Metabolic Dysfunction-Associated Fatty Liver Disease in the National Health and Nutrition Examination Survey 2017–2020: Epidemiology, Clinical Correlates, and the Role of Diagnostic Scores
The recent establishment of metabolic dysfunction-associated fatty liver disease (MAFLD) has led to a reevaluation of its epidemiology, diagnosis, and clinical implications. In this study, we aimed to evaluate MAFLD’s epidemiology and its association with other pathologic states and biomarkers, as w...
Ausführliche Beschreibung
Autor*in: |
Panagiotis Theofilis [verfasserIn] Aikaterini Vordoni [verfasserIn] Rigas G. Kalaitzidis [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Metabolites - MDPI AG, 2012, 12(2022), 11, p 1070 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2022 ; number:11, p 1070 |
Links: |
---|
DOI / URN: |
10.3390/metabo12111070 |
---|
Katalog-ID: |
DOAJ08580763X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ08580763X | ||
003 | DE-627 | ||
005 | 20240414171754.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/metabo12111070 |2 doi | |
035 | |a (DE-627)DOAJ08580763X | ||
035 | |a (DE-599)DOAJ6848a2e39af746d28067013f0a8d925a | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QR1-502 | |
100 | 0 | |a Panagiotis Theofilis |e verfasserin |4 aut | |
245 | 1 | 0 | |a Metabolic Dysfunction-Associated Fatty Liver Disease in the National Health and Nutrition Examination Survey 2017–2020: Epidemiology, Clinical Correlates, and the Role of Diagnostic Scores |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The recent establishment of metabolic dysfunction-associated fatty liver disease (MAFLD) has led to a reevaluation of its epidemiology, diagnosis, and clinical implications. In this study, we aimed to evaluate MAFLD’s epidemiology and its association with other pathologic states and biomarkers, as well as to assess the prevalence of the different fibrosis stages in the MAFLD population, together with the importance of diagnostic scores in the preliminary determination of significant fibrosis. After analyzing the National Health and Nutrition Examination Survey (NHANES) 2017–2020, we found a high prevalence of MAFLD, at 58.6% of the studied population. MAFLD was accompanied by numerous comorbidities, which were increasingly common in individuals with higher grades of liver fibrosis. Fatty liver index emerged as a reliable indicator of MAFLD, as well as significant fibrosis. The estimation of fatty liver index could be a reasonable addition to the evaluation of patients with metabolic risk factors and could lead a diagnosis in the absence of liver elastography or biopsy. Further studies are needed to enhance our knowledge regarding its prognosis, as well as the role of novel therapies in its prevention or regression. | ||
650 | 4 | |a metabolic dysfunction-associated fatty liver disease | |
650 | 4 | |a epidemiology | |
650 | 4 | |a risk factors | |
650 | 4 | |a fatty liver index | |
650 | 4 | |a liver fibrosis | |
653 | 0 | |a Microbiology | |
700 | 0 | |a Aikaterini Vordoni |e verfasserin |4 aut | |
700 | 0 | |a Rigas G. Kalaitzidis |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Metabolites |d MDPI AG, 2012 |g 12(2022), 11, p 1070 |w (DE-627)718627164 |w (DE-600)2662251-8 |x 22181989 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2022 |g number:11, p 1070 |
856 | 4 | 0 | |u https://doi.org/10.3390/metabo12111070 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/6848a2e39af746d28067013f0a8d925a |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2218-1989/12/11/1070 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2218-1989 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2022 |e 11, p 1070 |
author_variant |
p t pt a v av r g k rgk |
---|---|
matchkey_str |
article:22181989:2022----::eaoidsucinsoitdatlvriesiteainlelhnntiinxmntosre2122eieilgcii |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
QR |
publishDate |
2022 |
allfields |
10.3390/metabo12111070 doi (DE-627)DOAJ08580763X (DE-599)DOAJ6848a2e39af746d28067013f0a8d925a DE-627 ger DE-627 rakwb eng QR1-502 Panagiotis Theofilis verfasserin aut Metabolic Dysfunction-Associated Fatty Liver Disease in the National Health and Nutrition Examination Survey 2017–2020: Epidemiology, Clinical Correlates, and the Role of Diagnostic Scores 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The recent establishment of metabolic dysfunction-associated fatty liver disease (MAFLD) has led to a reevaluation of its epidemiology, diagnosis, and clinical implications. In this study, we aimed to evaluate MAFLD’s epidemiology and its association with other pathologic states and biomarkers, as well as to assess the prevalence of the different fibrosis stages in the MAFLD population, together with the importance of diagnostic scores in the preliminary determination of significant fibrosis. After analyzing the National Health and Nutrition Examination Survey (NHANES) 2017–2020, we found a high prevalence of MAFLD, at 58.6% of the studied population. MAFLD was accompanied by numerous comorbidities, which were increasingly common in individuals with higher grades of liver fibrosis. Fatty liver index emerged as a reliable indicator of MAFLD, as well as significant fibrosis. The estimation of fatty liver index could be a reasonable addition to the evaluation of patients with metabolic risk factors and could lead a diagnosis in the absence of liver elastography or biopsy. Further studies are needed to enhance our knowledge regarding its prognosis, as well as the role of novel therapies in its prevention or regression. metabolic dysfunction-associated fatty liver disease epidemiology risk factors fatty liver index liver fibrosis Microbiology Aikaterini Vordoni verfasserin aut Rigas G. Kalaitzidis verfasserin aut In Metabolites MDPI AG, 2012 12(2022), 11, p 1070 (DE-627)718627164 (DE-600)2662251-8 22181989 nnns volume:12 year:2022 number:11, p 1070 https://doi.org/10.3390/metabo12111070 kostenfrei https://doaj.org/article/6848a2e39af746d28067013f0a8d925a kostenfrei https://www.mdpi.com/2218-1989/12/11/1070 kostenfrei https://doaj.org/toc/2218-1989 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 11, p 1070 |
spelling |
10.3390/metabo12111070 doi (DE-627)DOAJ08580763X (DE-599)DOAJ6848a2e39af746d28067013f0a8d925a DE-627 ger DE-627 rakwb eng QR1-502 Panagiotis Theofilis verfasserin aut Metabolic Dysfunction-Associated Fatty Liver Disease in the National Health and Nutrition Examination Survey 2017–2020: Epidemiology, Clinical Correlates, and the Role of Diagnostic Scores 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The recent establishment of metabolic dysfunction-associated fatty liver disease (MAFLD) has led to a reevaluation of its epidemiology, diagnosis, and clinical implications. In this study, we aimed to evaluate MAFLD’s epidemiology and its association with other pathologic states and biomarkers, as well as to assess the prevalence of the different fibrosis stages in the MAFLD population, together with the importance of diagnostic scores in the preliminary determination of significant fibrosis. After analyzing the National Health and Nutrition Examination Survey (NHANES) 2017–2020, we found a high prevalence of MAFLD, at 58.6% of the studied population. MAFLD was accompanied by numerous comorbidities, which were increasingly common in individuals with higher grades of liver fibrosis. Fatty liver index emerged as a reliable indicator of MAFLD, as well as significant fibrosis. The estimation of fatty liver index could be a reasonable addition to the evaluation of patients with metabolic risk factors and could lead a diagnosis in the absence of liver elastography or biopsy. Further studies are needed to enhance our knowledge regarding its prognosis, as well as the role of novel therapies in its prevention or regression. metabolic dysfunction-associated fatty liver disease epidemiology risk factors fatty liver index liver fibrosis Microbiology Aikaterini Vordoni verfasserin aut Rigas G. Kalaitzidis verfasserin aut In Metabolites MDPI AG, 2012 12(2022), 11, p 1070 (DE-627)718627164 (DE-600)2662251-8 22181989 nnns volume:12 year:2022 number:11, p 1070 https://doi.org/10.3390/metabo12111070 kostenfrei https://doaj.org/article/6848a2e39af746d28067013f0a8d925a kostenfrei https://www.mdpi.com/2218-1989/12/11/1070 kostenfrei https://doaj.org/toc/2218-1989 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 11, p 1070 |
allfields_unstemmed |
10.3390/metabo12111070 doi (DE-627)DOAJ08580763X (DE-599)DOAJ6848a2e39af746d28067013f0a8d925a DE-627 ger DE-627 rakwb eng QR1-502 Panagiotis Theofilis verfasserin aut Metabolic Dysfunction-Associated Fatty Liver Disease in the National Health and Nutrition Examination Survey 2017–2020: Epidemiology, Clinical Correlates, and the Role of Diagnostic Scores 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The recent establishment of metabolic dysfunction-associated fatty liver disease (MAFLD) has led to a reevaluation of its epidemiology, diagnosis, and clinical implications. In this study, we aimed to evaluate MAFLD’s epidemiology and its association with other pathologic states and biomarkers, as well as to assess the prevalence of the different fibrosis stages in the MAFLD population, together with the importance of diagnostic scores in the preliminary determination of significant fibrosis. After analyzing the National Health and Nutrition Examination Survey (NHANES) 2017–2020, we found a high prevalence of MAFLD, at 58.6% of the studied population. MAFLD was accompanied by numerous comorbidities, which were increasingly common in individuals with higher grades of liver fibrosis. Fatty liver index emerged as a reliable indicator of MAFLD, as well as significant fibrosis. The estimation of fatty liver index could be a reasonable addition to the evaluation of patients with metabolic risk factors and could lead a diagnosis in the absence of liver elastography or biopsy. Further studies are needed to enhance our knowledge regarding its prognosis, as well as the role of novel therapies in its prevention or regression. metabolic dysfunction-associated fatty liver disease epidemiology risk factors fatty liver index liver fibrosis Microbiology Aikaterini Vordoni verfasserin aut Rigas G. Kalaitzidis verfasserin aut In Metabolites MDPI AG, 2012 12(2022), 11, p 1070 (DE-627)718627164 (DE-600)2662251-8 22181989 nnns volume:12 year:2022 number:11, p 1070 https://doi.org/10.3390/metabo12111070 kostenfrei https://doaj.org/article/6848a2e39af746d28067013f0a8d925a kostenfrei https://www.mdpi.com/2218-1989/12/11/1070 kostenfrei https://doaj.org/toc/2218-1989 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 11, p 1070 |
allfieldsGer |
10.3390/metabo12111070 doi (DE-627)DOAJ08580763X (DE-599)DOAJ6848a2e39af746d28067013f0a8d925a DE-627 ger DE-627 rakwb eng QR1-502 Panagiotis Theofilis verfasserin aut Metabolic Dysfunction-Associated Fatty Liver Disease in the National Health and Nutrition Examination Survey 2017–2020: Epidemiology, Clinical Correlates, and the Role of Diagnostic Scores 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The recent establishment of metabolic dysfunction-associated fatty liver disease (MAFLD) has led to a reevaluation of its epidemiology, diagnosis, and clinical implications. In this study, we aimed to evaluate MAFLD’s epidemiology and its association with other pathologic states and biomarkers, as well as to assess the prevalence of the different fibrosis stages in the MAFLD population, together with the importance of diagnostic scores in the preliminary determination of significant fibrosis. After analyzing the National Health and Nutrition Examination Survey (NHANES) 2017–2020, we found a high prevalence of MAFLD, at 58.6% of the studied population. MAFLD was accompanied by numerous comorbidities, which were increasingly common in individuals with higher grades of liver fibrosis. Fatty liver index emerged as a reliable indicator of MAFLD, as well as significant fibrosis. The estimation of fatty liver index could be a reasonable addition to the evaluation of patients with metabolic risk factors and could lead a diagnosis in the absence of liver elastography or biopsy. Further studies are needed to enhance our knowledge regarding its prognosis, as well as the role of novel therapies in its prevention or regression. metabolic dysfunction-associated fatty liver disease epidemiology risk factors fatty liver index liver fibrosis Microbiology Aikaterini Vordoni verfasserin aut Rigas G. Kalaitzidis verfasserin aut In Metabolites MDPI AG, 2012 12(2022), 11, p 1070 (DE-627)718627164 (DE-600)2662251-8 22181989 nnns volume:12 year:2022 number:11, p 1070 https://doi.org/10.3390/metabo12111070 kostenfrei https://doaj.org/article/6848a2e39af746d28067013f0a8d925a kostenfrei https://www.mdpi.com/2218-1989/12/11/1070 kostenfrei https://doaj.org/toc/2218-1989 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 11, p 1070 |
allfieldsSound |
10.3390/metabo12111070 doi (DE-627)DOAJ08580763X (DE-599)DOAJ6848a2e39af746d28067013f0a8d925a DE-627 ger DE-627 rakwb eng QR1-502 Panagiotis Theofilis verfasserin aut Metabolic Dysfunction-Associated Fatty Liver Disease in the National Health and Nutrition Examination Survey 2017–2020: Epidemiology, Clinical Correlates, and the Role of Diagnostic Scores 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The recent establishment of metabolic dysfunction-associated fatty liver disease (MAFLD) has led to a reevaluation of its epidemiology, diagnosis, and clinical implications. In this study, we aimed to evaluate MAFLD’s epidemiology and its association with other pathologic states and biomarkers, as well as to assess the prevalence of the different fibrosis stages in the MAFLD population, together with the importance of diagnostic scores in the preliminary determination of significant fibrosis. After analyzing the National Health and Nutrition Examination Survey (NHANES) 2017–2020, we found a high prevalence of MAFLD, at 58.6% of the studied population. MAFLD was accompanied by numerous comorbidities, which were increasingly common in individuals with higher grades of liver fibrosis. Fatty liver index emerged as a reliable indicator of MAFLD, as well as significant fibrosis. The estimation of fatty liver index could be a reasonable addition to the evaluation of patients with metabolic risk factors and could lead a diagnosis in the absence of liver elastography or biopsy. Further studies are needed to enhance our knowledge regarding its prognosis, as well as the role of novel therapies in its prevention or regression. metabolic dysfunction-associated fatty liver disease epidemiology risk factors fatty liver index liver fibrosis Microbiology Aikaterini Vordoni verfasserin aut Rigas G. Kalaitzidis verfasserin aut In Metabolites MDPI AG, 2012 12(2022), 11, p 1070 (DE-627)718627164 (DE-600)2662251-8 22181989 nnns volume:12 year:2022 number:11, p 1070 https://doi.org/10.3390/metabo12111070 kostenfrei https://doaj.org/article/6848a2e39af746d28067013f0a8d925a kostenfrei https://www.mdpi.com/2218-1989/12/11/1070 kostenfrei https://doaj.org/toc/2218-1989 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 11, p 1070 |
language |
English |
source |
In Metabolites 12(2022), 11, p 1070 volume:12 year:2022 number:11, p 1070 |
sourceStr |
In Metabolites 12(2022), 11, p 1070 volume:12 year:2022 number:11, p 1070 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
metabolic dysfunction-associated fatty liver disease epidemiology risk factors fatty liver index liver fibrosis Microbiology |
isfreeaccess_bool |
true |
container_title |
Metabolites |
authorswithroles_txt_mv |
Panagiotis Theofilis @@aut@@ Aikaterini Vordoni @@aut@@ Rigas G. Kalaitzidis @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
718627164 |
id |
DOAJ08580763X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ08580763X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414171754.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/metabo12111070</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ08580763X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6848a2e39af746d28067013f0a8d925a</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QR1-502</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Panagiotis Theofilis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Metabolic Dysfunction-Associated Fatty Liver Disease in the National Health and Nutrition Examination Survey 2017–2020: Epidemiology, Clinical Correlates, and the Role of Diagnostic Scores</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The recent establishment of metabolic dysfunction-associated fatty liver disease (MAFLD) has led to a reevaluation of its epidemiology, diagnosis, and clinical implications. In this study, we aimed to evaluate MAFLD’s epidemiology and its association with other pathologic states and biomarkers, as well as to assess the prevalence of the different fibrosis stages in the MAFLD population, together with the importance of diagnostic scores in the preliminary determination of significant fibrosis. After analyzing the National Health and Nutrition Examination Survey (NHANES) 2017–2020, we found a high prevalence of MAFLD, at 58.6% of the studied population. MAFLD was accompanied by numerous comorbidities, which were increasingly common in individuals with higher grades of liver fibrosis. Fatty liver index emerged as a reliable indicator of MAFLD, as well as significant fibrosis. The estimation of fatty liver index could be a reasonable addition to the evaluation of patients with metabolic risk factors and could lead a diagnosis in the absence of liver elastography or biopsy. Further studies are needed to enhance our knowledge regarding its prognosis, as well as the role of novel therapies in its prevention or regression.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">metabolic dysfunction-associated fatty liver disease</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">epidemiology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">risk factors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fatty liver index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">liver fibrosis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Microbiology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Aikaterini Vordoni</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rigas G. Kalaitzidis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Metabolites</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">12(2022), 11, p 1070</subfield><subfield code="w">(DE-627)718627164</subfield><subfield code="w">(DE-600)2662251-8</subfield><subfield code="x">22181989</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:11, p 1070</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/metabo12111070</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6848a2e39af746d28067013f0a8d925a</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2218-1989/12/11/1070</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2218-1989</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="e">11, p 1070</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Panagiotis Theofilis |
spellingShingle |
Panagiotis Theofilis misc QR1-502 misc metabolic dysfunction-associated fatty liver disease misc epidemiology misc risk factors misc fatty liver index misc liver fibrosis misc Microbiology Metabolic Dysfunction-Associated Fatty Liver Disease in the National Health and Nutrition Examination Survey 2017–2020: Epidemiology, Clinical Correlates, and the Role of Diagnostic Scores |
authorStr |
Panagiotis Theofilis |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)718627164 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QR1-502 |
illustrated |
Not Illustrated |
issn |
22181989 |
topic_title |
QR1-502 Metabolic Dysfunction-Associated Fatty Liver Disease in the National Health and Nutrition Examination Survey 2017–2020: Epidemiology, Clinical Correlates, and the Role of Diagnostic Scores metabolic dysfunction-associated fatty liver disease epidemiology risk factors fatty liver index liver fibrosis |
topic |
misc QR1-502 misc metabolic dysfunction-associated fatty liver disease misc epidemiology misc risk factors misc fatty liver index misc liver fibrosis misc Microbiology |
topic_unstemmed |
misc QR1-502 misc metabolic dysfunction-associated fatty liver disease misc epidemiology misc risk factors misc fatty liver index misc liver fibrosis misc Microbiology |
topic_browse |
misc QR1-502 misc metabolic dysfunction-associated fatty liver disease misc epidemiology misc risk factors misc fatty liver index misc liver fibrosis misc Microbiology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Metabolites |
hierarchy_parent_id |
718627164 |
hierarchy_top_title |
Metabolites |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)718627164 (DE-600)2662251-8 |
title |
Metabolic Dysfunction-Associated Fatty Liver Disease in the National Health and Nutrition Examination Survey 2017–2020: Epidemiology, Clinical Correlates, and the Role of Diagnostic Scores |
ctrlnum |
(DE-627)DOAJ08580763X (DE-599)DOAJ6848a2e39af746d28067013f0a8d925a |
title_full |
Metabolic Dysfunction-Associated Fatty Liver Disease in the National Health and Nutrition Examination Survey 2017–2020: Epidemiology, Clinical Correlates, and the Role of Diagnostic Scores |
author_sort |
Panagiotis Theofilis |
journal |
Metabolites |
journalStr |
Metabolites |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Panagiotis Theofilis Aikaterini Vordoni Rigas G. Kalaitzidis |
container_volume |
12 |
class |
QR1-502 |
format_se |
Elektronische Aufsätze |
author-letter |
Panagiotis Theofilis |
doi_str_mv |
10.3390/metabo12111070 |
author2-role |
verfasserin |
title_sort |
metabolic dysfunction-associated fatty liver disease in the national health and nutrition examination survey 2017–2020: epidemiology, clinical correlates, and the role of diagnostic scores |
callnumber |
QR1-502 |
title_auth |
Metabolic Dysfunction-Associated Fatty Liver Disease in the National Health and Nutrition Examination Survey 2017–2020: Epidemiology, Clinical Correlates, and the Role of Diagnostic Scores |
abstract |
The recent establishment of metabolic dysfunction-associated fatty liver disease (MAFLD) has led to a reevaluation of its epidemiology, diagnosis, and clinical implications. In this study, we aimed to evaluate MAFLD’s epidemiology and its association with other pathologic states and biomarkers, as well as to assess the prevalence of the different fibrosis stages in the MAFLD population, together with the importance of diagnostic scores in the preliminary determination of significant fibrosis. After analyzing the National Health and Nutrition Examination Survey (NHANES) 2017–2020, we found a high prevalence of MAFLD, at 58.6% of the studied population. MAFLD was accompanied by numerous comorbidities, which were increasingly common in individuals with higher grades of liver fibrosis. Fatty liver index emerged as a reliable indicator of MAFLD, as well as significant fibrosis. The estimation of fatty liver index could be a reasonable addition to the evaluation of patients with metabolic risk factors and could lead a diagnosis in the absence of liver elastography or biopsy. Further studies are needed to enhance our knowledge regarding its prognosis, as well as the role of novel therapies in its prevention or regression. |
abstractGer |
The recent establishment of metabolic dysfunction-associated fatty liver disease (MAFLD) has led to a reevaluation of its epidemiology, diagnosis, and clinical implications. In this study, we aimed to evaluate MAFLD’s epidemiology and its association with other pathologic states and biomarkers, as well as to assess the prevalence of the different fibrosis stages in the MAFLD population, together with the importance of diagnostic scores in the preliminary determination of significant fibrosis. After analyzing the National Health and Nutrition Examination Survey (NHANES) 2017–2020, we found a high prevalence of MAFLD, at 58.6% of the studied population. MAFLD was accompanied by numerous comorbidities, which were increasingly common in individuals with higher grades of liver fibrosis. Fatty liver index emerged as a reliable indicator of MAFLD, as well as significant fibrosis. The estimation of fatty liver index could be a reasonable addition to the evaluation of patients with metabolic risk factors and could lead a diagnosis in the absence of liver elastography or biopsy. Further studies are needed to enhance our knowledge regarding its prognosis, as well as the role of novel therapies in its prevention or regression. |
abstract_unstemmed |
The recent establishment of metabolic dysfunction-associated fatty liver disease (MAFLD) has led to a reevaluation of its epidemiology, diagnosis, and clinical implications. In this study, we aimed to evaluate MAFLD’s epidemiology and its association with other pathologic states and biomarkers, as well as to assess the prevalence of the different fibrosis stages in the MAFLD population, together with the importance of diagnostic scores in the preliminary determination of significant fibrosis. After analyzing the National Health and Nutrition Examination Survey (NHANES) 2017–2020, we found a high prevalence of MAFLD, at 58.6% of the studied population. MAFLD was accompanied by numerous comorbidities, which were increasingly common in individuals with higher grades of liver fibrosis. Fatty liver index emerged as a reliable indicator of MAFLD, as well as significant fibrosis. The estimation of fatty liver index could be a reasonable addition to the evaluation of patients with metabolic risk factors and could lead a diagnosis in the absence of liver elastography or biopsy. Further studies are needed to enhance our knowledge regarding its prognosis, as well as the role of novel therapies in its prevention or regression. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
11, p 1070 |
title_short |
Metabolic Dysfunction-Associated Fatty Liver Disease in the National Health and Nutrition Examination Survey 2017–2020: Epidemiology, Clinical Correlates, and the Role of Diagnostic Scores |
url |
https://doi.org/10.3390/metabo12111070 https://doaj.org/article/6848a2e39af746d28067013f0a8d925a https://www.mdpi.com/2218-1989/12/11/1070 https://doaj.org/toc/2218-1989 |
remote_bool |
true |
author2 |
Aikaterini Vordoni Rigas G. Kalaitzidis |
author2Str |
Aikaterini Vordoni Rigas G. Kalaitzidis |
ppnlink |
718627164 |
callnumber-subject |
QR - Microbiology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/metabo12111070 |
callnumber-a |
QR1-502 |
up_date |
2024-07-03T16:58:31.310Z |
_version_ |
1803577889979891712 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ08580763X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414171754.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/metabo12111070</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ08580763X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6848a2e39af746d28067013f0a8d925a</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QR1-502</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Panagiotis Theofilis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Metabolic Dysfunction-Associated Fatty Liver Disease in the National Health and Nutrition Examination Survey 2017–2020: Epidemiology, Clinical Correlates, and the Role of Diagnostic Scores</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The recent establishment of metabolic dysfunction-associated fatty liver disease (MAFLD) has led to a reevaluation of its epidemiology, diagnosis, and clinical implications. In this study, we aimed to evaluate MAFLD’s epidemiology and its association with other pathologic states and biomarkers, as well as to assess the prevalence of the different fibrosis stages in the MAFLD population, together with the importance of diagnostic scores in the preliminary determination of significant fibrosis. After analyzing the National Health and Nutrition Examination Survey (NHANES) 2017–2020, we found a high prevalence of MAFLD, at 58.6% of the studied population. MAFLD was accompanied by numerous comorbidities, which were increasingly common in individuals with higher grades of liver fibrosis. Fatty liver index emerged as a reliable indicator of MAFLD, as well as significant fibrosis. The estimation of fatty liver index could be a reasonable addition to the evaluation of patients with metabolic risk factors and could lead a diagnosis in the absence of liver elastography or biopsy. Further studies are needed to enhance our knowledge regarding its prognosis, as well as the role of novel therapies in its prevention or regression.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">metabolic dysfunction-associated fatty liver disease</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">epidemiology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">risk factors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fatty liver index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">liver fibrosis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Microbiology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Aikaterini Vordoni</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rigas G. Kalaitzidis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Metabolites</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">12(2022), 11, p 1070</subfield><subfield code="w">(DE-627)718627164</subfield><subfield code="w">(DE-600)2662251-8</subfield><subfield code="x">22181989</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:11, p 1070</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/metabo12111070</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6848a2e39af746d28067013f0a8d925a</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2218-1989/12/11/1070</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2218-1989</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="e">11, p 1070</subfield></datafield></record></collection>
|
score |
7.400729 |