Exploring the Fundamental Mechanism in Driving Highest-Velocity Ionized Outflows in Radio AGNs
We investigate the ionized gas kinematics relationship with X-ray, radio and accreting properties using a sample of 348 nearby (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<z</mi<<mo&...
Ausführliche Beschreibung
Autor*in: |
Ashraf Ayubinia [verfasserIn] Yongquan Xue [verfasserIn] Jong-Hak Woo [verfasserIn] Huynh Anh Nguyen Le [verfasserIn] Zhicheng He [verfasserIn] Halime Miraghaei [verfasserIn] Xiaozhi Lin [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Universe - MDPI AG, 2015, 8(2022), 11, p 559 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2022 ; number:11, p 559 |
Links: |
---|
DOI / URN: |
10.3390/universe8110559 |
---|
Katalog-ID: |
DOAJ085791784 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ085791784 | ||
003 | DE-627 | ||
005 | 20240414170951.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/universe8110559 |2 doi | |
035 | |a (DE-627)DOAJ085791784 | ||
035 | |a (DE-599)DOAJb50d376f7f12433290e1290efc223069 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QC793-793.5 | |
100 | 0 | |a Ashraf Ayubinia |e verfasserin |4 aut | |
245 | 1 | 0 | |a Exploring the Fundamental Mechanism in Driving Highest-Velocity Ionized Outflows in Radio AGNs |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a We investigate the ionized gas kinematics relationship with X-ray, radio and accreting properties using a sample of 348 nearby (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<z</mi<<mo<<</mo<<mn<0.4</mn<</mrow<</semantics<</math<</inline-formula<) SDSS-FIRST-X-ray detected AGNs. X-ray properties of our sample are obtained from <i<XMM-Newton</i<, <i<Swift</i< and <i<Chandra</i< observations. We unveil the ionized gas outflows in our sample manifested by the non-gravitational broad component in [O <span style="font-variant: small-caps;"<iii</span<]λ5007Å emission line profiles. From the comparison of the correlation of non-parametric outflow velocities (i.e., the velocity width, the maximal velocity of outflow and line dispersion) with X-ray luminosity and radio luminosity, we find that outflow velocities have similarly positive correlations with both X-ray and radio luminosity. After correcting for the gravitational component, we find that the [O <span style="font-variant: small-caps;"<iii</span<] velocity dispersion normalized by stellar mass also increases with both X-ray luminosity and radio luminosity. We also find that, for a given X-ray (radio) luminosity, radio (X-ray) luminous AGNs have higher outflow velocities than non-radio (non-X-ray) luminous AGNs. Therefore, we find no clear preference between X-ray luminosity and radio luminosity in driving high-velocity ionized outflows and conclude that both AGN activity and small-scale jets contribute comparably. Moreover, there is no evidence that our obscured AGNs are preferentially associated with higher velocity outflows. Finally, we find a turning point around log<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mo<(</mo<<msub<<mi mathvariant="sans-serif"<λ</mi<<mrow<<mi<E</mi<<mi<d</mi<<mi<d</mi<</mrow<</msub<<mo<)</mo<<mo<≃</mo<<mo<−</mo<<mn<1.3</mn<</mrow<</semantics<</math<</inline-formula< when we explore the dependency of outflow velocity on Eddington ratio. It can be interpreted considering the role of high radiation pressure (log<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mo<(</mo<<msub<<mi mathvariant="sans-serif"<λ</mi<<mrow<<mi<E</mi<<mi<d</mi<<mi<d</mi<</mrow<</msub<<mo<)</mo<<mo<≳</mo<<mo<−</mo<<mn<1.3</mn<</mrow<</semantics<</math<</inline-formula<) in causing drastic reduction in the covering factor of the circumnuclear materials. | ||
650 | 4 | |a active galactic nuclei | |
650 | 4 | |a supermassive black holes | |
650 | 4 | |a kinematics and dynamics kinematics and dynamics | |
653 | 0 | |a Elementary particle physics | |
700 | 0 | |a Yongquan Xue |e verfasserin |4 aut | |
700 | 0 | |a Jong-Hak Woo |e verfasserin |4 aut | |
700 | 0 | |a Huynh Anh Nguyen Le |e verfasserin |4 aut | |
700 | 0 | |a Zhicheng He |e verfasserin |4 aut | |
700 | 0 | |a Halime Miraghaei |e verfasserin |4 aut | |
700 | 0 | |a Xiaozhi Lin |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Universe |d MDPI AG, 2015 |g 8(2022), 11, p 559 |w (DE-627)820684236 |w (DE-600)2813994-X |x 22181997 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2022 |g number:11, p 559 |
856 | 4 | 0 | |u https://doi.org/10.3390/universe8110559 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/b50d376f7f12433290e1290efc223069 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2218-1997/8/11/559 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2218-1997 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2022 |e 11, p 559 |
author_variant |
a a aa y x yx j h w jhw h a n l hanl z h zh h m hm x l xl |
---|---|
matchkey_str |
article:22181997:2022----::xlrnteudmnamcaimnrvnhgeteoiyoi |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
QC |
publishDate |
2022 |
allfields |
10.3390/universe8110559 doi (DE-627)DOAJ085791784 (DE-599)DOAJb50d376f7f12433290e1290efc223069 DE-627 ger DE-627 rakwb eng QC793-793.5 Ashraf Ayubinia verfasserin aut Exploring the Fundamental Mechanism in Driving Highest-Velocity Ionized Outflows in Radio AGNs 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We investigate the ionized gas kinematics relationship with X-ray, radio and accreting properties using a sample of 348 nearby (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<z</mi<<mo<<</mo<<mn<0.4</mn<</mrow<</semantics<</math<</inline-formula<) SDSS-FIRST-X-ray detected AGNs. X-ray properties of our sample are obtained from <i<XMM-Newton</i<, <i<Swift</i< and <i<Chandra</i< observations. We unveil the ionized gas outflows in our sample manifested by the non-gravitational broad component in [O <span style="font-variant: small-caps;"<iii</span<]λ5007Å emission line profiles. From the comparison of the correlation of non-parametric outflow velocities (i.e., the velocity width, the maximal velocity of outflow and line dispersion) with X-ray luminosity and radio luminosity, we find that outflow velocities have similarly positive correlations with both X-ray and radio luminosity. After correcting for the gravitational component, we find that the [O <span style="font-variant: small-caps;"<iii</span<] velocity dispersion normalized by stellar mass also increases with both X-ray luminosity and radio luminosity. We also find that, for a given X-ray (radio) luminosity, radio (X-ray) luminous AGNs have higher outflow velocities than non-radio (non-X-ray) luminous AGNs. Therefore, we find no clear preference between X-ray luminosity and radio luminosity in driving high-velocity ionized outflows and conclude that both AGN activity and small-scale jets contribute comparably. Moreover, there is no evidence that our obscured AGNs are preferentially associated with higher velocity outflows. Finally, we find a turning point around log<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mo<(</mo<<msub<<mi mathvariant="sans-serif"<λ</mi<<mrow<<mi<E</mi<<mi<d</mi<<mi<d</mi<</mrow<</msub<<mo<)</mo<<mo<≃</mo<<mo<−</mo<<mn<1.3</mn<</mrow<</semantics<</math<</inline-formula< when we explore the dependency of outflow velocity on Eddington ratio. It can be interpreted considering the role of high radiation pressure (log<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mo<(</mo<<msub<<mi mathvariant="sans-serif"<λ</mi<<mrow<<mi<E</mi<<mi<d</mi<<mi<d</mi<</mrow<</msub<<mo<)</mo<<mo<≳</mo<<mo<−</mo<<mn<1.3</mn<</mrow<</semantics<</math<</inline-formula<) in causing drastic reduction in the covering factor of the circumnuclear materials. active galactic nuclei supermassive black holes kinematics and dynamics kinematics and dynamics Elementary particle physics Yongquan Xue verfasserin aut Jong-Hak Woo verfasserin aut Huynh Anh Nguyen Le verfasserin aut Zhicheng He verfasserin aut Halime Miraghaei verfasserin aut Xiaozhi Lin verfasserin aut In Universe MDPI AG, 2015 8(2022), 11, p 559 (DE-627)820684236 (DE-600)2813994-X 22181997 nnns volume:8 year:2022 number:11, p 559 https://doi.org/10.3390/universe8110559 kostenfrei https://doaj.org/article/b50d376f7f12433290e1290efc223069 kostenfrei https://www.mdpi.com/2218-1997/8/11/559 kostenfrei https://doaj.org/toc/2218-1997 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2022 11, p 559 |
spelling |
10.3390/universe8110559 doi (DE-627)DOAJ085791784 (DE-599)DOAJb50d376f7f12433290e1290efc223069 DE-627 ger DE-627 rakwb eng QC793-793.5 Ashraf Ayubinia verfasserin aut Exploring the Fundamental Mechanism in Driving Highest-Velocity Ionized Outflows in Radio AGNs 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We investigate the ionized gas kinematics relationship with X-ray, radio and accreting properties using a sample of 348 nearby (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<z</mi<<mo<<</mo<<mn<0.4</mn<</mrow<</semantics<</math<</inline-formula<) SDSS-FIRST-X-ray detected AGNs. X-ray properties of our sample are obtained from <i<XMM-Newton</i<, <i<Swift</i< and <i<Chandra</i< observations. We unveil the ionized gas outflows in our sample manifested by the non-gravitational broad component in [O <span style="font-variant: small-caps;"<iii</span<]λ5007Å emission line profiles. From the comparison of the correlation of non-parametric outflow velocities (i.e., the velocity width, the maximal velocity of outflow and line dispersion) with X-ray luminosity and radio luminosity, we find that outflow velocities have similarly positive correlations with both X-ray and radio luminosity. After correcting for the gravitational component, we find that the [O <span style="font-variant: small-caps;"<iii</span<] velocity dispersion normalized by stellar mass also increases with both X-ray luminosity and radio luminosity. We also find that, for a given X-ray (radio) luminosity, radio (X-ray) luminous AGNs have higher outflow velocities than non-radio (non-X-ray) luminous AGNs. Therefore, we find no clear preference between X-ray luminosity and radio luminosity in driving high-velocity ionized outflows and conclude that both AGN activity and small-scale jets contribute comparably. Moreover, there is no evidence that our obscured AGNs are preferentially associated with higher velocity outflows. Finally, we find a turning point around log<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mo<(</mo<<msub<<mi mathvariant="sans-serif"<λ</mi<<mrow<<mi<E</mi<<mi<d</mi<<mi<d</mi<</mrow<</msub<<mo<)</mo<<mo<≃</mo<<mo<−</mo<<mn<1.3</mn<</mrow<</semantics<</math<</inline-formula< when we explore the dependency of outflow velocity on Eddington ratio. It can be interpreted considering the role of high radiation pressure (log<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mo<(</mo<<msub<<mi mathvariant="sans-serif"<λ</mi<<mrow<<mi<E</mi<<mi<d</mi<<mi<d</mi<</mrow<</msub<<mo<)</mo<<mo<≳</mo<<mo<−</mo<<mn<1.3</mn<</mrow<</semantics<</math<</inline-formula<) in causing drastic reduction in the covering factor of the circumnuclear materials. active galactic nuclei supermassive black holes kinematics and dynamics kinematics and dynamics Elementary particle physics Yongquan Xue verfasserin aut Jong-Hak Woo verfasserin aut Huynh Anh Nguyen Le verfasserin aut Zhicheng He verfasserin aut Halime Miraghaei verfasserin aut Xiaozhi Lin verfasserin aut In Universe MDPI AG, 2015 8(2022), 11, p 559 (DE-627)820684236 (DE-600)2813994-X 22181997 nnns volume:8 year:2022 number:11, p 559 https://doi.org/10.3390/universe8110559 kostenfrei https://doaj.org/article/b50d376f7f12433290e1290efc223069 kostenfrei https://www.mdpi.com/2218-1997/8/11/559 kostenfrei https://doaj.org/toc/2218-1997 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2022 11, p 559 |
allfields_unstemmed |
10.3390/universe8110559 doi (DE-627)DOAJ085791784 (DE-599)DOAJb50d376f7f12433290e1290efc223069 DE-627 ger DE-627 rakwb eng QC793-793.5 Ashraf Ayubinia verfasserin aut Exploring the Fundamental Mechanism in Driving Highest-Velocity Ionized Outflows in Radio AGNs 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We investigate the ionized gas kinematics relationship with X-ray, radio and accreting properties using a sample of 348 nearby (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<z</mi<<mo<<</mo<<mn<0.4</mn<</mrow<</semantics<</math<</inline-formula<) SDSS-FIRST-X-ray detected AGNs. X-ray properties of our sample are obtained from <i<XMM-Newton</i<, <i<Swift</i< and <i<Chandra</i< observations. We unveil the ionized gas outflows in our sample manifested by the non-gravitational broad component in [O <span style="font-variant: small-caps;"<iii</span<]λ5007Å emission line profiles. From the comparison of the correlation of non-parametric outflow velocities (i.e., the velocity width, the maximal velocity of outflow and line dispersion) with X-ray luminosity and radio luminosity, we find that outflow velocities have similarly positive correlations with both X-ray and radio luminosity. After correcting for the gravitational component, we find that the [O <span style="font-variant: small-caps;"<iii</span<] velocity dispersion normalized by stellar mass also increases with both X-ray luminosity and radio luminosity. We also find that, for a given X-ray (radio) luminosity, radio (X-ray) luminous AGNs have higher outflow velocities than non-radio (non-X-ray) luminous AGNs. Therefore, we find no clear preference between X-ray luminosity and radio luminosity in driving high-velocity ionized outflows and conclude that both AGN activity and small-scale jets contribute comparably. Moreover, there is no evidence that our obscured AGNs are preferentially associated with higher velocity outflows. Finally, we find a turning point around log<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mo<(</mo<<msub<<mi mathvariant="sans-serif"<λ</mi<<mrow<<mi<E</mi<<mi<d</mi<<mi<d</mi<</mrow<</msub<<mo<)</mo<<mo<≃</mo<<mo<−</mo<<mn<1.3</mn<</mrow<</semantics<</math<</inline-formula< when we explore the dependency of outflow velocity on Eddington ratio. It can be interpreted considering the role of high radiation pressure (log<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mo<(</mo<<msub<<mi mathvariant="sans-serif"<λ</mi<<mrow<<mi<E</mi<<mi<d</mi<<mi<d</mi<</mrow<</msub<<mo<)</mo<<mo<≳</mo<<mo<−</mo<<mn<1.3</mn<</mrow<</semantics<</math<</inline-formula<) in causing drastic reduction in the covering factor of the circumnuclear materials. active galactic nuclei supermassive black holes kinematics and dynamics kinematics and dynamics Elementary particle physics Yongquan Xue verfasserin aut Jong-Hak Woo verfasserin aut Huynh Anh Nguyen Le verfasserin aut Zhicheng He verfasserin aut Halime Miraghaei verfasserin aut Xiaozhi Lin verfasserin aut In Universe MDPI AG, 2015 8(2022), 11, p 559 (DE-627)820684236 (DE-600)2813994-X 22181997 nnns volume:8 year:2022 number:11, p 559 https://doi.org/10.3390/universe8110559 kostenfrei https://doaj.org/article/b50d376f7f12433290e1290efc223069 kostenfrei https://www.mdpi.com/2218-1997/8/11/559 kostenfrei https://doaj.org/toc/2218-1997 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2022 11, p 559 |
allfieldsGer |
10.3390/universe8110559 doi (DE-627)DOAJ085791784 (DE-599)DOAJb50d376f7f12433290e1290efc223069 DE-627 ger DE-627 rakwb eng QC793-793.5 Ashraf Ayubinia verfasserin aut Exploring the Fundamental Mechanism in Driving Highest-Velocity Ionized Outflows in Radio AGNs 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We investigate the ionized gas kinematics relationship with X-ray, radio and accreting properties using a sample of 348 nearby (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<z</mi<<mo<<</mo<<mn<0.4</mn<</mrow<</semantics<</math<</inline-formula<) SDSS-FIRST-X-ray detected AGNs. X-ray properties of our sample are obtained from <i<XMM-Newton</i<, <i<Swift</i< and <i<Chandra</i< observations. We unveil the ionized gas outflows in our sample manifested by the non-gravitational broad component in [O <span style="font-variant: small-caps;"<iii</span<]λ5007Å emission line profiles. From the comparison of the correlation of non-parametric outflow velocities (i.e., the velocity width, the maximal velocity of outflow and line dispersion) with X-ray luminosity and radio luminosity, we find that outflow velocities have similarly positive correlations with both X-ray and radio luminosity. After correcting for the gravitational component, we find that the [O <span style="font-variant: small-caps;"<iii</span<] velocity dispersion normalized by stellar mass also increases with both X-ray luminosity and radio luminosity. We also find that, for a given X-ray (radio) luminosity, radio (X-ray) luminous AGNs have higher outflow velocities than non-radio (non-X-ray) luminous AGNs. Therefore, we find no clear preference between X-ray luminosity and radio luminosity in driving high-velocity ionized outflows and conclude that both AGN activity and small-scale jets contribute comparably. Moreover, there is no evidence that our obscured AGNs are preferentially associated with higher velocity outflows. Finally, we find a turning point around log<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mo<(</mo<<msub<<mi mathvariant="sans-serif"<λ</mi<<mrow<<mi<E</mi<<mi<d</mi<<mi<d</mi<</mrow<</msub<<mo<)</mo<<mo<≃</mo<<mo<−</mo<<mn<1.3</mn<</mrow<</semantics<</math<</inline-formula< when we explore the dependency of outflow velocity on Eddington ratio. It can be interpreted considering the role of high radiation pressure (log<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mo<(</mo<<msub<<mi mathvariant="sans-serif"<λ</mi<<mrow<<mi<E</mi<<mi<d</mi<<mi<d</mi<</mrow<</msub<<mo<)</mo<<mo<≳</mo<<mo<−</mo<<mn<1.3</mn<</mrow<</semantics<</math<</inline-formula<) in causing drastic reduction in the covering factor of the circumnuclear materials. active galactic nuclei supermassive black holes kinematics and dynamics kinematics and dynamics Elementary particle physics Yongquan Xue verfasserin aut Jong-Hak Woo verfasserin aut Huynh Anh Nguyen Le verfasserin aut Zhicheng He verfasserin aut Halime Miraghaei verfasserin aut Xiaozhi Lin verfasserin aut In Universe MDPI AG, 2015 8(2022), 11, p 559 (DE-627)820684236 (DE-600)2813994-X 22181997 nnns volume:8 year:2022 number:11, p 559 https://doi.org/10.3390/universe8110559 kostenfrei https://doaj.org/article/b50d376f7f12433290e1290efc223069 kostenfrei https://www.mdpi.com/2218-1997/8/11/559 kostenfrei https://doaj.org/toc/2218-1997 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2022 11, p 559 |
allfieldsSound |
10.3390/universe8110559 doi (DE-627)DOAJ085791784 (DE-599)DOAJb50d376f7f12433290e1290efc223069 DE-627 ger DE-627 rakwb eng QC793-793.5 Ashraf Ayubinia verfasserin aut Exploring the Fundamental Mechanism in Driving Highest-Velocity Ionized Outflows in Radio AGNs 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We investigate the ionized gas kinematics relationship with X-ray, radio and accreting properties using a sample of 348 nearby (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<z</mi<<mo<<</mo<<mn<0.4</mn<</mrow<</semantics<</math<</inline-formula<) SDSS-FIRST-X-ray detected AGNs. X-ray properties of our sample are obtained from <i<XMM-Newton</i<, <i<Swift</i< and <i<Chandra</i< observations. We unveil the ionized gas outflows in our sample manifested by the non-gravitational broad component in [O <span style="font-variant: small-caps;"<iii</span<]λ5007Å emission line profiles. From the comparison of the correlation of non-parametric outflow velocities (i.e., the velocity width, the maximal velocity of outflow and line dispersion) with X-ray luminosity and radio luminosity, we find that outflow velocities have similarly positive correlations with both X-ray and radio luminosity. After correcting for the gravitational component, we find that the [O <span style="font-variant: small-caps;"<iii</span<] velocity dispersion normalized by stellar mass also increases with both X-ray luminosity and radio luminosity. We also find that, for a given X-ray (radio) luminosity, radio (X-ray) luminous AGNs have higher outflow velocities than non-radio (non-X-ray) luminous AGNs. Therefore, we find no clear preference between X-ray luminosity and radio luminosity in driving high-velocity ionized outflows and conclude that both AGN activity and small-scale jets contribute comparably. Moreover, there is no evidence that our obscured AGNs are preferentially associated with higher velocity outflows. Finally, we find a turning point around log<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mo<(</mo<<msub<<mi mathvariant="sans-serif"<λ</mi<<mrow<<mi<E</mi<<mi<d</mi<<mi<d</mi<</mrow<</msub<<mo<)</mo<<mo<≃</mo<<mo<−</mo<<mn<1.3</mn<</mrow<</semantics<</math<</inline-formula< when we explore the dependency of outflow velocity on Eddington ratio. It can be interpreted considering the role of high radiation pressure (log<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mo<(</mo<<msub<<mi mathvariant="sans-serif"<λ</mi<<mrow<<mi<E</mi<<mi<d</mi<<mi<d</mi<</mrow<</msub<<mo<)</mo<<mo<≳</mo<<mo<−</mo<<mn<1.3</mn<</mrow<</semantics<</math<</inline-formula<) in causing drastic reduction in the covering factor of the circumnuclear materials. active galactic nuclei supermassive black holes kinematics and dynamics kinematics and dynamics Elementary particle physics Yongquan Xue verfasserin aut Jong-Hak Woo verfasserin aut Huynh Anh Nguyen Le verfasserin aut Zhicheng He verfasserin aut Halime Miraghaei verfasserin aut Xiaozhi Lin verfasserin aut In Universe MDPI AG, 2015 8(2022), 11, p 559 (DE-627)820684236 (DE-600)2813994-X 22181997 nnns volume:8 year:2022 number:11, p 559 https://doi.org/10.3390/universe8110559 kostenfrei https://doaj.org/article/b50d376f7f12433290e1290efc223069 kostenfrei https://www.mdpi.com/2218-1997/8/11/559 kostenfrei https://doaj.org/toc/2218-1997 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2022 11, p 559 |
language |
English |
source |
In Universe 8(2022), 11, p 559 volume:8 year:2022 number:11, p 559 |
sourceStr |
In Universe 8(2022), 11, p 559 volume:8 year:2022 number:11, p 559 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
active galactic nuclei supermassive black holes kinematics and dynamics kinematics and dynamics Elementary particle physics |
isfreeaccess_bool |
true |
container_title |
Universe |
authorswithroles_txt_mv |
Ashraf Ayubinia @@aut@@ Yongquan Xue @@aut@@ Jong-Hak Woo @@aut@@ Huynh Anh Nguyen Le @@aut@@ Zhicheng He @@aut@@ Halime Miraghaei @@aut@@ Xiaozhi Lin @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
820684236 |
id |
DOAJ085791784 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ085791784</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414170951.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/universe8110559</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ085791784</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb50d376f7f12433290e1290efc223069</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC793-793.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ashraf Ayubinia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Exploring the Fundamental Mechanism in Driving Highest-Velocity Ionized Outflows in Radio AGNs</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We investigate the ionized gas kinematics relationship with X-ray, radio and accreting properties using a sample of 348 nearby (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<z</mi<<mo<<</mo<<mn<0.4</mn<</mrow<</semantics<</math<</inline-formula<) SDSS-FIRST-X-ray detected AGNs. X-ray properties of our sample are obtained from <i<XMM-Newton</i<, <i<Swift</i< and <i<Chandra</i< observations. We unveil the ionized gas outflows in our sample manifested by the non-gravitational broad component in [O <span style="font-variant: small-caps;"<iii</span<]λ5007Å emission line profiles. From the comparison of the correlation of non-parametric outflow velocities (i.e., the velocity width, the maximal velocity of outflow and line dispersion) with X-ray luminosity and radio luminosity, we find that outflow velocities have similarly positive correlations with both X-ray and radio luminosity. After correcting for the gravitational component, we find that the [O <span style="font-variant: small-caps;"<iii</span<] velocity dispersion normalized by stellar mass also increases with both X-ray luminosity and radio luminosity. We also find that, for a given X-ray (radio) luminosity, radio (X-ray) luminous AGNs have higher outflow velocities than non-radio (non-X-ray) luminous AGNs. Therefore, we find no clear preference between X-ray luminosity and radio luminosity in driving high-velocity ionized outflows and conclude that both AGN activity and small-scale jets contribute comparably. Moreover, there is no evidence that our obscured AGNs are preferentially associated with higher velocity outflows. Finally, we find a turning point around log<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mo<(</mo<<msub<<mi mathvariant="sans-serif"<λ</mi<<mrow<<mi<E</mi<<mi<d</mi<<mi<d</mi<</mrow<</msub<<mo<)</mo<<mo<≃</mo<<mo<−</mo<<mn<1.3</mn<</mrow<</semantics<</math<</inline-formula< when we explore the dependency of outflow velocity on Eddington ratio. It can be interpreted considering the role of high radiation pressure (log<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mo<(</mo<<msub<<mi mathvariant="sans-serif"<λ</mi<<mrow<<mi<E</mi<<mi<d</mi<<mi<d</mi<</mrow<</msub<<mo<)</mo<<mo<≳</mo<<mo<−</mo<<mn<1.3</mn<</mrow<</semantics<</math<</inline-formula<) in causing drastic reduction in the covering factor of the circumnuclear materials.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">active galactic nuclei</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">supermassive black holes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">kinematics and dynamics kinematics and dynamics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Elementary particle physics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yongquan Xue</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jong-Hak Woo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huynh Anh Nguyen Le</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhicheng He</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Halime Miraghaei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaozhi Lin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Universe</subfield><subfield code="d">MDPI AG, 2015</subfield><subfield code="g">8(2022), 11, p 559</subfield><subfield code="w">(DE-627)820684236</subfield><subfield code="w">(DE-600)2813994-X</subfield><subfield code="x">22181997</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:11, p 559</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/universe8110559</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b50d376f7f12433290e1290efc223069</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2218-1997/8/11/559</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2218-1997</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2022</subfield><subfield code="e">11, p 559</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Ashraf Ayubinia |
spellingShingle |
Ashraf Ayubinia misc QC793-793.5 misc active galactic nuclei misc supermassive black holes misc kinematics and dynamics kinematics and dynamics misc Elementary particle physics Exploring the Fundamental Mechanism in Driving Highest-Velocity Ionized Outflows in Radio AGNs |
authorStr |
Ashraf Ayubinia |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)820684236 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QC793-793 |
illustrated |
Not Illustrated |
issn |
22181997 |
topic_title |
QC793-793.5 Exploring the Fundamental Mechanism in Driving Highest-Velocity Ionized Outflows in Radio AGNs active galactic nuclei supermassive black holes kinematics and dynamics kinematics and dynamics |
topic |
misc QC793-793.5 misc active galactic nuclei misc supermassive black holes misc kinematics and dynamics kinematics and dynamics misc Elementary particle physics |
topic_unstemmed |
misc QC793-793.5 misc active galactic nuclei misc supermassive black holes misc kinematics and dynamics kinematics and dynamics misc Elementary particle physics |
topic_browse |
misc QC793-793.5 misc active galactic nuclei misc supermassive black holes misc kinematics and dynamics kinematics and dynamics misc Elementary particle physics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Universe |
hierarchy_parent_id |
820684236 |
hierarchy_top_title |
Universe |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)820684236 (DE-600)2813994-X |
title |
Exploring the Fundamental Mechanism in Driving Highest-Velocity Ionized Outflows in Radio AGNs |
ctrlnum |
(DE-627)DOAJ085791784 (DE-599)DOAJb50d376f7f12433290e1290efc223069 |
title_full |
Exploring the Fundamental Mechanism in Driving Highest-Velocity Ionized Outflows in Radio AGNs |
author_sort |
Ashraf Ayubinia |
journal |
Universe |
journalStr |
Universe |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Ashraf Ayubinia Yongquan Xue Jong-Hak Woo Huynh Anh Nguyen Le Zhicheng He Halime Miraghaei Xiaozhi Lin |
container_volume |
8 |
class |
QC793-793.5 |
format_se |
Elektronische Aufsätze |
author-letter |
Ashraf Ayubinia |
doi_str_mv |
10.3390/universe8110559 |
author2-role |
verfasserin |
title_sort |
exploring the fundamental mechanism in driving highest-velocity ionized outflows in radio agns |
callnumber |
QC793-793.5 |
title_auth |
Exploring the Fundamental Mechanism in Driving Highest-Velocity Ionized Outflows in Radio AGNs |
abstract |
We investigate the ionized gas kinematics relationship with X-ray, radio and accreting properties using a sample of 348 nearby (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<z</mi<<mo<<</mo<<mn<0.4</mn<</mrow<</semantics<</math<</inline-formula<) SDSS-FIRST-X-ray detected AGNs. X-ray properties of our sample are obtained from <i<XMM-Newton</i<, <i<Swift</i< and <i<Chandra</i< observations. We unveil the ionized gas outflows in our sample manifested by the non-gravitational broad component in [O <span style="font-variant: small-caps;"<iii</span<]λ5007Å emission line profiles. From the comparison of the correlation of non-parametric outflow velocities (i.e., the velocity width, the maximal velocity of outflow and line dispersion) with X-ray luminosity and radio luminosity, we find that outflow velocities have similarly positive correlations with both X-ray and radio luminosity. After correcting for the gravitational component, we find that the [O <span style="font-variant: small-caps;"<iii</span<] velocity dispersion normalized by stellar mass also increases with both X-ray luminosity and radio luminosity. We also find that, for a given X-ray (radio) luminosity, radio (X-ray) luminous AGNs have higher outflow velocities than non-radio (non-X-ray) luminous AGNs. Therefore, we find no clear preference between X-ray luminosity and radio luminosity in driving high-velocity ionized outflows and conclude that both AGN activity and small-scale jets contribute comparably. Moreover, there is no evidence that our obscured AGNs are preferentially associated with higher velocity outflows. Finally, we find a turning point around log<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mo<(</mo<<msub<<mi mathvariant="sans-serif"<λ</mi<<mrow<<mi<E</mi<<mi<d</mi<<mi<d</mi<</mrow<</msub<<mo<)</mo<<mo<≃</mo<<mo<−</mo<<mn<1.3</mn<</mrow<</semantics<</math<</inline-formula< when we explore the dependency of outflow velocity on Eddington ratio. It can be interpreted considering the role of high radiation pressure (log<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mo<(</mo<<msub<<mi mathvariant="sans-serif"<λ</mi<<mrow<<mi<E</mi<<mi<d</mi<<mi<d</mi<</mrow<</msub<<mo<)</mo<<mo<≳</mo<<mo<−</mo<<mn<1.3</mn<</mrow<</semantics<</math<</inline-formula<) in causing drastic reduction in the covering factor of the circumnuclear materials. |
abstractGer |
We investigate the ionized gas kinematics relationship with X-ray, radio and accreting properties using a sample of 348 nearby (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<z</mi<<mo<<</mo<<mn<0.4</mn<</mrow<</semantics<</math<</inline-formula<) SDSS-FIRST-X-ray detected AGNs. X-ray properties of our sample are obtained from <i<XMM-Newton</i<, <i<Swift</i< and <i<Chandra</i< observations. We unveil the ionized gas outflows in our sample manifested by the non-gravitational broad component in [O <span style="font-variant: small-caps;"<iii</span<]λ5007Å emission line profiles. From the comparison of the correlation of non-parametric outflow velocities (i.e., the velocity width, the maximal velocity of outflow and line dispersion) with X-ray luminosity and radio luminosity, we find that outflow velocities have similarly positive correlations with both X-ray and radio luminosity. After correcting for the gravitational component, we find that the [O <span style="font-variant: small-caps;"<iii</span<] velocity dispersion normalized by stellar mass also increases with both X-ray luminosity and radio luminosity. We also find that, for a given X-ray (radio) luminosity, radio (X-ray) luminous AGNs have higher outflow velocities than non-radio (non-X-ray) luminous AGNs. Therefore, we find no clear preference between X-ray luminosity and radio luminosity in driving high-velocity ionized outflows and conclude that both AGN activity and small-scale jets contribute comparably. Moreover, there is no evidence that our obscured AGNs are preferentially associated with higher velocity outflows. Finally, we find a turning point around log<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mo<(</mo<<msub<<mi mathvariant="sans-serif"<λ</mi<<mrow<<mi<E</mi<<mi<d</mi<<mi<d</mi<</mrow<</msub<<mo<)</mo<<mo<≃</mo<<mo<−</mo<<mn<1.3</mn<</mrow<</semantics<</math<</inline-formula< when we explore the dependency of outflow velocity on Eddington ratio. It can be interpreted considering the role of high radiation pressure (log<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mo<(</mo<<msub<<mi mathvariant="sans-serif"<λ</mi<<mrow<<mi<E</mi<<mi<d</mi<<mi<d</mi<</mrow<</msub<<mo<)</mo<<mo<≳</mo<<mo<−</mo<<mn<1.3</mn<</mrow<</semantics<</math<</inline-formula<) in causing drastic reduction in the covering factor of the circumnuclear materials. |
abstract_unstemmed |
We investigate the ionized gas kinematics relationship with X-ray, radio and accreting properties using a sample of 348 nearby (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<z</mi<<mo<<</mo<<mn<0.4</mn<</mrow<</semantics<</math<</inline-formula<) SDSS-FIRST-X-ray detected AGNs. X-ray properties of our sample are obtained from <i<XMM-Newton</i<, <i<Swift</i< and <i<Chandra</i< observations. We unveil the ionized gas outflows in our sample manifested by the non-gravitational broad component in [O <span style="font-variant: small-caps;"<iii</span<]λ5007Å emission line profiles. From the comparison of the correlation of non-parametric outflow velocities (i.e., the velocity width, the maximal velocity of outflow and line dispersion) with X-ray luminosity and radio luminosity, we find that outflow velocities have similarly positive correlations with both X-ray and radio luminosity. After correcting for the gravitational component, we find that the [O <span style="font-variant: small-caps;"<iii</span<] velocity dispersion normalized by stellar mass also increases with both X-ray luminosity and radio luminosity. We also find that, for a given X-ray (radio) luminosity, radio (X-ray) luminous AGNs have higher outflow velocities than non-radio (non-X-ray) luminous AGNs. Therefore, we find no clear preference between X-ray luminosity and radio luminosity in driving high-velocity ionized outflows and conclude that both AGN activity and small-scale jets contribute comparably. Moreover, there is no evidence that our obscured AGNs are preferentially associated with higher velocity outflows. Finally, we find a turning point around log<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mo<(</mo<<msub<<mi mathvariant="sans-serif"<λ</mi<<mrow<<mi<E</mi<<mi<d</mi<<mi<d</mi<</mrow<</msub<<mo<)</mo<<mo<≃</mo<<mo<−</mo<<mn<1.3</mn<</mrow<</semantics<</math<</inline-formula< when we explore the dependency of outflow velocity on Eddington ratio. It can be interpreted considering the role of high radiation pressure (log<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mo<(</mo<<msub<<mi mathvariant="sans-serif"<λ</mi<<mrow<<mi<E</mi<<mi<d</mi<<mi<d</mi<</mrow<</msub<<mo<)</mo<<mo<≳</mo<<mo<−</mo<<mn<1.3</mn<</mrow<</semantics<</math<</inline-formula<) in causing drastic reduction in the covering factor of the circumnuclear materials. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
11, p 559 |
title_short |
Exploring the Fundamental Mechanism in Driving Highest-Velocity Ionized Outflows in Radio AGNs |
url |
https://doi.org/10.3390/universe8110559 https://doaj.org/article/b50d376f7f12433290e1290efc223069 https://www.mdpi.com/2218-1997/8/11/559 https://doaj.org/toc/2218-1997 |
remote_bool |
true |
author2 |
Yongquan Xue Jong-Hak Woo Huynh Anh Nguyen Le Zhicheng He Halime Miraghaei Xiaozhi Lin |
author2Str |
Yongquan Xue Jong-Hak Woo Huynh Anh Nguyen Le Zhicheng He Halime Miraghaei Xiaozhi Lin |
ppnlink |
820684236 |
callnumber-subject |
QC - Physics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/universe8110559 |
callnumber-a |
QC793-793.5 |
up_date |
2024-07-03T16:52:40.351Z |
_version_ |
1803577521971658752 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ085791784</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414170951.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/universe8110559</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ085791784</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb50d376f7f12433290e1290efc223069</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC793-793.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ashraf Ayubinia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Exploring the Fundamental Mechanism in Driving Highest-Velocity Ionized Outflows in Radio AGNs</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We investigate the ionized gas kinematics relationship with X-ray, radio and accreting properties using a sample of 348 nearby (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<z</mi<<mo<<</mo<<mn<0.4</mn<</mrow<</semantics<</math<</inline-formula<) SDSS-FIRST-X-ray detected AGNs. X-ray properties of our sample are obtained from <i<XMM-Newton</i<, <i<Swift</i< and <i<Chandra</i< observations. We unveil the ionized gas outflows in our sample manifested by the non-gravitational broad component in [O <span style="font-variant: small-caps;"<iii</span<]λ5007Å emission line profiles. From the comparison of the correlation of non-parametric outflow velocities (i.e., the velocity width, the maximal velocity of outflow and line dispersion) with X-ray luminosity and radio luminosity, we find that outflow velocities have similarly positive correlations with both X-ray and radio luminosity. After correcting for the gravitational component, we find that the [O <span style="font-variant: small-caps;"<iii</span<] velocity dispersion normalized by stellar mass also increases with both X-ray luminosity and radio luminosity. We also find that, for a given X-ray (radio) luminosity, radio (X-ray) luminous AGNs have higher outflow velocities than non-radio (non-X-ray) luminous AGNs. Therefore, we find no clear preference between X-ray luminosity and radio luminosity in driving high-velocity ionized outflows and conclude that both AGN activity and small-scale jets contribute comparably. Moreover, there is no evidence that our obscured AGNs are preferentially associated with higher velocity outflows. Finally, we find a turning point around log<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mo<(</mo<<msub<<mi mathvariant="sans-serif"<λ</mi<<mrow<<mi<E</mi<<mi<d</mi<<mi<d</mi<</mrow<</msub<<mo<)</mo<<mo<≃</mo<<mo<−</mo<<mn<1.3</mn<</mrow<</semantics<</math<</inline-formula< when we explore the dependency of outflow velocity on Eddington ratio. It can be interpreted considering the role of high radiation pressure (log<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mo<(</mo<<msub<<mi mathvariant="sans-serif"<λ</mi<<mrow<<mi<E</mi<<mi<d</mi<<mi<d</mi<</mrow<</msub<<mo<)</mo<<mo<≳</mo<<mo<−</mo<<mn<1.3</mn<</mrow<</semantics<</math<</inline-formula<) in causing drastic reduction in the covering factor of the circumnuclear materials.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">active galactic nuclei</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">supermassive black holes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">kinematics and dynamics kinematics and dynamics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Elementary particle physics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yongquan Xue</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jong-Hak Woo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huynh Anh Nguyen Le</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhicheng He</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Halime Miraghaei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaozhi Lin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Universe</subfield><subfield code="d">MDPI AG, 2015</subfield><subfield code="g">8(2022), 11, p 559</subfield><subfield code="w">(DE-627)820684236</subfield><subfield code="w">(DE-600)2813994-X</subfield><subfield code="x">22181997</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:11, p 559</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/universe8110559</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b50d376f7f12433290e1290efc223069</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2218-1997/8/11/559</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2218-1997</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2022</subfield><subfield code="e">11, p 559</subfield></datafield></record></collection>
|
score |
7.401758 |