Comparative performance of cardiovascular risk prediction models in people living with HIV
Background: Current cardiovascular risk assessment in people living with HIV is based on general risk assessment tools; however, whether these tools can be applied in sub-Saharan African populations has been questioned. Objectives: The study aimed to assess cardiovascular risk classification of com...
Ausführliche Beschreibung
Autor*in: |
Irtiza S. Tahir [verfasserIn] Alinda G. Vos [verfasserIn] Johanna A.A. Damen [verfasserIn] Roos E. Barth [verfasserIn] Hugo A. Tempelman [verfasserIn] Diederick E. Grobbee [verfasserIn] Karine Scheuermaier [verfasserIn] Willem D.F. Venter [verfasserIn] Kerstin Klipstein-Grobusch [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Southern African Journal of HIV Medicine - AOSIS, 2016, 23(2022), 1, Seite e1-e10 |
---|---|
Übergeordnetes Werk: |
volume:23 ; year:2022 ; number:1 ; pages:e1-e10 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.4102/sajhivmed.v23i1.1395 |
---|
Katalog-ID: |
DOAJ085943886 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ085943886 | ||
003 | DE-627 | ||
005 | 20230311042700.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.4102/sajhivmed.v23i1.1395 |2 doi | |
035 | |a (DE-627)DOAJ085943886 | ||
035 | |a (DE-599)DOAJc5ab32b0ac984f60a48cfafdf8eac941 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a RA1-1270 | |
050 | 0 | |a RC109-216 | |
100 | 0 | |a Irtiza S. Tahir |e verfasserin |4 aut | |
245 | 1 | 0 | |a Comparative performance of cardiovascular risk prediction models in people living with HIV |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Background: Current cardiovascular risk assessment in people living with HIV is based on general risk assessment tools; however, whether these tools can be applied in sub-Saharan African populations has been questioned. Objectives: The study aimed to assess cardiovascular risk classification of common cardiovascular disease (CVD) risk prediction models compared to the Data Collection on Adverse Events of Anti-HIV Drugs (D:A:D) 2010 and 2016 models in people living with HIV. Method: Cardiovascular disease risk was estimated by Framingham Cardiovascular and Heart Disease (FHS-CVD, FHS-CHD), Atherosclerotic Cardiovascular Disease (ASCVD) and D:A:D 2010 and 2016 risk prediction models for HIV-infected participants of the Ndlovu Cohort Study, Limpopo, rural South Africa. Participants were classified to be at low ( 10%), moderate (10% – 20%), or high-risk ( 20%) of CVD within 10 years for general CVD and five years for D:A:D models. Kappa statistics were used to determine agreement between CVD risk prediction models. Subgroup analysis was performed according to age. Results: The analysis comprised 735 HIV-infected individuals, predominantly women (56.7%), average age 43.9 (8.8) years. The median predicted CVD risk for D:A:D 2010 and FHS-CVD was 4% and for ASCVD and FHS-CHD models, 3%. For the D:A:D 2016 risk prediction model, the figure was 5%. High 10-year CVD risk was predicted for 2.9%, 0.5%, 0.7%, 3.1% and 6.6% of the study participants by FHS-CVD, FHS-CHD, ASCVD, and D:A:D 2010 and 2016. Kappa statistics ranged from 0.34 for ASCVD to 0.60 for FHS-CVD as compared to the D:A:D 2010 risk prediction model. Conclusion: Overall, predicted CVD risk is low in this population. Compared to D:A:D 2010, CVD risk estimated by the FHS-CVD model showed similar overall results for risk classification. With the exception of the D:A:D model, all other risk prediction models classified fewer people to be at high estimated CVD risk. Prospective studies are needed to develop and validate CVD risk algorithms in people living with HIV in sub-Saharan Africa. | ||
650 | 4 | |a cardiovascular disease risk | |
650 | 4 | |a framingham risk score | |
650 | 4 | |a d:a:d risk score | |
650 | 4 | |a atherosclerotic cardiovascular disease risk score | |
650 | 4 | |a people living with hiv | |
650 | 4 | |a sub-saharan africa | |
653 | 0 | |a Public aspects of medicine | |
653 | 0 | |a Infectious and parasitic diseases | |
700 | 0 | |a Alinda G. Vos |e verfasserin |4 aut | |
700 | 0 | |a Johanna A.A. Damen |e verfasserin |4 aut | |
700 | 0 | |a Roos E. Barth |e verfasserin |4 aut | |
700 | 0 | |a Hugo A. Tempelman |e verfasserin |4 aut | |
700 | 0 | |a Diederick E. Grobbee |e verfasserin |4 aut | |
700 | 0 | |a Karine Scheuermaier |e verfasserin |4 aut | |
700 | 0 | |a Willem D.F. Venter |e verfasserin |4 aut | |
700 | 0 | |a Kerstin Klipstein-Grobusch |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Southern African Journal of HIV Medicine |d AOSIS, 2016 |g 23(2022), 1, Seite e1-e10 |w (DE-627)521453623 |w (DE-600)2259791-8 |x 20786751 |7 nnns |
773 | 1 | 8 | |g volume:23 |g year:2022 |g number:1 |g pages:e1-e10 |
856 | 4 | 0 | |u https://doi.org/10.4102/sajhivmed.v23i1.1395 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/c5ab32b0ac984f60a48cfafdf8eac941 |z kostenfrei |
856 | 4 | 0 | |u https://sajhivmed.org.za/index.php/hivmed/article/view/1395 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1608-9693 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2078-6751 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 23 |j 2022 |e 1 |h e1-e10 |
author_variant |
i s t ist a g v agv j a d jad r e b reb h a t hat d e g deg k s ks w d v wdv k k g kkg |
---|---|
matchkey_str |
article:20786751:2022----::oprtvpromnefadoaclrikrdcinoe |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
RA |
publishDate |
2022 |
allfields |
10.4102/sajhivmed.v23i1.1395 doi (DE-627)DOAJ085943886 (DE-599)DOAJc5ab32b0ac984f60a48cfafdf8eac941 DE-627 ger DE-627 rakwb eng RA1-1270 RC109-216 Irtiza S. Tahir verfasserin aut Comparative performance of cardiovascular risk prediction models in people living with HIV 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: Current cardiovascular risk assessment in people living with HIV is based on general risk assessment tools; however, whether these tools can be applied in sub-Saharan African populations has been questioned. Objectives: The study aimed to assess cardiovascular risk classification of common cardiovascular disease (CVD) risk prediction models compared to the Data Collection on Adverse Events of Anti-HIV Drugs (D:A:D) 2010 and 2016 models in people living with HIV. Method: Cardiovascular disease risk was estimated by Framingham Cardiovascular and Heart Disease (FHS-CVD, FHS-CHD), Atherosclerotic Cardiovascular Disease (ASCVD) and D:A:D 2010 and 2016 risk prediction models for HIV-infected participants of the Ndlovu Cohort Study, Limpopo, rural South Africa. Participants were classified to be at low ( 10%), moderate (10% – 20%), or high-risk ( 20%) of CVD within 10 years for general CVD and five years for D:A:D models. Kappa statistics were used to determine agreement between CVD risk prediction models. Subgroup analysis was performed according to age. Results: The analysis comprised 735 HIV-infected individuals, predominantly women (56.7%), average age 43.9 (8.8) years. The median predicted CVD risk for D:A:D 2010 and FHS-CVD was 4% and for ASCVD and FHS-CHD models, 3%. For the D:A:D 2016 risk prediction model, the figure was 5%. High 10-year CVD risk was predicted for 2.9%, 0.5%, 0.7%, 3.1% and 6.6% of the study participants by FHS-CVD, FHS-CHD, ASCVD, and D:A:D 2010 and 2016. Kappa statistics ranged from 0.34 for ASCVD to 0.60 for FHS-CVD as compared to the D:A:D 2010 risk prediction model. Conclusion: Overall, predicted CVD risk is low in this population. Compared to D:A:D 2010, CVD risk estimated by the FHS-CVD model showed similar overall results for risk classification. With the exception of the D:A:D model, all other risk prediction models classified fewer people to be at high estimated CVD risk. Prospective studies are needed to develop and validate CVD risk algorithms in people living with HIV in sub-Saharan Africa. cardiovascular disease risk framingham risk score d:a:d risk score atherosclerotic cardiovascular disease risk score people living with hiv sub-saharan africa Public aspects of medicine Infectious and parasitic diseases Alinda G. Vos verfasserin aut Johanna A.A. Damen verfasserin aut Roos E. Barth verfasserin aut Hugo A. Tempelman verfasserin aut Diederick E. Grobbee verfasserin aut Karine Scheuermaier verfasserin aut Willem D.F. Venter verfasserin aut Kerstin Klipstein-Grobusch verfasserin aut In Southern African Journal of HIV Medicine AOSIS, 2016 23(2022), 1, Seite e1-e10 (DE-627)521453623 (DE-600)2259791-8 20786751 nnns volume:23 year:2022 number:1 pages:e1-e10 https://doi.org/10.4102/sajhivmed.v23i1.1395 kostenfrei https://doaj.org/article/c5ab32b0ac984f60a48cfafdf8eac941 kostenfrei https://sajhivmed.org.za/index.php/hivmed/article/view/1395 kostenfrei https://doaj.org/toc/1608-9693 Journal toc kostenfrei https://doaj.org/toc/2078-6751 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2022 1 e1-e10 |
spelling |
10.4102/sajhivmed.v23i1.1395 doi (DE-627)DOAJ085943886 (DE-599)DOAJc5ab32b0ac984f60a48cfafdf8eac941 DE-627 ger DE-627 rakwb eng RA1-1270 RC109-216 Irtiza S. Tahir verfasserin aut Comparative performance of cardiovascular risk prediction models in people living with HIV 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: Current cardiovascular risk assessment in people living with HIV is based on general risk assessment tools; however, whether these tools can be applied in sub-Saharan African populations has been questioned. Objectives: The study aimed to assess cardiovascular risk classification of common cardiovascular disease (CVD) risk prediction models compared to the Data Collection on Adverse Events of Anti-HIV Drugs (D:A:D) 2010 and 2016 models in people living with HIV. Method: Cardiovascular disease risk was estimated by Framingham Cardiovascular and Heart Disease (FHS-CVD, FHS-CHD), Atherosclerotic Cardiovascular Disease (ASCVD) and D:A:D 2010 and 2016 risk prediction models for HIV-infected participants of the Ndlovu Cohort Study, Limpopo, rural South Africa. Participants were classified to be at low ( 10%), moderate (10% – 20%), or high-risk ( 20%) of CVD within 10 years for general CVD and five years for D:A:D models. Kappa statistics were used to determine agreement between CVD risk prediction models. Subgroup analysis was performed according to age. Results: The analysis comprised 735 HIV-infected individuals, predominantly women (56.7%), average age 43.9 (8.8) years. The median predicted CVD risk for D:A:D 2010 and FHS-CVD was 4% and for ASCVD and FHS-CHD models, 3%. For the D:A:D 2016 risk prediction model, the figure was 5%. High 10-year CVD risk was predicted for 2.9%, 0.5%, 0.7%, 3.1% and 6.6% of the study participants by FHS-CVD, FHS-CHD, ASCVD, and D:A:D 2010 and 2016. Kappa statistics ranged from 0.34 for ASCVD to 0.60 for FHS-CVD as compared to the D:A:D 2010 risk prediction model. Conclusion: Overall, predicted CVD risk is low in this population. Compared to D:A:D 2010, CVD risk estimated by the FHS-CVD model showed similar overall results for risk classification. With the exception of the D:A:D model, all other risk prediction models classified fewer people to be at high estimated CVD risk. Prospective studies are needed to develop and validate CVD risk algorithms in people living with HIV in sub-Saharan Africa. cardiovascular disease risk framingham risk score d:a:d risk score atherosclerotic cardiovascular disease risk score people living with hiv sub-saharan africa Public aspects of medicine Infectious and parasitic diseases Alinda G. Vos verfasserin aut Johanna A.A. Damen verfasserin aut Roos E. Barth verfasserin aut Hugo A. Tempelman verfasserin aut Diederick E. Grobbee verfasserin aut Karine Scheuermaier verfasserin aut Willem D.F. Venter verfasserin aut Kerstin Klipstein-Grobusch verfasserin aut In Southern African Journal of HIV Medicine AOSIS, 2016 23(2022), 1, Seite e1-e10 (DE-627)521453623 (DE-600)2259791-8 20786751 nnns volume:23 year:2022 number:1 pages:e1-e10 https://doi.org/10.4102/sajhivmed.v23i1.1395 kostenfrei https://doaj.org/article/c5ab32b0ac984f60a48cfafdf8eac941 kostenfrei https://sajhivmed.org.za/index.php/hivmed/article/view/1395 kostenfrei https://doaj.org/toc/1608-9693 Journal toc kostenfrei https://doaj.org/toc/2078-6751 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2022 1 e1-e10 |
allfields_unstemmed |
10.4102/sajhivmed.v23i1.1395 doi (DE-627)DOAJ085943886 (DE-599)DOAJc5ab32b0ac984f60a48cfafdf8eac941 DE-627 ger DE-627 rakwb eng RA1-1270 RC109-216 Irtiza S. Tahir verfasserin aut Comparative performance of cardiovascular risk prediction models in people living with HIV 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: Current cardiovascular risk assessment in people living with HIV is based on general risk assessment tools; however, whether these tools can be applied in sub-Saharan African populations has been questioned. Objectives: The study aimed to assess cardiovascular risk classification of common cardiovascular disease (CVD) risk prediction models compared to the Data Collection on Adverse Events of Anti-HIV Drugs (D:A:D) 2010 and 2016 models in people living with HIV. Method: Cardiovascular disease risk was estimated by Framingham Cardiovascular and Heart Disease (FHS-CVD, FHS-CHD), Atherosclerotic Cardiovascular Disease (ASCVD) and D:A:D 2010 and 2016 risk prediction models for HIV-infected participants of the Ndlovu Cohort Study, Limpopo, rural South Africa. Participants were classified to be at low ( 10%), moderate (10% – 20%), or high-risk ( 20%) of CVD within 10 years for general CVD and five years for D:A:D models. Kappa statistics were used to determine agreement between CVD risk prediction models. Subgroup analysis was performed according to age. Results: The analysis comprised 735 HIV-infected individuals, predominantly women (56.7%), average age 43.9 (8.8) years. The median predicted CVD risk for D:A:D 2010 and FHS-CVD was 4% and for ASCVD and FHS-CHD models, 3%. For the D:A:D 2016 risk prediction model, the figure was 5%. High 10-year CVD risk was predicted for 2.9%, 0.5%, 0.7%, 3.1% and 6.6% of the study participants by FHS-CVD, FHS-CHD, ASCVD, and D:A:D 2010 and 2016. Kappa statistics ranged from 0.34 for ASCVD to 0.60 for FHS-CVD as compared to the D:A:D 2010 risk prediction model. Conclusion: Overall, predicted CVD risk is low in this population. Compared to D:A:D 2010, CVD risk estimated by the FHS-CVD model showed similar overall results for risk classification. With the exception of the D:A:D model, all other risk prediction models classified fewer people to be at high estimated CVD risk. Prospective studies are needed to develop and validate CVD risk algorithms in people living with HIV in sub-Saharan Africa. cardiovascular disease risk framingham risk score d:a:d risk score atherosclerotic cardiovascular disease risk score people living with hiv sub-saharan africa Public aspects of medicine Infectious and parasitic diseases Alinda G. Vos verfasserin aut Johanna A.A. Damen verfasserin aut Roos E. Barth verfasserin aut Hugo A. Tempelman verfasserin aut Diederick E. Grobbee verfasserin aut Karine Scheuermaier verfasserin aut Willem D.F. Venter verfasserin aut Kerstin Klipstein-Grobusch verfasserin aut In Southern African Journal of HIV Medicine AOSIS, 2016 23(2022), 1, Seite e1-e10 (DE-627)521453623 (DE-600)2259791-8 20786751 nnns volume:23 year:2022 number:1 pages:e1-e10 https://doi.org/10.4102/sajhivmed.v23i1.1395 kostenfrei https://doaj.org/article/c5ab32b0ac984f60a48cfafdf8eac941 kostenfrei https://sajhivmed.org.za/index.php/hivmed/article/view/1395 kostenfrei https://doaj.org/toc/1608-9693 Journal toc kostenfrei https://doaj.org/toc/2078-6751 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2022 1 e1-e10 |
allfieldsGer |
10.4102/sajhivmed.v23i1.1395 doi (DE-627)DOAJ085943886 (DE-599)DOAJc5ab32b0ac984f60a48cfafdf8eac941 DE-627 ger DE-627 rakwb eng RA1-1270 RC109-216 Irtiza S. Tahir verfasserin aut Comparative performance of cardiovascular risk prediction models in people living with HIV 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: Current cardiovascular risk assessment in people living with HIV is based on general risk assessment tools; however, whether these tools can be applied in sub-Saharan African populations has been questioned. Objectives: The study aimed to assess cardiovascular risk classification of common cardiovascular disease (CVD) risk prediction models compared to the Data Collection on Adverse Events of Anti-HIV Drugs (D:A:D) 2010 and 2016 models in people living with HIV. Method: Cardiovascular disease risk was estimated by Framingham Cardiovascular and Heart Disease (FHS-CVD, FHS-CHD), Atherosclerotic Cardiovascular Disease (ASCVD) and D:A:D 2010 and 2016 risk prediction models for HIV-infected participants of the Ndlovu Cohort Study, Limpopo, rural South Africa. Participants were classified to be at low ( 10%), moderate (10% – 20%), or high-risk ( 20%) of CVD within 10 years for general CVD and five years for D:A:D models. Kappa statistics were used to determine agreement between CVD risk prediction models. Subgroup analysis was performed according to age. Results: The analysis comprised 735 HIV-infected individuals, predominantly women (56.7%), average age 43.9 (8.8) years. The median predicted CVD risk for D:A:D 2010 and FHS-CVD was 4% and for ASCVD and FHS-CHD models, 3%. For the D:A:D 2016 risk prediction model, the figure was 5%. High 10-year CVD risk was predicted for 2.9%, 0.5%, 0.7%, 3.1% and 6.6% of the study participants by FHS-CVD, FHS-CHD, ASCVD, and D:A:D 2010 and 2016. Kappa statistics ranged from 0.34 for ASCVD to 0.60 for FHS-CVD as compared to the D:A:D 2010 risk prediction model. Conclusion: Overall, predicted CVD risk is low in this population. Compared to D:A:D 2010, CVD risk estimated by the FHS-CVD model showed similar overall results for risk classification. With the exception of the D:A:D model, all other risk prediction models classified fewer people to be at high estimated CVD risk. Prospective studies are needed to develop and validate CVD risk algorithms in people living with HIV in sub-Saharan Africa. cardiovascular disease risk framingham risk score d:a:d risk score atherosclerotic cardiovascular disease risk score people living with hiv sub-saharan africa Public aspects of medicine Infectious and parasitic diseases Alinda G. Vos verfasserin aut Johanna A.A. Damen verfasserin aut Roos E. Barth verfasserin aut Hugo A. Tempelman verfasserin aut Diederick E. Grobbee verfasserin aut Karine Scheuermaier verfasserin aut Willem D.F. Venter verfasserin aut Kerstin Klipstein-Grobusch verfasserin aut In Southern African Journal of HIV Medicine AOSIS, 2016 23(2022), 1, Seite e1-e10 (DE-627)521453623 (DE-600)2259791-8 20786751 nnns volume:23 year:2022 number:1 pages:e1-e10 https://doi.org/10.4102/sajhivmed.v23i1.1395 kostenfrei https://doaj.org/article/c5ab32b0ac984f60a48cfafdf8eac941 kostenfrei https://sajhivmed.org.za/index.php/hivmed/article/view/1395 kostenfrei https://doaj.org/toc/1608-9693 Journal toc kostenfrei https://doaj.org/toc/2078-6751 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2022 1 e1-e10 |
allfieldsSound |
10.4102/sajhivmed.v23i1.1395 doi (DE-627)DOAJ085943886 (DE-599)DOAJc5ab32b0ac984f60a48cfafdf8eac941 DE-627 ger DE-627 rakwb eng RA1-1270 RC109-216 Irtiza S. Tahir verfasserin aut Comparative performance of cardiovascular risk prediction models in people living with HIV 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: Current cardiovascular risk assessment in people living with HIV is based on general risk assessment tools; however, whether these tools can be applied in sub-Saharan African populations has been questioned. Objectives: The study aimed to assess cardiovascular risk classification of common cardiovascular disease (CVD) risk prediction models compared to the Data Collection on Adverse Events of Anti-HIV Drugs (D:A:D) 2010 and 2016 models in people living with HIV. Method: Cardiovascular disease risk was estimated by Framingham Cardiovascular and Heart Disease (FHS-CVD, FHS-CHD), Atherosclerotic Cardiovascular Disease (ASCVD) and D:A:D 2010 and 2016 risk prediction models for HIV-infected participants of the Ndlovu Cohort Study, Limpopo, rural South Africa. Participants were classified to be at low ( 10%), moderate (10% – 20%), or high-risk ( 20%) of CVD within 10 years for general CVD and five years for D:A:D models. Kappa statistics were used to determine agreement between CVD risk prediction models. Subgroup analysis was performed according to age. Results: The analysis comprised 735 HIV-infected individuals, predominantly women (56.7%), average age 43.9 (8.8) years. The median predicted CVD risk for D:A:D 2010 and FHS-CVD was 4% and for ASCVD and FHS-CHD models, 3%. For the D:A:D 2016 risk prediction model, the figure was 5%. High 10-year CVD risk was predicted for 2.9%, 0.5%, 0.7%, 3.1% and 6.6% of the study participants by FHS-CVD, FHS-CHD, ASCVD, and D:A:D 2010 and 2016. Kappa statistics ranged from 0.34 for ASCVD to 0.60 for FHS-CVD as compared to the D:A:D 2010 risk prediction model. Conclusion: Overall, predicted CVD risk is low in this population. Compared to D:A:D 2010, CVD risk estimated by the FHS-CVD model showed similar overall results for risk classification. With the exception of the D:A:D model, all other risk prediction models classified fewer people to be at high estimated CVD risk. Prospective studies are needed to develop and validate CVD risk algorithms in people living with HIV in sub-Saharan Africa. cardiovascular disease risk framingham risk score d:a:d risk score atherosclerotic cardiovascular disease risk score people living with hiv sub-saharan africa Public aspects of medicine Infectious and parasitic diseases Alinda G. Vos verfasserin aut Johanna A.A. Damen verfasserin aut Roos E. Barth verfasserin aut Hugo A. Tempelman verfasserin aut Diederick E. Grobbee verfasserin aut Karine Scheuermaier verfasserin aut Willem D.F. Venter verfasserin aut Kerstin Klipstein-Grobusch verfasserin aut In Southern African Journal of HIV Medicine AOSIS, 2016 23(2022), 1, Seite e1-e10 (DE-627)521453623 (DE-600)2259791-8 20786751 nnns volume:23 year:2022 number:1 pages:e1-e10 https://doi.org/10.4102/sajhivmed.v23i1.1395 kostenfrei https://doaj.org/article/c5ab32b0ac984f60a48cfafdf8eac941 kostenfrei https://sajhivmed.org.za/index.php/hivmed/article/view/1395 kostenfrei https://doaj.org/toc/1608-9693 Journal toc kostenfrei https://doaj.org/toc/2078-6751 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2022 1 e1-e10 |
language |
English |
source |
In Southern African Journal of HIV Medicine 23(2022), 1, Seite e1-e10 volume:23 year:2022 number:1 pages:e1-e10 |
sourceStr |
In Southern African Journal of HIV Medicine 23(2022), 1, Seite e1-e10 volume:23 year:2022 number:1 pages:e1-e10 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
cardiovascular disease risk framingham risk score d:a:d risk score atherosclerotic cardiovascular disease risk score people living with hiv sub-saharan africa Public aspects of medicine Infectious and parasitic diseases |
isfreeaccess_bool |
true |
container_title |
Southern African Journal of HIV Medicine |
authorswithroles_txt_mv |
Irtiza S. Tahir @@aut@@ Alinda G. Vos @@aut@@ Johanna A.A. Damen @@aut@@ Roos E. Barth @@aut@@ Hugo A. Tempelman @@aut@@ Diederick E. Grobbee @@aut@@ Karine Scheuermaier @@aut@@ Willem D.F. Venter @@aut@@ Kerstin Klipstein-Grobusch @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
521453623 |
id |
DOAJ085943886 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ085943886</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230311042700.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.4102/sajhivmed.v23i1.1395</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ085943886</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJc5ab32b0ac984f60a48cfafdf8eac941</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RA1-1270</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC109-216</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Irtiza S. Tahir</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Comparative performance of cardiovascular risk prediction models in people living with HIV</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background: Current cardiovascular risk assessment in people living with HIV is based on general risk assessment tools; however, whether these tools can be applied in sub-Saharan African populations has been questioned. Objectives: The study aimed to assess cardiovascular risk classification of common cardiovascular disease (CVD) risk prediction models compared to the Data Collection on Adverse Events of Anti-HIV Drugs (D:A:D) 2010 and 2016 models in people living with HIV. Method: Cardiovascular disease risk was estimated by Framingham Cardiovascular and Heart Disease (FHS-CVD, FHS-CHD), Atherosclerotic Cardiovascular Disease (ASCVD) and D:A:D 2010 and 2016 risk prediction models for HIV-infected participants of the Ndlovu Cohort Study, Limpopo, rural South Africa. Participants were classified to be at low ( 10%), moderate (10% – 20%), or high-risk ( 20%) of CVD within 10 years for general CVD and five years for D:A:D models. Kappa statistics were used to determine agreement between CVD risk prediction models. Subgroup analysis was performed according to age. Results: The analysis comprised 735 HIV-infected individuals, predominantly women (56.7%), average age 43.9 (8.8) years. The median predicted CVD risk for D:A:D 2010 and FHS-CVD was 4% and for ASCVD and FHS-CHD models, 3%. For the D:A:D 2016 risk prediction model, the figure was 5%. High 10-year CVD risk was predicted for 2.9%, 0.5%, 0.7%, 3.1% and 6.6% of the study participants by FHS-CVD, FHS-CHD, ASCVD, and D:A:D 2010 and 2016. Kappa statistics ranged from 0.34 for ASCVD to 0.60 for FHS-CVD as compared to the D:A:D 2010 risk prediction model. Conclusion: Overall, predicted CVD risk is low in this population. Compared to D:A:D 2010, CVD risk estimated by the FHS-CVD model showed similar overall results for risk classification. With the exception of the D:A:D model, all other risk prediction models classified fewer people to be at high estimated CVD risk. Prospective studies are needed to develop and validate CVD risk algorithms in people living with HIV in sub-Saharan Africa.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cardiovascular disease risk</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">framingham risk score</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">d:a:d risk score</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">atherosclerotic cardiovascular disease risk score</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">people living with hiv</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sub-saharan africa</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Public aspects of medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Infectious and parasitic diseases</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alinda G. Vos</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Johanna A.A. Damen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Roos E. Barth</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hugo A. Tempelman</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Diederick E. Grobbee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Karine Scheuermaier</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Willem D.F. Venter</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kerstin Klipstein-Grobusch</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Southern African Journal of HIV Medicine</subfield><subfield code="d">AOSIS, 2016</subfield><subfield code="g">23(2022), 1, Seite e1-e10</subfield><subfield code="w">(DE-627)521453623</subfield><subfield code="w">(DE-600)2259791-8</subfield><subfield code="x">20786751</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:e1-e10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.4102/sajhivmed.v23i1.1395</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/c5ab32b0ac984f60a48cfafdf8eac941</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://sajhivmed.org.za/index.php/hivmed/article/view/1395</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1608-9693</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2078-6751</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="h">e1-e10</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Irtiza S. Tahir |
spellingShingle |
Irtiza S. Tahir misc RA1-1270 misc RC109-216 misc cardiovascular disease risk misc framingham risk score misc d:a:d risk score misc atherosclerotic cardiovascular disease risk score misc people living with hiv misc sub-saharan africa misc Public aspects of medicine misc Infectious and parasitic diseases Comparative performance of cardiovascular risk prediction models in people living with HIV |
authorStr |
Irtiza S. Tahir |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)521453623 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
RA1-1270 |
illustrated |
Not Illustrated |
issn |
20786751 |
topic_title |
RA1-1270 RC109-216 Comparative performance of cardiovascular risk prediction models in people living with HIV cardiovascular disease risk framingham risk score d:a:d risk score atherosclerotic cardiovascular disease risk score people living with hiv sub-saharan africa |
topic |
misc RA1-1270 misc RC109-216 misc cardiovascular disease risk misc framingham risk score misc d:a:d risk score misc atherosclerotic cardiovascular disease risk score misc people living with hiv misc sub-saharan africa misc Public aspects of medicine misc Infectious and parasitic diseases |
topic_unstemmed |
misc RA1-1270 misc RC109-216 misc cardiovascular disease risk misc framingham risk score misc d:a:d risk score misc atherosclerotic cardiovascular disease risk score misc people living with hiv misc sub-saharan africa misc Public aspects of medicine misc Infectious and parasitic diseases |
topic_browse |
misc RA1-1270 misc RC109-216 misc cardiovascular disease risk misc framingham risk score misc d:a:d risk score misc atherosclerotic cardiovascular disease risk score misc people living with hiv misc sub-saharan africa misc Public aspects of medicine misc Infectious and parasitic diseases |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Southern African Journal of HIV Medicine |
hierarchy_parent_id |
521453623 |
hierarchy_top_title |
Southern African Journal of HIV Medicine |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)521453623 (DE-600)2259791-8 |
title |
Comparative performance of cardiovascular risk prediction models in people living with HIV |
ctrlnum |
(DE-627)DOAJ085943886 (DE-599)DOAJc5ab32b0ac984f60a48cfafdf8eac941 |
title_full |
Comparative performance of cardiovascular risk prediction models in people living with HIV |
author_sort |
Irtiza S. Tahir |
journal |
Southern African Journal of HIV Medicine |
journalStr |
Southern African Journal of HIV Medicine |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Irtiza S. Tahir Alinda G. Vos Johanna A.A. Damen Roos E. Barth Hugo A. Tempelman Diederick E. Grobbee Karine Scheuermaier Willem D.F. Venter Kerstin Klipstein-Grobusch |
container_volume |
23 |
class |
RA1-1270 RC109-216 |
format_se |
Elektronische Aufsätze |
author-letter |
Irtiza S. Tahir |
doi_str_mv |
10.4102/sajhivmed.v23i1.1395 |
author2-role |
verfasserin |
title_sort |
comparative performance of cardiovascular risk prediction models in people living with hiv |
callnumber |
RA1-1270 |
title_auth |
Comparative performance of cardiovascular risk prediction models in people living with HIV |
abstract |
Background: Current cardiovascular risk assessment in people living with HIV is based on general risk assessment tools; however, whether these tools can be applied in sub-Saharan African populations has been questioned. Objectives: The study aimed to assess cardiovascular risk classification of common cardiovascular disease (CVD) risk prediction models compared to the Data Collection on Adverse Events of Anti-HIV Drugs (D:A:D) 2010 and 2016 models in people living with HIV. Method: Cardiovascular disease risk was estimated by Framingham Cardiovascular and Heart Disease (FHS-CVD, FHS-CHD), Atherosclerotic Cardiovascular Disease (ASCVD) and D:A:D 2010 and 2016 risk prediction models for HIV-infected participants of the Ndlovu Cohort Study, Limpopo, rural South Africa. Participants were classified to be at low ( 10%), moderate (10% – 20%), or high-risk ( 20%) of CVD within 10 years for general CVD and five years for D:A:D models. Kappa statistics were used to determine agreement between CVD risk prediction models. Subgroup analysis was performed according to age. Results: The analysis comprised 735 HIV-infected individuals, predominantly women (56.7%), average age 43.9 (8.8) years. The median predicted CVD risk for D:A:D 2010 and FHS-CVD was 4% and for ASCVD and FHS-CHD models, 3%. For the D:A:D 2016 risk prediction model, the figure was 5%. High 10-year CVD risk was predicted for 2.9%, 0.5%, 0.7%, 3.1% and 6.6% of the study participants by FHS-CVD, FHS-CHD, ASCVD, and D:A:D 2010 and 2016. Kappa statistics ranged from 0.34 for ASCVD to 0.60 for FHS-CVD as compared to the D:A:D 2010 risk prediction model. Conclusion: Overall, predicted CVD risk is low in this population. Compared to D:A:D 2010, CVD risk estimated by the FHS-CVD model showed similar overall results for risk classification. With the exception of the D:A:D model, all other risk prediction models classified fewer people to be at high estimated CVD risk. Prospective studies are needed to develop and validate CVD risk algorithms in people living with HIV in sub-Saharan Africa. |
abstractGer |
Background: Current cardiovascular risk assessment in people living with HIV is based on general risk assessment tools; however, whether these tools can be applied in sub-Saharan African populations has been questioned. Objectives: The study aimed to assess cardiovascular risk classification of common cardiovascular disease (CVD) risk prediction models compared to the Data Collection on Adverse Events of Anti-HIV Drugs (D:A:D) 2010 and 2016 models in people living with HIV. Method: Cardiovascular disease risk was estimated by Framingham Cardiovascular and Heart Disease (FHS-CVD, FHS-CHD), Atherosclerotic Cardiovascular Disease (ASCVD) and D:A:D 2010 and 2016 risk prediction models for HIV-infected participants of the Ndlovu Cohort Study, Limpopo, rural South Africa. Participants were classified to be at low ( 10%), moderate (10% – 20%), or high-risk ( 20%) of CVD within 10 years for general CVD and five years for D:A:D models. Kappa statistics were used to determine agreement between CVD risk prediction models. Subgroup analysis was performed according to age. Results: The analysis comprised 735 HIV-infected individuals, predominantly women (56.7%), average age 43.9 (8.8) years. The median predicted CVD risk for D:A:D 2010 and FHS-CVD was 4% and for ASCVD and FHS-CHD models, 3%. For the D:A:D 2016 risk prediction model, the figure was 5%. High 10-year CVD risk was predicted for 2.9%, 0.5%, 0.7%, 3.1% and 6.6% of the study participants by FHS-CVD, FHS-CHD, ASCVD, and D:A:D 2010 and 2016. Kappa statistics ranged from 0.34 for ASCVD to 0.60 for FHS-CVD as compared to the D:A:D 2010 risk prediction model. Conclusion: Overall, predicted CVD risk is low in this population. Compared to D:A:D 2010, CVD risk estimated by the FHS-CVD model showed similar overall results for risk classification. With the exception of the D:A:D model, all other risk prediction models classified fewer people to be at high estimated CVD risk. Prospective studies are needed to develop and validate CVD risk algorithms in people living with HIV in sub-Saharan Africa. |
abstract_unstemmed |
Background: Current cardiovascular risk assessment in people living with HIV is based on general risk assessment tools; however, whether these tools can be applied in sub-Saharan African populations has been questioned. Objectives: The study aimed to assess cardiovascular risk classification of common cardiovascular disease (CVD) risk prediction models compared to the Data Collection on Adverse Events of Anti-HIV Drugs (D:A:D) 2010 and 2016 models in people living with HIV. Method: Cardiovascular disease risk was estimated by Framingham Cardiovascular and Heart Disease (FHS-CVD, FHS-CHD), Atherosclerotic Cardiovascular Disease (ASCVD) and D:A:D 2010 and 2016 risk prediction models for HIV-infected participants of the Ndlovu Cohort Study, Limpopo, rural South Africa. Participants were classified to be at low ( 10%), moderate (10% – 20%), or high-risk ( 20%) of CVD within 10 years for general CVD and five years for D:A:D models. Kappa statistics were used to determine agreement between CVD risk prediction models. Subgroup analysis was performed according to age. Results: The analysis comprised 735 HIV-infected individuals, predominantly women (56.7%), average age 43.9 (8.8) years. The median predicted CVD risk for D:A:D 2010 and FHS-CVD was 4% and for ASCVD and FHS-CHD models, 3%. For the D:A:D 2016 risk prediction model, the figure was 5%. High 10-year CVD risk was predicted for 2.9%, 0.5%, 0.7%, 3.1% and 6.6% of the study participants by FHS-CVD, FHS-CHD, ASCVD, and D:A:D 2010 and 2016. Kappa statistics ranged from 0.34 for ASCVD to 0.60 for FHS-CVD as compared to the D:A:D 2010 risk prediction model. Conclusion: Overall, predicted CVD risk is low in this population. Compared to D:A:D 2010, CVD risk estimated by the FHS-CVD model showed similar overall results for risk classification. With the exception of the D:A:D model, all other risk prediction models classified fewer people to be at high estimated CVD risk. Prospective studies are needed to develop and validate CVD risk algorithms in people living with HIV in sub-Saharan Africa. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Comparative performance of cardiovascular risk prediction models in people living with HIV |
url |
https://doi.org/10.4102/sajhivmed.v23i1.1395 https://doaj.org/article/c5ab32b0ac984f60a48cfafdf8eac941 https://sajhivmed.org.za/index.php/hivmed/article/view/1395 https://doaj.org/toc/1608-9693 https://doaj.org/toc/2078-6751 |
remote_bool |
true |
author2 |
Alinda G. Vos Johanna A.A. Damen Roos E. Barth Hugo A. Tempelman Diederick E. Grobbee Karine Scheuermaier Willem D.F. Venter Kerstin Klipstein-Grobusch |
author2Str |
Alinda G. Vos Johanna A.A. Damen Roos E. Barth Hugo A. Tempelman Diederick E. Grobbee Karine Scheuermaier Willem D.F. Venter Kerstin Klipstein-Grobusch |
ppnlink |
521453623 |
callnumber-subject |
RA - Public Medicine |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.4102/sajhivmed.v23i1.1395 |
callnumber-a |
RA1-1270 |
up_date |
2024-07-03T17:46:01.806Z |
_version_ |
1803580878942633984 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ085943886</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230311042700.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.4102/sajhivmed.v23i1.1395</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ085943886</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJc5ab32b0ac984f60a48cfafdf8eac941</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RA1-1270</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC109-216</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Irtiza S. Tahir</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Comparative performance of cardiovascular risk prediction models in people living with HIV</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background: Current cardiovascular risk assessment in people living with HIV is based on general risk assessment tools; however, whether these tools can be applied in sub-Saharan African populations has been questioned. Objectives: The study aimed to assess cardiovascular risk classification of common cardiovascular disease (CVD) risk prediction models compared to the Data Collection on Adverse Events of Anti-HIV Drugs (D:A:D) 2010 and 2016 models in people living with HIV. Method: Cardiovascular disease risk was estimated by Framingham Cardiovascular and Heart Disease (FHS-CVD, FHS-CHD), Atherosclerotic Cardiovascular Disease (ASCVD) and D:A:D 2010 and 2016 risk prediction models for HIV-infected participants of the Ndlovu Cohort Study, Limpopo, rural South Africa. Participants were classified to be at low ( 10%), moderate (10% – 20%), or high-risk ( 20%) of CVD within 10 years for general CVD and five years for D:A:D models. Kappa statistics were used to determine agreement between CVD risk prediction models. Subgroup analysis was performed according to age. Results: The analysis comprised 735 HIV-infected individuals, predominantly women (56.7%), average age 43.9 (8.8) years. The median predicted CVD risk for D:A:D 2010 and FHS-CVD was 4% and for ASCVD and FHS-CHD models, 3%. For the D:A:D 2016 risk prediction model, the figure was 5%. High 10-year CVD risk was predicted for 2.9%, 0.5%, 0.7%, 3.1% and 6.6% of the study participants by FHS-CVD, FHS-CHD, ASCVD, and D:A:D 2010 and 2016. Kappa statistics ranged from 0.34 for ASCVD to 0.60 for FHS-CVD as compared to the D:A:D 2010 risk prediction model. Conclusion: Overall, predicted CVD risk is low in this population. Compared to D:A:D 2010, CVD risk estimated by the FHS-CVD model showed similar overall results for risk classification. With the exception of the D:A:D model, all other risk prediction models classified fewer people to be at high estimated CVD risk. Prospective studies are needed to develop and validate CVD risk algorithms in people living with HIV in sub-Saharan Africa.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cardiovascular disease risk</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">framingham risk score</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">d:a:d risk score</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">atherosclerotic cardiovascular disease risk score</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">people living with hiv</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sub-saharan africa</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Public aspects of medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Infectious and parasitic diseases</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alinda G. Vos</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Johanna A.A. Damen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Roos E. Barth</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hugo A. Tempelman</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Diederick E. Grobbee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Karine Scheuermaier</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Willem D.F. Venter</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kerstin Klipstein-Grobusch</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Southern African Journal of HIV Medicine</subfield><subfield code="d">AOSIS, 2016</subfield><subfield code="g">23(2022), 1, Seite e1-e10</subfield><subfield code="w">(DE-627)521453623</subfield><subfield code="w">(DE-600)2259791-8</subfield><subfield code="x">20786751</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:e1-e10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.4102/sajhivmed.v23i1.1395</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/c5ab32b0ac984f60a48cfafdf8eac941</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://sajhivmed.org.za/index.php/hivmed/article/view/1395</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1608-9693</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2078-6751</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="h">e1-e10</subfield></datafield></record></collection>
|
score |
7.400283 |