Exploring European Heavy Goods Vehicle Crashes Using a Three-Level Analysis of Crash Data
Heavy goods vehicles (HGVs) are involved in 4.5% of police-reported road crashes in Europe and 14.2% of fatal road crashes. Active and passive safety systems can help to prevent crashes or mitigate the consequences but need detailed scenarios based on analysis of region-specific data to be designed...
Ausführliche Beschreibung
Autor*in: |
Ron Schindler [verfasserIn] Michael Jänsch [verfasserIn] András Bálint [verfasserIn] Heiko Johannsen [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: International Journal of Environmental Research and Public Health - MDPI AG, 2005, 19(2022), 663, p 663 |
---|---|
Übergeordnetes Werk: |
volume:19 ; year:2022 ; number:663, p 663 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.3390/ijerph19020663 |
---|
Katalog-ID: |
DOAJ085998044 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ085998044 | ||
003 | DE-627 | ||
005 | 20230311043109.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/ijerph19020663 |2 doi | |
035 | |a (DE-627)DOAJ085998044 | ||
035 | |a (DE-599)DOAJde82f7e2d4de4e57b2b9a57e4bec02e3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Ron Schindler |e verfasserin |4 aut | |
245 | 1 | 0 | |a Exploring European Heavy Goods Vehicle Crashes Using a Three-Level Analysis of Crash Data |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Heavy goods vehicles (HGVs) are involved in 4.5% of police-reported road crashes in Europe and 14.2% of fatal road crashes. Active and passive safety systems can help to prevent crashes or mitigate the consequences but need detailed scenarios based on analysis of region-specific data to be designed effectively; however, a sufficiently detailed overview focusing on long-haul trucks is not available for Europe. The aim of this paper is to give a comprehensive and up-to-date analysis of crashes in the European Union that involve HGVs weighing 16 tons or more (16 t+). The identification of the most critical scenarios and their characteristics is based on a three-level analysis, as follows. Crash statistics based on data from the Community Database on Accidents on the Roads in Europe (CARE) provide a general overview of crashes involving HGVs. These results are complemented by a more detailed characterization of crashes involving 16 t+ trucks based on national road crash data from Italy, Spain, and Sweden. This analysis is further refined by a detailed study of crashes involving 16 t+ trucks in the German In-Depth Accident Study (GIDAS), including a crash causation analysis. The results show that most European HGV crashes occur in clear weather, during daylight, on dry roads, outside city limits, and on nonhighway roads. Three main scenarios for 16 t+ trucks are characterized in-depth: rear-end crashes in which the truck is the striking partner, conflicts during right turn maneuvers of the truck with a cyclist riding alongside, and pedestrians crossing the road in front of the truck. Among truck-related crash causes, information admission failures (e.g., distraction) were the main crash causation factor in 72% of cases in the rear-end striking scenario while information access problems (e.g., blind spots) were present for 72% of cases in the cyclist scenario and 75% of cases in the pedestrian scenario. The three levels of data analysis used in this paper give a deeper understanding of European HGV crashes, in terms of the most common crash characteristics on EU level and very detailed descriptions of both kinematic parameters and crash causation factors for the above scenarios. The results thereby provide both a global overview and sufficient depth of analysis of the most relevant cases and aid safety system development. | ||
650 | 4 | |a long-haul truck | |
650 | 4 | |a crash scenarios | |
650 | 4 | |a GIDAS | |
650 | 4 | |a CARE | |
650 | 4 | |a crash causation | |
650 | 4 | |a European national crash data | |
653 | 0 | |a Medicine | |
653 | 0 | |a R | |
700 | 0 | |a Michael Jänsch |e verfasserin |4 aut | |
700 | 0 | |a András Bálint |e verfasserin |4 aut | |
700 | 0 | |a Heiko Johannsen |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t International Journal of Environmental Research and Public Health |d MDPI AG, 2005 |g 19(2022), 663, p 663 |w (DE-627)477992463 |w (DE-600)2175195-X |x 16604601 |7 nnns |
773 | 1 | 8 | |g volume:19 |g year:2022 |g number:663, p 663 |
856 | 4 | 0 | |u https://doi.org/10.3390/ijerph19020663 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/de82f7e2d4de4e57b2b9a57e4bec02e3 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1660-4601/19/2/663 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1661-7827 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1660-4601 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 19 |j 2022 |e 663, p 663 |
author_variant |
r s rs m j mj a b ab h j hj |
---|---|
matchkey_str |
article:16604601:2022----::xlrnerpahayodvhcerseuigtreee |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.3390/ijerph19020663 doi (DE-627)DOAJ085998044 (DE-599)DOAJde82f7e2d4de4e57b2b9a57e4bec02e3 DE-627 ger DE-627 rakwb eng Ron Schindler verfasserin aut Exploring European Heavy Goods Vehicle Crashes Using a Three-Level Analysis of Crash Data 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Heavy goods vehicles (HGVs) are involved in 4.5% of police-reported road crashes in Europe and 14.2% of fatal road crashes. Active and passive safety systems can help to prevent crashes or mitigate the consequences but need detailed scenarios based on analysis of region-specific data to be designed effectively; however, a sufficiently detailed overview focusing on long-haul trucks is not available for Europe. The aim of this paper is to give a comprehensive and up-to-date analysis of crashes in the European Union that involve HGVs weighing 16 tons or more (16 t+). The identification of the most critical scenarios and their characteristics is based on a three-level analysis, as follows. Crash statistics based on data from the Community Database on Accidents on the Roads in Europe (CARE) provide a general overview of crashes involving HGVs. These results are complemented by a more detailed characterization of crashes involving 16 t+ trucks based on national road crash data from Italy, Spain, and Sweden. This analysis is further refined by a detailed study of crashes involving 16 t+ trucks in the German In-Depth Accident Study (GIDAS), including a crash causation analysis. The results show that most European HGV crashes occur in clear weather, during daylight, on dry roads, outside city limits, and on nonhighway roads. Three main scenarios for 16 t+ trucks are characterized in-depth: rear-end crashes in which the truck is the striking partner, conflicts during right turn maneuvers of the truck with a cyclist riding alongside, and pedestrians crossing the road in front of the truck. Among truck-related crash causes, information admission failures (e.g., distraction) were the main crash causation factor in 72% of cases in the rear-end striking scenario while information access problems (e.g., blind spots) were present for 72% of cases in the cyclist scenario and 75% of cases in the pedestrian scenario. The three levels of data analysis used in this paper give a deeper understanding of European HGV crashes, in terms of the most common crash characteristics on EU level and very detailed descriptions of both kinematic parameters and crash causation factors for the above scenarios. The results thereby provide both a global overview and sufficient depth of analysis of the most relevant cases and aid safety system development. long-haul truck crash scenarios GIDAS CARE crash causation European national crash data Medicine R Michael Jänsch verfasserin aut András Bálint verfasserin aut Heiko Johannsen verfasserin aut In International Journal of Environmental Research and Public Health MDPI AG, 2005 19(2022), 663, p 663 (DE-627)477992463 (DE-600)2175195-X 16604601 nnns volume:19 year:2022 number:663, p 663 https://doi.org/10.3390/ijerph19020663 kostenfrei https://doaj.org/article/de82f7e2d4de4e57b2b9a57e4bec02e3 kostenfrei https://www.mdpi.com/1660-4601/19/2/663 kostenfrei https://doaj.org/toc/1661-7827 Journal toc kostenfrei https://doaj.org/toc/1660-4601 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2153 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 19 2022 663, p 663 |
spelling |
10.3390/ijerph19020663 doi (DE-627)DOAJ085998044 (DE-599)DOAJde82f7e2d4de4e57b2b9a57e4bec02e3 DE-627 ger DE-627 rakwb eng Ron Schindler verfasserin aut Exploring European Heavy Goods Vehicle Crashes Using a Three-Level Analysis of Crash Data 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Heavy goods vehicles (HGVs) are involved in 4.5% of police-reported road crashes in Europe and 14.2% of fatal road crashes. Active and passive safety systems can help to prevent crashes or mitigate the consequences but need detailed scenarios based on analysis of region-specific data to be designed effectively; however, a sufficiently detailed overview focusing on long-haul trucks is not available for Europe. The aim of this paper is to give a comprehensive and up-to-date analysis of crashes in the European Union that involve HGVs weighing 16 tons or more (16 t+). The identification of the most critical scenarios and their characteristics is based on a three-level analysis, as follows. Crash statistics based on data from the Community Database on Accidents on the Roads in Europe (CARE) provide a general overview of crashes involving HGVs. These results are complemented by a more detailed characterization of crashes involving 16 t+ trucks based on national road crash data from Italy, Spain, and Sweden. This analysis is further refined by a detailed study of crashes involving 16 t+ trucks in the German In-Depth Accident Study (GIDAS), including a crash causation analysis. The results show that most European HGV crashes occur in clear weather, during daylight, on dry roads, outside city limits, and on nonhighway roads. Three main scenarios for 16 t+ trucks are characterized in-depth: rear-end crashes in which the truck is the striking partner, conflicts during right turn maneuvers of the truck with a cyclist riding alongside, and pedestrians crossing the road in front of the truck. Among truck-related crash causes, information admission failures (e.g., distraction) were the main crash causation factor in 72% of cases in the rear-end striking scenario while information access problems (e.g., blind spots) were present for 72% of cases in the cyclist scenario and 75% of cases in the pedestrian scenario. The three levels of data analysis used in this paper give a deeper understanding of European HGV crashes, in terms of the most common crash characteristics on EU level and very detailed descriptions of both kinematic parameters and crash causation factors for the above scenarios. The results thereby provide both a global overview and sufficient depth of analysis of the most relevant cases and aid safety system development. long-haul truck crash scenarios GIDAS CARE crash causation European national crash data Medicine R Michael Jänsch verfasserin aut András Bálint verfasserin aut Heiko Johannsen verfasserin aut In International Journal of Environmental Research and Public Health MDPI AG, 2005 19(2022), 663, p 663 (DE-627)477992463 (DE-600)2175195-X 16604601 nnns volume:19 year:2022 number:663, p 663 https://doi.org/10.3390/ijerph19020663 kostenfrei https://doaj.org/article/de82f7e2d4de4e57b2b9a57e4bec02e3 kostenfrei https://www.mdpi.com/1660-4601/19/2/663 kostenfrei https://doaj.org/toc/1661-7827 Journal toc kostenfrei https://doaj.org/toc/1660-4601 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2153 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 19 2022 663, p 663 |
allfields_unstemmed |
10.3390/ijerph19020663 doi (DE-627)DOAJ085998044 (DE-599)DOAJde82f7e2d4de4e57b2b9a57e4bec02e3 DE-627 ger DE-627 rakwb eng Ron Schindler verfasserin aut Exploring European Heavy Goods Vehicle Crashes Using a Three-Level Analysis of Crash Data 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Heavy goods vehicles (HGVs) are involved in 4.5% of police-reported road crashes in Europe and 14.2% of fatal road crashes. Active and passive safety systems can help to prevent crashes or mitigate the consequences but need detailed scenarios based on analysis of region-specific data to be designed effectively; however, a sufficiently detailed overview focusing on long-haul trucks is not available for Europe. The aim of this paper is to give a comprehensive and up-to-date analysis of crashes in the European Union that involve HGVs weighing 16 tons or more (16 t+). The identification of the most critical scenarios and their characteristics is based on a three-level analysis, as follows. Crash statistics based on data from the Community Database on Accidents on the Roads in Europe (CARE) provide a general overview of crashes involving HGVs. These results are complemented by a more detailed characterization of crashes involving 16 t+ trucks based on national road crash data from Italy, Spain, and Sweden. This analysis is further refined by a detailed study of crashes involving 16 t+ trucks in the German In-Depth Accident Study (GIDAS), including a crash causation analysis. The results show that most European HGV crashes occur in clear weather, during daylight, on dry roads, outside city limits, and on nonhighway roads. Three main scenarios for 16 t+ trucks are characterized in-depth: rear-end crashes in which the truck is the striking partner, conflicts during right turn maneuvers of the truck with a cyclist riding alongside, and pedestrians crossing the road in front of the truck. Among truck-related crash causes, information admission failures (e.g., distraction) were the main crash causation factor in 72% of cases in the rear-end striking scenario while information access problems (e.g., blind spots) were present for 72% of cases in the cyclist scenario and 75% of cases in the pedestrian scenario. The three levels of data analysis used in this paper give a deeper understanding of European HGV crashes, in terms of the most common crash characteristics on EU level and very detailed descriptions of both kinematic parameters and crash causation factors for the above scenarios. The results thereby provide both a global overview and sufficient depth of analysis of the most relevant cases and aid safety system development. long-haul truck crash scenarios GIDAS CARE crash causation European national crash data Medicine R Michael Jänsch verfasserin aut András Bálint verfasserin aut Heiko Johannsen verfasserin aut In International Journal of Environmental Research and Public Health MDPI AG, 2005 19(2022), 663, p 663 (DE-627)477992463 (DE-600)2175195-X 16604601 nnns volume:19 year:2022 number:663, p 663 https://doi.org/10.3390/ijerph19020663 kostenfrei https://doaj.org/article/de82f7e2d4de4e57b2b9a57e4bec02e3 kostenfrei https://www.mdpi.com/1660-4601/19/2/663 kostenfrei https://doaj.org/toc/1661-7827 Journal toc kostenfrei https://doaj.org/toc/1660-4601 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2153 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 19 2022 663, p 663 |
allfieldsGer |
10.3390/ijerph19020663 doi (DE-627)DOAJ085998044 (DE-599)DOAJde82f7e2d4de4e57b2b9a57e4bec02e3 DE-627 ger DE-627 rakwb eng Ron Schindler verfasserin aut Exploring European Heavy Goods Vehicle Crashes Using a Three-Level Analysis of Crash Data 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Heavy goods vehicles (HGVs) are involved in 4.5% of police-reported road crashes in Europe and 14.2% of fatal road crashes. Active and passive safety systems can help to prevent crashes or mitigate the consequences but need detailed scenarios based on analysis of region-specific data to be designed effectively; however, a sufficiently detailed overview focusing on long-haul trucks is not available for Europe. The aim of this paper is to give a comprehensive and up-to-date analysis of crashes in the European Union that involve HGVs weighing 16 tons or more (16 t+). The identification of the most critical scenarios and their characteristics is based on a three-level analysis, as follows. Crash statistics based on data from the Community Database on Accidents on the Roads in Europe (CARE) provide a general overview of crashes involving HGVs. These results are complemented by a more detailed characterization of crashes involving 16 t+ trucks based on national road crash data from Italy, Spain, and Sweden. This analysis is further refined by a detailed study of crashes involving 16 t+ trucks in the German In-Depth Accident Study (GIDAS), including a crash causation analysis. The results show that most European HGV crashes occur in clear weather, during daylight, on dry roads, outside city limits, and on nonhighway roads. Three main scenarios for 16 t+ trucks are characterized in-depth: rear-end crashes in which the truck is the striking partner, conflicts during right turn maneuvers of the truck with a cyclist riding alongside, and pedestrians crossing the road in front of the truck. Among truck-related crash causes, information admission failures (e.g., distraction) were the main crash causation factor in 72% of cases in the rear-end striking scenario while information access problems (e.g., blind spots) were present for 72% of cases in the cyclist scenario and 75% of cases in the pedestrian scenario. The three levels of data analysis used in this paper give a deeper understanding of European HGV crashes, in terms of the most common crash characteristics on EU level and very detailed descriptions of both kinematic parameters and crash causation factors for the above scenarios. The results thereby provide both a global overview and sufficient depth of analysis of the most relevant cases and aid safety system development. long-haul truck crash scenarios GIDAS CARE crash causation European national crash data Medicine R Michael Jänsch verfasserin aut András Bálint verfasserin aut Heiko Johannsen verfasserin aut In International Journal of Environmental Research and Public Health MDPI AG, 2005 19(2022), 663, p 663 (DE-627)477992463 (DE-600)2175195-X 16604601 nnns volume:19 year:2022 number:663, p 663 https://doi.org/10.3390/ijerph19020663 kostenfrei https://doaj.org/article/de82f7e2d4de4e57b2b9a57e4bec02e3 kostenfrei https://www.mdpi.com/1660-4601/19/2/663 kostenfrei https://doaj.org/toc/1661-7827 Journal toc kostenfrei https://doaj.org/toc/1660-4601 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2153 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 19 2022 663, p 663 |
allfieldsSound |
10.3390/ijerph19020663 doi (DE-627)DOAJ085998044 (DE-599)DOAJde82f7e2d4de4e57b2b9a57e4bec02e3 DE-627 ger DE-627 rakwb eng Ron Schindler verfasserin aut Exploring European Heavy Goods Vehicle Crashes Using a Three-Level Analysis of Crash Data 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Heavy goods vehicles (HGVs) are involved in 4.5% of police-reported road crashes in Europe and 14.2% of fatal road crashes. Active and passive safety systems can help to prevent crashes or mitigate the consequences but need detailed scenarios based on analysis of region-specific data to be designed effectively; however, a sufficiently detailed overview focusing on long-haul trucks is not available for Europe. The aim of this paper is to give a comprehensive and up-to-date analysis of crashes in the European Union that involve HGVs weighing 16 tons or more (16 t+). The identification of the most critical scenarios and their characteristics is based on a three-level analysis, as follows. Crash statistics based on data from the Community Database on Accidents on the Roads in Europe (CARE) provide a general overview of crashes involving HGVs. These results are complemented by a more detailed characterization of crashes involving 16 t+ trucks based on national road crash data from Italy, Spain, and Sweden. This analysis is further refined by a detailed study of crashes involving 16 t+ trucks in the German In-Depth Accident Study (GIDAS), including a crash causation analysis. The results show that most European HGV crashes occur in clear weather, during daylight, on dry roads, outside city limits, and on nonhighway roads. Three main scenarios for 16 t+ trucks are characterized in-depth: rear-end crashes in which the truck is the striking partner, conflicts during right turn maneuvers of the truck with a cyclist riding alongside, and pedestrians crossing the road in front of the truck. Among truck-related crash causes, information admission failures (e.g., distraction) were the main crash causation factor in 72% of cases in the rear-end striking scenario while information access problems (e.g., blind spots) were present for 72% of cases in the cyclist scenario and 75% of cases in the pedestrian scenario. The three levels of data analysis used in this paper give a deeper understanding of European HGV crashes, in terms of the most common crash characteristics on EU level and very detailed descriptions of both kinematic parameters and crash causation factors for the above scenarios. The results thereby provide both a global overview and sufficient depth of analysis of the most relevant cases and aid safety system development. long-haul truck crash scenarios GIDAS CARE crash causation European national crash data Medicine R Michael Jänsch verfasserin aut András Bálint verfasserin aut Heiko Johannsen verfasserin aut In International Journal of Environmental Research and Public Health MDPI AG, 2005 19(2022), 663, p 663 (DE-627)477992463 (DE-600)2175195-X 16604601 nnns volume:19 year:2022 number:663, p 663 https://doi.org/10.3390/ijerph19020663 kostenfrei https://doaj.org/article/de82f7e2d4de4e57b2b9a57e4bec02e3 kostenfrei https://www.mdpi.com/1660-4601/19/2/663 kostenfrei https://doaj.org/toc/1661-7827 Journal toc kostenfrei https://doaj.org/toc/1660-4601 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2153 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 19 2022 663, p 663 |
language |
English |
source |
In International Journal of Environmental Research and Public Health 19(2022), 663, p 663 volume:19 year:2022 number:663, p 663 |
sourceStr |
In International Journal of Environmental Research and Public Health 19(2022), 663, p 663 volume:19 year:2022 number:663, p 663 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
long-haul truck crash scenarios GIDAS CARE crash causation European national crash data Medicine R |
isfreeaccess_bool |
true |
container_title |
International Journal of Environmental Research and Public Health |
authorswithroles_txt_mv |
Ron Schindler @@aut@@ Michael Jänsch @@aut@@ András Bálint @@aut@@ Heiko Johannsen @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
477992463 |
id |
DOAJ085998044 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ085998044</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230311043109.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/ijerph19020663</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ085998044</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJde82f7e2d4de4e57b2b9a57e4bec02e3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ron Schindler</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Exploring European Heavy Goods Vehicle Crashes Using a Three-Level Analysis of Crash Data</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Heavy goods vehicles (HGVs) are involved in 4.5% of police-reported road crashes in Europe and 14.2% of fatal road crashes. Active and passive safety systems can help to prevent crashes or mitigate the consequences but need detailed scenarios based on analysis of region-specific data to be designed effectively; however, a sufficiently detailed overview focusing on long-haul trucks is not available for Europe. The aim of this paper is to give a comprehensive and up-to-date analysis of crashes in the European Union that involve HGVs weighing 16 tons or more (16 t+). The identification of the most critical scenarios and their characteristics is based on a three-level analysis, as follows. Crash statistics based on data from the Community Database on Accidents on the Roads in Europe (CARE) provide a general overview of crashes involving HGVs. These results are complemented by a more detailed characterization of crashes involving 16 t+ trucks based on national road crash data from Italy, Spain, and Sweden. This analysis is further refined by a detailed study of crashes involving 16 t+ trucks in the German In-Depth Accident Study (GIDAS), including a crash causation analysis. The results show that most European HGV crashes occur in clear weather, during daylight, on dry roads, outside city limits, and on nonhighway roads. Three main scenarios for 16 t+ trucks are characterized in-depth: rear-end crashes in which the truck is the striking partner, conflicts during right turn maneuvers of the truck with a cyclist riding alongside, and pedestrians crossing the road in front of the truck. Among truck-related crash causes, information admission failures (e.g., distraction) were the main crash causation factor in 72% of cases in the rear-end striking scenario while information access problems (e.g., blind spots) were present for 72% of cases in the cyclist scenario and 75% of cases in the pedestrian scenario. The three levels of data analysis used in this paper give a deeper understanding of European HGV crashes, in terms of the most common crash characteristics on EU level and very detailed descriptions of both kinematic parameters and crash causation factors for the above scenarios. The results thereby provide both a global overview and sufficient depth of analysis of the most relevant cases and aid safety system development.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">long-haul truck</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">crash scenarios</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GIDAS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CARE</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">crash causation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">European national crash data</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Michael Jänsch</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">András Bálint</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Heiko Johannsen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">International Journal of Environmental Research and Public Health</subfield><subfield code="d">MDPI AG, 2005</subfield><subfield code="g">19(2022), 663, p 663</subfield><subfield code="w">(DE-627)477992463</subfield><subfield code="w">(DE-600)2175195-X</subfield><subfield code="x">16604601</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:19</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:663, p 663</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/ijerph19020663</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/de82f7e2d4de4e57b2b9a57e4bec02e3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1660-4601/19/2/663</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1661-7827</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1660-4601</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">19</subfield><subfield code="j">2022</subfield><subfield code="e">663, p 663</subfield></datafield></record></collection>
|
author |
Ron Schindler |
spellingShingle |
Ron Schindler misc long-haul truck misc crash scenarios misc GIDAS misc CARE misc crash causation misc European national crash data misc Medicine misc R Exploring European Heavy Goods Vehicle Crashes Using a Three-Level Analysis of Crash Data |
authorStr |
Ron Schindler |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)477992463 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
16604601 |
topic_title |
Exploring European Heavy Goods Vehicle Crashes Using a Three-Level Analysis of Crash Data long-haul truck crash scenarios GIDAS CARE crash causation European national crash data |
topic |
misc long-haul truck misc crash scenarios misc GIDAS misc CARE misc crash causation misc European national crash data misc Medicine misc R |
topic_unstemmed |
misc long-haul truck misc crash scenarios misc GIDAS misc CARE misc crash causation misc European national crash data misc Medicine misc R |
topic_browse |
misc long-haul truck misc crash scenarios misc GIDAS misc CARE misc crash causation misc European national crash data misc Medicine misc R |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International Journal of Environmental Research and Public Health |
hierarchy_parent_id |
477992463 |
hierarchy_top_title |
International Journal of Environmental Research and Public Health |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)477992463 (DE-600)2175195-X |
title |
Exploring European Heavy Goods Vehicle Crashes Using a Three-Level Analysis of Crash Data |
ctrlnum |
(DE-627)DOAJ085998044 (DE-599)DOAJde82f7e2d4de4e57b2b9a57e4bec02e3 |
title_full |
Exploring European Heavy Goods Vehicle Crashes Using a Three-Level Analysis of Crash Data |
author_sort |
Ron Schindler |
journal |
International Journal of Environmental Research and Public Health |
journalStr |
International Journal of Environmental Research and Public Health |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Ron Schindler Michael Jänsch András Bálint Heiko Johannsen |
container_volume |
19 |
format_se |
Elektronische Aufsätze |
author-letter |
Ron Schindler |
doi_str_mv |
10.3390/ijerph19020663 |
author2-role |
verfasserin |
title_sort |
exploring european heavy goods vehicle crashes using a three-level analysis of crash data |
title_auth |
Exploring European Heavy Goods Vehicle Crashes Using a Three-Level Analysis of Crash Data |
abstract |
Heavy goods vehicles (HGVs) are involved in 4.5% of police-reported road crashes in Europe and 14.2% of fatal road crashes. Active and passive safety systems can help to prevent crashes or mitigate the consequences but need detailed scenarios based on analysis of region-specific data to be designed effectively; however, a sufficiently detailed overview focusing on long-haul trucks is not available for Europe. The aim of this paper is to give a comprehensive and up-to-date analysis of crashes in the European Union that involve HGVs weighing 16 tons or more (16 t+). The identification of the most critical scenarios and their characteristics is based on a three-level analysis, as follows. Crash statistics based on data from the Community Database on Accidents on the Roads in Europe (CARE) provide a general overview of crashes involving HGVs. These results are complemented by a more detailed characterization of crashes involving 16 t+ trucks based on national road crash data from Italy, Spain, and Sweden. This analysis is further refined by a detailed study of crashes involving 16 t+ trucks in the German In-Depth Accident Study (GIDAS), including a crash causation analysis. The results show that most European HGV crashes occur in clear weather, during daylight, on dry roads, outside city limits, and on nonhighway roads. Three main scenarios for 16 t+ trucks are characterized in-depth: rear-end crashes in which the truck is the striking partner, conflicts during right turn maneuvers of the truck with a cyclist riding alongside, and pedestrians crossing the road in front of the truck. Among truck-related crash causes, information admission failures (e.g., distraction) were the main crash causation factor in 72% of cases in the rear-end striking scenario while information access problems (e.g., blind spots) were present for 72% of cases in the cyclist scenario and 75% of cases in the pedestrian scenario. The three levels of data analysis used in this paper give a deeper understanding of European HGV crashes, in terms of the most common crash characteristics on EU level and very detailed descriptions of both kinematic parameters and crash causation factors for the above scenarios. The results thereby provide both a global overview and sufficient depth of analysis of the most relevant cases and aid safety system development. |
abstractGer |
Heavy goods vehicles (HGVs) are involved in 4.5% of police-reported road crashes in Europe and 14.2% of fatal road crashes. Active and passive safety systems can help to prevent crashes or mitigate the consequences but need detailed scenarios based on analysis of region-specific data to be designed effectively; however, a sufficiently detailed overview focusing on long-haul trucks is not available for Europe. The aim of this paper is to give a comprehensive and up-to-date analysis of crashes in the European Union that involve HGVs weighing 16 tons or more (16 t+). The identification of the most critical scenarios and their characteristics is based on a three-level analysis, as follows. Crash statistics based on data from the Community Database on Accidents on the Roads in Europe (CARE) provide a general overview of crashes involving HGVs. These results are complemented by a more detailed characterization of crashes involving 16 t+ trucks based on national road crash data from Italy, Spain, and Sweden. This analysis is further refined by a detailed study of crashes involving 16 t+ trucks in the German In-Depth Accident Study (GIDAS), including a crash causation analysis. The results show that most European HGV crashes occur in clear weather, during daylight, on dry roads, outside city limits, and on nonhighway roads. Three main scenarios for 16 t+ trucks are characterized in-depth: rear-end crashes in which the truck is the striking partner, conflicts during right turn maneuvers of the truck with a cyclist riding alongside, and pedestrians crossing the road in front of the truck. Among truck-related crash causes, information admission failures (e.g., distraction) were the main crash causation factor in 72% of cases in the rear-end striking scenario while information access problems (e.g., blind spots) were present for 72% of cases in the cyclist scenario and 75% of cases in the pedestrian scenario. The three levels of data analysis used in this paper give a deeper understanding of European HGV crashes, in terms of the most common crash characteristics on EU level and very detailed descriptions of both kinematic parameters and crash causation factors for the above scenarios. The results thereby provide both a global overview and sufficient depth of analysis of the most relevant cases and aid safety system development. |
abstract_unstemmed |
Heavy goods vehicles (HGVs) are involved in 4.5% of police-reported road crashes in Europe and 14.2% of fatal road crashes. Active and passive safety systems can help to prevent crashes or mitigate the consequences but need detailed scenarios based on analysis of region-specific data to be designed effectively; however, a sufficiently detailed overview focusing on long-haul trucks is not available for Europe. The aim of this paper is to give a comprehensive and up-to-date analysis of crashes in the European Union that involve HGVs weighing 16 tons or more (16 t+). The identification of the most critical scenarios and their characteristics is based on a three-level analysis, as follows. Crash statistics based on data from the Community Database on Accidents on the Roads in Europe (CARE) provide a general overview of crashes involving HGVs. These results are complemented by a more detailed characterization of crashes involving 16 t+ trucks based on national road crash data from Italy, Spain, and Sweden. This analysis is further refined by a detailed study of crashes involving 16 t+ trucks in the German In-Depth Accident Study (GIDAS), including a crash causation analysis. The results show that most European HGV crashes occur in clear weather, during daylight, on dry roads, outside city limits, and on nonhighway roads. Three main scenarios for 16 t+ trucks are characterized in-depth: rear-end crashes in which the truck is the striking partner, conflicts during right turn maneuvers of the truck with a cyclist riding alongside, and pedestrians crossing the road in front of the truck. Among truck-related crash causes, information admission failures (e.g., distraction) were the main crash causation factor in 72% of cases in the rear-end striking scenario while information access problems (e.g., blind spots) were present for 72% of cases in the cyclist scenario and 75% of cases in the pedestrian scenario. The three levels of data analysis used in this paper give a deeper understanding of European HGV crashes, in terms of the most common crash characteristics on EU level and very detailed descriptions of both kinematic parameters and crash causation factors for the above scenarios. The results thereby provide both a global overview and sufficient depth of analysis of the most relevant cases and aid safety system development. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2153 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
663, p 663 |
title_short |
Exploring European Heavy Goods Vehicle Crashes Using a Three-Level Analysis of Crash Data |
url |
https://doi.org/10.3390/ijerph19020663 https://doaj.org/article/de82f7e2d4de4e57b2b9a57e4bec02e3 https://www.mdpi.com/1660-4601/19/2/663 https://doaj.org/toc/1661-7827 https://doaj.org/toc/1660-4601 |
remote_bool |
true |
author2 |
Michael Jänsch András Bálint Heiko Johannsen |
author2Str |
Michael Jänsch András Bálint Heiko Johannsen |
ppnlink |
477992463 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/ijerph19020663 |
up_date |
2024-07-03T18:06:01.550Z |
_version_ |
1803582136975884288 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ085998044</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230311043109.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/ijerph19020663</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ085998044</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJde82f7e2d4de4e57b2b9a57e4bec02e3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ron Schindler</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Exploring European Heavy Goods Vehicle Crashes Using a Three-Level Analysis of Crash Data</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Heavy goods vehicles (HGVs) are involved in 4.5% of police-reported road crashes in Europe and 14.2% of fatal road crashes. Active and passive safety systems can help to prevent crashes or mitigate the consequences but need detailed scenarios based on analysis of region-specific data to be designed effectively; however, a sufficiently detailed overview focusing on long-haul trucks is not available for Europe. The aim of this paper is to give a comprehensive and up-to-date analysis of crashes in the European Union that involve HGVs weighing 16 tons or more (16 t+). The identification of the most critical scenarios and their characteristics is based on a three-level analysis, as follows. Crash statistics based on data from the Community Database on Accidents on the Roads in Europe (CARE) provide a general overview of crashes involving HGVs. These results are complemented by a more detailed characterization of crashes involving 16 t+ trucks based on national road crash data from Italy, Spain, and Sweden. This analysis is further refined by a detailed study of crashes involving 16 t+ trucks in the German In-Depth Accident Study (GIDAS), including a crash causation analysis. The results show that most European HGV crashes occur in clear weather, during daylight, on dry roads, outside city limits, and on nonhighway roads. Three main scenarios for 16 t+ trucks are characterized in-depth: rear-end crashes in which the truck is the striking partner, conflicts during right turn maneuvers of the truck with a cyclist riding alongside, and pedestrians crossing the road in front of the truck. Among truck-related crash causes, information admission failures (e.g., distraction) were the main crash causation factor in 72% of cases in the rear-end striking scenario while information access problems (e.g., blind spots) were present for 72% of cases in the cyclist scenario and 75% of cases in the pedestrian scenario. The three levels of data analysis used in this paper give a deeper understanding of European HGV crashes, in terms of the most common crash characteristics on EU level and very detailed descriptions of both kinematic parameters and crash causation factors for the above scenarios. The results thereby provide both a global overview and sufficient depth of analysis of the most relevant cases and aid safety system development.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">long-haul truck</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">crash scenarios</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GIDAS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CARE</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">crash causation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">European national crash data</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Michael Jänsch</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">András Bálint</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Heiko Johannsen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">International Journal of Environmental Research and Public Health</subfield><subfield code="d">MDPI AG, 2005</subfield><subfield code="g">19(2022), 663, p 663</subfield><subfield code="w">(DE-627)477992463</subfield><subfield code="w">(DE-600)2175195-X</subfield><subfield code="x">16604601</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:19</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:663, p 663</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/ijerph19020663</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/de82f7e2d4de4e57b2b9a57e4bec02e3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1660-4601/19/2/663</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1661-7827</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1660-4601</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">19</subfield><subfield code="j">2022</subfield><subfield code="e">663, p 663</subfield></datafield></record></collection>
|
score |
7.402237 |