical results of the thermal correction to the entanglement spectrum at both of the small and large interval limit. We find the temperature correction reduces the large eigenvalues in the entanglement spectrum while increases the small eigenvalues in the entanglement spectrum, leading to an overall crossover changing pattern of the entanglement spectrum. Crucially, at low-temperature limit, the thermal corrections are dominated by the first excited state and depend on its scaling dimension ∆ and degeneracy g. This opens an avenue to extract universal information of underlying conformal data via the thermal entanglement spectrum. All of these analytical computation is supported from numerical simulations using 1+1 dimensional free fermion. Finally, we extend our calculation to resolve the thermal correction to the symmetry-resolved entanglement spectrum. |
abstract_unstemmed |
Abstract We calculate the thermal correction to the entanglement spectrum for separating a single interval of two dimensional conformal field theories. Our derivation is a direct extension of the thermal correction to the Rényi entropy. Within a low-temperature expansion by including only the first excited state in the thermal density matrix, we approach analytical results of the thermal correction to the entanglement spectrum at both of the small and large interval limit. We find the temperature correction reduces the large eigenvalues in the entanglement spectrum while increases the small eigenvalues in the entanglement spectrum, leading to an overall crossover changing pattern of the entanglement spectrum. Crucially, at low-temperature limit, the thermal corrections are dominated by the first excited state and depend on its scaling dimension ∆ and degeneracy g. This opens an avenue to extract universal information of underlying conformal data via the thermal entanglement spectrum. All of these analytical computation is supported from numerical simulations using 1+1 dimensional free fermion. Finally, we extend our calculation to resolve the thermal correction to the symmetry-resolved entanglement spectrum. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
8 |
title_short |
Thermal correction to entanglement spectrum for conformal field theories |
url |
https://doi.org/10.1007/JHEP08(2022)239 https://doaj.org/article/6a14341c80134330818f6b28ac1e1667 https://doaj.org/toc/1029-8479 |
remote_bool |
true |
author2 |
Qicheng Tang W. Zhu |
author2Str |
Qicheng Tang W. Zhu |
ppnlink |
320910571 |
callnumber-subject |
QC - Physics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/JHEP08(2022)239 |
callnumber-a |
QC770-798 |
up_date |
2024-07-03T16:30:45.766Z |
_version_ |
1803576143527280640 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ085730637</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230311041018.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/JHEP08(2022)239</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ085730637</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6a14341c80134330818f6b28ac1e1667</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC770-798</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yin Tang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Thermal correction to entanglement spectrum for conformal field theories</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We calculate the thermal correction to the entanglement spectrum for separating a single interval of two dimensional conformal field theories. Our derivation is a direct extension of the thermal correction to the Rényi entropy. Within a low-temperature expansion by including only the first excited state in the thermal density matrix, we approach analytical results of the thermal correction to the entanglement spectrum at both of the small and large interval limit. We find the temperature correction reduces the large eigenvalues in the entanglement spectrum while increases the small eigenvalues in the entanglement spectrum, leading to an overall crossover changing pattern of the entanglement spectrum. Crucially, at low-temperature limit, the thermal corrections are dominated by the first excited state and depend on its scaling dimension ∆ and degeneracy g. This opens an avenue to extract universal information of underlying conformal data via the thermal entanglement spectrum. All of these analytical computation is supported from numerical simulations using 1+1 dimensional free fermion. Finally, we extend our calculation to resolve the thermal correction to the symmetry-resolved entanglement spectrum.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conformal and W Symmetry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Field Theories in Lower Dimensions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal Field Theory</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Nuclear and particle physics. Atomic energy. Radioactivity</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qicheng Tang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">W. Zhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of High Energy Physics</subfield><subfield code="d">SpringerOpen, 2016</subfield><subfield code="g">(2022), 8, Seite 19</subfield><subfield code="w">(DE-627)320910571</subfield><subfield code="w">(DE-600)2027350-2</subfield><subfield code="x">10298479</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2022</subfield><subfield code="g">number:8</subfield><subfield code="g">pages:19</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/JHEP08(2022)239</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6a14341c80134330818f6b28ac1e1667</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/JHEP08(2022)239</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1029-8479</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2022</subfield><subfield code="e">8</subfield><subfield code="h">19</subfield></datafield></record></collection>
|
score |
7.400237 |