Controls of contemporary (2001–2018) springtime waterflow dynamics in a Large, snowmelt-dominated basin in northeastern North America
The objective of this study was to characterise the primary forcing variables and system feedback responsible for daily waterflow dynamics within a large, international river system (Canada and USA) during 17 melt seasons from 2001 to 2018. An analysis based on extreme gradient boosting showed that...
Ausführliche Beschreibung
Autor*in: |
Xindi Yu [verfasserIn] Charles P.-A. Bourque [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Journal of Hydrology X - Elsevier, 2019, 14(2022), Seite 100117- |
---|---|
Übergeordnetes Werk: |
volume:14 ; year:2022 ; pages:100117- |
Links: |
---|
DOI / URN: |
10.1016/j.hydroa.2021.100117 |
---|
Katalog-ID: |
DOAJ086229893 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ086229893 | ||
003 | DE-627 | ||
005 | 20230311044901.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.hydroa.2021.100117 |2 doi | |
035 | |a (DE-627)DOAJ086229893 | ||
035 | |a (DE-599)DOAJdbcd2eaeecea4faab3bdcdf80e12d2dd | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA170-171 | |
050 | 0 | |a GE1-350 | |
100 | 0 | |a Xindi Yu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Controls of contemporary (2001–2018) springtime waterflow dynamics in a Large, snowmelt-dominated basin in northeastern North America |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The objective of this study was to characterise the primary forcing variables and system feedback responsible for daily waterflow dynamics within a large, international river system (Canada and USA) during 17 melt seasons from 2001 to 2018. An analysis based on extreme gradient boosting showed that daily waterflow in four subcatchments of the upper Saint John River (SJR, Wolastoq) basin during the 17 melt seasons was to a large measure controlled by the area’s seasonal warming associated with the springtime increase in regional incident global radiation and northeasterly advection of sensible and latent heat from southerly locations. Historically, seasonal surges in air temperature and cumulative snow degree-days were shown to contribute to roughly 60% of the control on subcatchment discharge by influencing the production and timing of snowmelt. Peak accumulation of snow on the ground provided the second most important control of discharge, accounting for about 15.6% of the overall control at a daily timescale. Cumulative short- and long-term forest cover losses in the four subcatchments provided some control, but at varying levels (i.e., 4.8–14.2%) dependent on the extent of total forest cover loss and other subcatchment traits. Convergent cross mapping confirmed the unidirectional, causal relationship between annual forest cover loss and daily discharge rates at the outlet of three of the four subcatchments. The strength of the annual-forest-cover-removal-to-daily-discharge signal within the four subcatchments varied, with the subcatchment with the least annual forest cover loss (<1%, over the 17 years), predictably displaying the weakest signal (p = 0.282). Forest cover removal was shown to increase springtime discharge for all subcatchments, albeit at different rates. This work provides a more comprehensive, mechanistic interpretation of daily snowmelt control of stream/river flow dynamics in northeastern North America. | ||
650 | 4 | |a Abiotic and biotic controls | |
650 | 4 | |a Causal inference | |
650 | 4 | |a Landcover loss | |
650 | 4 | |a Machine learning | |
650 | 4 | |a Snowmelt-dominated dynamics | |
650 | 4 | |a Structural equation modelling | |
653 | 0 | |a Environmental engineering | |
653 | 0 | |a Environmental sciences | |
700 | 0 | |a Charles P.-A. Bourque |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Journal of Hydrology X |d Elsevier, 2019 |g 14(2022), Seite 100117- |w (DE-627)1683618769 |x 25899155 |7 nnns |
773 | 1 | 8 | |g volume:14 |g year:2022 |g pages:100117- |
856 | 4 | 0 | |u https://doi.org/10.1016/j.hydroa.2021.100117 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/dbcd2eaeecea4faab3bdcdf80e12d2dd |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S2589915521000456 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2589-9155 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4392 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 14 |j 2022 |h 100117- |
author_variant |
x y xy c p a b cpab |
---|---|
matchkey_str |
article:25899155:2022----::otosfotmoay0108pigieaefodnmciaagsomldmntda |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TA |
publishDate |
2022 |
allfields |
10.1016/j.hydroa.2021.100117 doi (DE-627)DOAJ086229893 (DE-599)DOAJdbcd2eaeecea4faab3bdcdf80e12d2dd DE-627 ger DE-627 rakwb eng TA170-171 GE1-350 Xindi Yu verfasserin aut Controls of contemporary (2001–2018) springtime waterflow dynamics in a Large, snowmelt-dominated basin in northeastern North America 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The objective of this study was to characterise the primary forcing variables and system feedback responsible for daily waterflow dynamics within a large, international river system (Canada and USA) during 17 melt seasons from 2001 to 2018. An analysis based on extreme gradient boosting showed that daily waterflow in four subcatchments of the upper Saint John River (SJR, Wolastoq) basin during the 17 melt seasons was to a large measure controlled by the area’s seasonal warming associated with the springtime increase in regional incident global radiation and northeasterly advection of sensible and latent heat from southerly locations. Historically, seasonal surges in air temperature and cumulative snow degree-days were shown to contribute to roughly 60% of the control on subcatchment discharge by influencing the production and timing of snowmelt. Peak accumulation of snow on the ground provided the second most important control of discharge, accounting for about 15.6% of the overall control at a daily timescale. Cumulative short- and long-term forest cover losses in the four subcatchments provided some control, but at varying levels (i.e., 4.8–14.2%) dependent on the extent of total forest cover loss and other subcatchment traits. Convergent cross mapping confirmed the unidirectional, causal relationship between annual forest cover loss and daily discharge rates at the outlet of three of the four subcatchments. The strength of the annual-forest-cover-removal-to-daily-discharge signal within the four subcatchments varied, with the subcatchment with the least annual forest cover loss (<1%, over the 17 years), predictably displaying the weakest signal (p = 0.282). Forest cover removal was shown to increase springtime discharge for all subcatchments, albeit at different rates. This work provides a more comprehensive, mechanistic interpretation of daily snowmelt control of stream/river flow dynamics in northeastern North America. Abiotic and biotic controls Causal inference Landcover loss Machine learning Snowmelt-dominated dynamics Structural equation modelling Environmental engineering Environmental sciences Charles P.-A. Bourque verfasserin aut In Journal of Hydrology X Elsevier, 2019 14(2022), Seite 100117- (DE-627)1683618769 25899155 nnns volume:14 year:2022 pages:100117- https://doi.org/10.1016/j.hydroa.2021.100117 kostenfrei https://doaj.org/article/dbcd2eaeecea4faab3bdcdf80e12d2dd kostenfrei http://www.sciencedirect.com/science/article/pii/S2589915521000456 kostenfrei https://doaj.org/toc/2589-9155 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4393 GBV_ILN_4700 AR 14 2022 100117- |
spelling |
10.1016/j.hydroa.2021.100117 doi (DE-627)DOAJ086229893 (DE-599)DOAJdbcd2eaeecea4faab3bdcdf80e12d2dd DE-627 ger DE-627 rakwb eng TA170-171 GE1-350 Xindi Yu verfasserin aut Controls of contemporary (2001–2018) springtime waterflow dynamics in a Large, snowmelt-dominated basin in northeastern North America 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The objective of this study was to characterise the primary forcing variables and system feedback responsible for daily waterflow dynamics within a large, international river system (Canada and USA) during 17 melt seasons from 2001 to 2018. An analysis based on extreme gradient boosting showed that daily waterflow in four subcatchments of the upper Saint John River (SJR, Wolastoq) basin during the 17 melt seasons was to a large measure controlled by the area’s seasonal warming associated with the springtime increase in regional incident global radiation and northeasterly advection of sensible and latent heat from southerly locations. Historically, seasonal surges in air temperature and cumulative snow degree-days were shown to contribute to roughly 60% of the control on subcatchment discharge by influencing the production and timing of snowmelt. Peak accumulation of snow on the ground provided the second most important control of discharge, accounting for about 15.6% of the overall control at a daily timescale. Cumulative short- and long-term forest cover losses in the four subcatchments provided some control, but at varying levels (i.e., 4.8–14.2%) dependent on the extent of total forest cover loss and other subcatchment traits. Convergent cross mapping confirmed the unidirectional, causal relationship between annual forest cover loss and daily discharge rates at the outlet of three of the four subcatchments. The strength of the annual-forest-cover-removal-to-daily-discharge signal within the four subcatchments varied, with the subcatchment with the least annual forest cover loss (<1%, over the 17 years), predictably displaying the weakest signal (p = 0.282). Forest cover removal was shown to increase springtime discharge for all subcatchments, albeit at different rates. This work provides a more comprehensive, mechanistic interpretation of daily snowmelt control of stream/river flow dynamics in northeastern North America. Abiotic and biotic controls Causal inference Landcover loss Machine learning Snowmelt-dominated dynamics Structural equation modelling Environmental engineering Environmental sciences Charles P.-A. Bourque verfasserin aut In Journal of Hydrology X Elsevier, 2019 14(2022), Seite 100117- (DE-627)1683618769 25899155 nnns volume:14 year:2022 pages:100117- https://doi.org/10.1016/j.hydroa.2021.100117 kostenfrei https://doaj.org/article/dbcd2eaeecea4faab3bdcdf80e12d2dd kostenfrei http://www.sciencedirect.com/science/article/pii/S2589915521000456 kostenfrei https://doaj.org/toc/2589-9155 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4393 GBV_ILN_4700 AR 14 2022 100117- |
allfields_unstemmed |
10.1016/j.hydroa.2021.100117 doi (DE-627)DOAJ086229893 (DE-599)DOAJdbcd2eaeecea4faab3bdcdf80e12d2dd DE-627 ger DE-627 rakwb eng TA170-171 GE1-350 Xindi Yu verfasserin aut Controls of contemporary (2001–2018) springtime waterflow dynamics in a Large, snowmelt-dominated basin in northeastern North America 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The objective of this study was to characterise the primary forcing variables and system feedback responsible for daily waterflow dynamics within a large, international river system (Canada and USA) during 17 melt seasons from 2001 to 2018. An analysis based on extreme gradient boosting showed that daily waterflow in four subcatchments of the upper Saint John River (SJR, Wolastoq) basin during the 17 melt seasons was to a large measure controlled by the area’s seasonal warming associated with the springtime increase in regional incident global radiation and northeasterly advection of sensible and latent heat from southerly locations. Historically, seasonal surges in air temperature and cumulative snow degree-days were shown to contribute to roughly 60% of the control on subcatchment discharge by influencing the production and timing of snowmelt. Peak accumulation of snow on the ground provided the second most important control of discharge, accounting for about 15.6% of the overall control at a daily timescale. Cumulative short- and long-term forest cover losses in the four subcatchments provided some control, but at varying levels (i.e., 4.8–14.2%) dependent on the extent of total forest cover loss and other subcatchment traits. Convergent cross mapping confirmed the unidirectional, causal relationship between annual forest cover loss and daily discharge rates at the outlet of three of the four subcatchments. The strength of the annual-forest-cover-removal-to-daily-discharge signal within the four subcatchments varied, with the subcatchment with the least annual forest cover loss (<1%, over the 17 years), predictably displaying the weakest signal (p = 0.282). Forest cover removal was shown to increase springtime discharge for all subcatchments, albeit at different rates. This work provides a more comprehensive, mechanistic interpretation of daily snowmelt control of stream/river flow dynamics in northeastern North America. Abiotic and biotic controls Causal inference Landcover loss Machine learning Snowmelt-dominated dynamics Structural equation modelling Environmental engineering Environmental sciences Charles P.-A. Bourque verfasserin aut In Journal of Hydrology X Elsevier, 2019 14(2022), Seite 100117- (DE-627)1683618769 25899155 nnns volume:14 year:2022 pages:100117- https://doi.org/10.1016/j.hydroa.2021.100117 kostenfrei https://doaj.org/article/dbcd2eaeecea4faab3bdcdf80e12d2dd kostenfrei http://www.sciencedirect.com/science/article/pii/S2589915521000456 kostenfrei https://doaj.org/toc/2589-9155 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4393 GBV_ILN_4700 AR 14 2022 100117- |
allfieldsGer |
10.1016/j.hydroa.2021.100117 doi (DE-627)DOAJ086229893 (DE-599)DOAJdbcd2eaeecea4faab3bdcdf80e12d2dd DE-627 ger DE-627 rakwb eng TA170-171 GE1-350 Xindi Yu verfasserin aut Controls of contemporary (2001–2018) springtime waterflow dynamics in a Large, snowmelt-dominated basin in northeastern North America 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The objective of this study was to characterise the primary forcing variables and system feedback responsible for daily waterflow dynamics within a large, international river system (Canada and USA) during 17 melt seasons from 2001 to 2018. An analysis based on extreme gradient boosting showed that daily waterflow in four subcatchments of the upper Saint John River (SJR, Wolastoq) basin during the 17 melt seasons was to a large measure controlled by the area’s seasonal warming associated with the springtime increase in regional incident global radiation and northeasterly advection of sensible and latent heat from southerly locations. Historically, seasonal surges in air temperature and cumulative snow degree-days were shown to contribute to roughly 60% of the control on subcatchment discharge by influencing the production and timing of snowmelt. Peak accumulation of snow on the ground provided the second most important control of discharge, accounting for about 15.6% of the overall control at a daily timescale. Cumulative short- and long-term forest cover losses in the four subcatchments provided some control, but at varying levels (i.e., 4.8–14.2%) dependent on the extent of total forest cover loss and other subcatchment traits. Convergent cross mapping confirmed the unidirectional, causal relationship between annual forest cover loss and daily discharge rates at the outlet of three of the four subcatchments. The strength of the annual-forest-cover-removal-to-daily-discharge signal within the four subcatchments varied, with the subcatchment with the least annual forest cover loss (<1%, over the 17 years), predictably displaying the weakest signal (p = 0.282). Forest cover removal was shown to increase springtime discharge for all subcatchments, albeit at different rates. This work provides a more comprehensive, mechanistic interpretation of daily snowmelt control of stream/river flow dynamics in northeastern North America. Abiotic and biotic controls Causal inference Landcover loss Machine learning Snowmelt-dominated dynamics Structural equation modelling Environmental engineering Environmental sciences Charles P.-A. Bourque verfasserin aut In Journal of Hydrology X Elsevier, 2019 14(2022), Seite 100117- (DE-627)1683618769 25899155 nnns volume:14 year:2022 pages:100117- https://doi.org/10.1016/j.hydroa.2021.100117 kostenfrei https://doaj.org/article/dbcd2eaeecea4faab3bdcdf80e12d2dd kostenfrei http://www.sciencedirect.com/science/article/pii/S2589915521000456 kostenfrei https://doaj.org/toc/2589-9155 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4393 GBV_ILN_4700 AR 14 2022 100117- |
allfieldsSound |
10.1016/j.hydroa.2021.100117 doi (DE-627)DOAJ086229893 (DE-599)DOAJdbcd2eaeecea4faab3bdcdf80e12d2dd DE-627 ger DE-627 rakwb eng TA170-171 GE1-350 Xindi Yu verfasserin aut Controls of contemporary (2001–2018) springtime waterflow dynamics in a Large, snowmelt-dominated basin in northeastern North America 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The objective of this study was to characterise the primary forcing variables and system feedback responsible for daily waterflow dynamics within a large, international river system (Canada and USA) during 17 melt seasons from 2001 to 2018. An analysis based on extreme gradient boosting showed that daily waterflow in four subcatchments of the upper Saint John River (SJR, Wolastoq) basin during the 17 melt seasons was to a large measure controlled by the area’s seasonal warming associated with the springtime increase in regional incident global radiation and northeasterly advection of sensible and latent heat from southerly locations. Historically, seasonal surges in air temperature and cumulative snow degree-days were shown to contribute to roughly 60% of the control on subcatchment discharge by influencing the production and timing of snowmelt. Peak accumulation of snow on the ground provided the second most important control of discharge, accounting for about 15.6% of the overall control at a daily timescale. Cumulative short- and long-term forest cover losses in the four subcatchments provided some control, but at varying levels (i.e., 4.8–14.2%) dependent on the extent of total forest cover loss and other subcatchment traits. Convergent cross mapping confirmed the unidirectional, causal relationship between annual forest cover loss and daily discharge rates at the outlet of three of the four subcatchments. The strength of the annual-forest-cover-removal-to-daily-discharge signal within the four subcatchments varied, with the subcatchment with the least annual forest cover loss (<1%, over the 17 years), predictably displaying the weakest signal (p = 0.282). Forest cover removal was shown to increase springtime discharge for all subcatchments, albeit at different rates. This work provides a more comprehensive, mechanistic interpretation of daily snowmelt control of stream/river flow dynamics in northeastern North America. Abiotic and biotic controls Causal inference Landcover loss Machine learning Snowmelt-dominated dynamics Structural equation modelling Environmental engineering Environmental sciences Charles P.-A. Bourque verfasserin aut In Journal of Hydrology X Elsevier, 2019 14(2022), Seite 100117- (DE-627)1683618769 25899155 nnns volume:14 year:2022 pages:100117- https://doi.org/10.1016/j.hydroa.2021.100117 kostenfrei https://doaj.org/article/dbcd2eaeecea4faab3bdcdf80e12d2dd kostenfrei http://www.sciencedirect.com/science/article/pii/S2589915521000456 kostenfrei https://doaj.org/toc/2589-9155 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4393 GBV_ILN_4700 AR 14 2022 100117- |
language |
English |
source |
In Journal of Hydrology X 14(2022), Seite 100117- volume:14 year:2022 pages:100117- |
sourceStr |
In Journal of Hydrology X 14(2022), Seite 100117- volume:14 year:2022 pages:100117- |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Abiotic and biotic controls Causal inference Landcover loss Machine learning Snowmelt-dominated dynamics Structural equation modelling Environmental engineering Environmental sciences |
isfreeaccess_bool |
true |
container_title |
Journal of Hydrology X |
authorswithroles_txt_mv |
Xindi Yu @@aut@@ Charles P.-A. Bourque @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
1683618769 |
id |
DOAJ086229893 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ086229893</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230311044901.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.hydroa.2021.100117</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ086229893</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJdbcd2eaeecea4faab3bdcdf80e12d2dd</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA170-171</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xindi Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Controls of contemporary (2001–2018) springtime waterflow dynamics in a Large, snowmelt-dominated basin in northeastern North America</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The objective of this study was to characterise the primary forcing variables and system feedback responsible for daily waterflow dynamics within a large, international river system (Canada and USA) during 17 melt seasons from 2001 to 2018. An analysis based on extreme gradient boosting showed that daily waterflow in four subcatchments of the upper Saint John River (SJR, Wolastoq) basin during the 17 melt seasons was to a large measure controlled by the area’s seasonal warming associated with the springtime increase in regional incident global radiation and northeasterly advection of sensible and latent heat from southerly locations. Historically, seasonal surges in air temperature and cumulative snow degree-days were shown to contribute to roughly 60% of the control on subcatchment discharge by influencing the production and timing of snowmelt. Peak accumulation of snow on the ground provided the second most important control of discharge, accounting for about 15.6% of the overall control at a daily timescale. Cumulative short- and long-term forest cover losses in the four subcatchments provided some control, but at varying levels (i.e., 4.8–14.2%) dependent on the extent of total forest cover loss and other subcatchment traits. Convergent cross mapping confirmed the unidirectional, causal relationship between annual forest cover loss and daily discharge rates at the outlet of three of the four subcatchments. The strength of the annual-forest-cover-removal-to-daily-discharge signal within the four subcatchments varied, with the subcatchment with the least annual forest cover loss (<1%, over the 17 years), predictably displaying the weakest signal (p = 0.282). Forest cover removal was shown to increase springtime discharge for all subcatchments, albeit at different rates. This work provides a more comprehensive, mechanistic interpretation of daily snowmelt control of stream/river flow dynamics in northeastern North America.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Abiotic and biotic controls</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Causal inference</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Landcover loss</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Snowmelt-dominated dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Structural equation modelling</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Charles P.-A. Bourque</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Hydrology X</subfield><subfield code="d">Elsevier, 2019</subfield><subfield code="g">14(2022), Seite 100117-</subfield><subfield code="w">(DE-627)1683618769</subfield><subfield code="x">25899155</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:100117-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.hydroa.2021.100117</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/dbcd2eaeecea4faab3bdcdf80e12d2dd</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2589915521000456</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2589-9155</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2022</subfield><subfield code="h">100117-</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Xindi Yu |
spellingShingle |
Xindi Yu misc TA170-171 misc GE1-350 misc Abiotic and biotic controls misc Causal inference misc Landcover loss misc Machine learning misc Snowmelt-dominated dynamics misc Structural equation modelling misc Environmental engineering misc Environmental sciences Controls of contemporary (2001–2018) springtime waterflow dynamics in a Large, snowmelt-dominated basin in northeastern North America |
authorStr |
Xindi Yu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1683618769 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA170-171 |
illustrated |
Not Illustrated |
issn |
25899155 |
topic_title |
TA170-171 GE1-350 Controls of contemporary (2001–2018) springtime waterflow dynamics in a Large, snowmelt-dominated basin in northeastern North America Abiotic and biotic controls Causal inference Landcover loss Machine learning Snowmelt-dominated dynamics Structural equation modelling |
topic |
misc TA170-171 misc GE1-350 misc Abiotic and biotic controls misc Causal inference misc Landcover loss misc Machine learning misc Snowmelt-dominated dynamics misc Structural equation modelling misc Environmental engineering misc Environmental sciences |
topic_unstemmed |
misc TA170-171 misc GE1-350 misc Abiotic and biotic controls misc Causal inference misc Landcover loss misc Machine learning misc Snowmelt-dominated dynamics misc Structural equation modelling misc Environmental engineering misc Environmental sciences |
topic_browse |
misc TA170-171 misc GE1-350 misc Abiotic and biotic controls misc Causal inference misc Landcover loss misc Machine learning misc Snowmelt-dominated dynamics misc Structural equation modelling misc Environmental engineering misc Environmental sciences |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of Hydrology X |
hierarchy_parent_id |
1683618769 |
hierarchy_top_title |
Journal of Hydrology X |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1683618769 |
title |
Controls of contemporary (2001–2018) springtime waterflow dynamics in a Large, snowmelt-dominated basin in northeastern North America |
ctrlnum |
(DE-627)DOAJ086229893 (DE-599)DOAJdbcd2eaeecea4faab3bdcdf80e12d2dd |
title_full |
Controls of contemporary (2001–2018) springtime waterflow dynamics in a Large, snowmelt-dominated basin in northeastern North America |
author_sort |
Xindi Yu |
journal |
Journal of Hydrology X |
journalStr |
Journal of Hydrology X |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
100117 |
author_browse |
Xindi Yu Charles P.-A. Bourque |
container_volume |
14 |
class |
TA170-171 GE1-350 |
format_se |
Elektronische Aufsätze |
author-letter |
Xindi Yu |
doi_str_mv |
10.1016/j.hydroa.2021.100117 |
author2-role |
verfasserin |
title_sort |
controls of contemporary (2001–2018) springtime waterflow dynamics in a large, snowmelt-dominated basin in northeastern north america |
callnumber |
TA170-171 |
title_auth |
Controls of contemporary (2001–2018) springtime waterflow dynamics in a Large, snowmelt-dominated basin in northeastern North America |
abstract |
The objective of this study was to characterise the primary forcing variables and system feedback responsible for daily waterflow dynamics within a large, international river system (Canada and USA) during 17 melt seasons from 2001 to 2018. An analysis based on extreme gradient boosting showed that daily waterflow in four subcatchments of the upper Saint John River (SJR, Wolastoq) basin during the 17 melt seasons was to a large measure controlled by the area’s seasonal warming associated with the springtime increase in regional incident global radiation and northeasterly advection of sensible and latent heat from southerly locations. Historically, seasonal surges in air temperature and cumulative snow degree-days were shown to contribute to roughly 60% of the control on subcatchment discharge by influencing the production and timing of snowmelt. Peak accumulation of snow on the ground provided the second most important control of discharge, accounting for about 15.6% of the overall control at a daily timescale. Cumulative short- and long-term forest cover losses in the four subcatchments provided some control, but at varying levels (i.e., 4.8–14.2%) dependent on the extent of total forest cover loss and other subcatchment traits. Convergent cross mapping confirmed the unidirectional, causal relationship between annual forest cover loss and daily discharge rates at the outlet of three of the four subcatchments. The strength of the annual-forest-cover-removal-to-daily-discharge signal within the four subcatchments varied, with the subcatchment with the least annual forest cover loss (<1%, over the 17 years), predictably displaying the weakest signal (p = 0.282). Forest cover removal was shown to increase springtime discharge for all subcatchments, albeit at different rates. This work provides a more comprehensive, mechanistic interpretation of daily snowmelt control of stream/river flow dynamics in northeastern North America. |
abstractGer |
The objective of this study was to characterise the primary forcing variables and system feedback responsible for daily waterflow dynamics within a large, international river system (Canada and USA) during 17 melt seasons from 2001 to 2018. An analysis based on extreme gradient boosting showed that daily waterflow in four subcatchments of the upper Saint John River (SJR, Wolastoq) basin during the 17 melt seasons was to a large measure controlled by the area’s seasonal warming associated with the springtime increase in regional incident global radiation and northeasterly advection of sensible and latent heat from southerly locations. Historically, seasonal surges in air temperature and cumulative snow degree-days were shown to contribute to roughly 60% of the control on subcatchment discharge by influencing the production and timing of snowmelt. Peak accumulation of snow on the ground provided the second most important control of discharge, accounting for about 15.6% of the overall control at a daily timescale. Cumulative short- and long-term forest cover losses in the four subcatchments provided some control, but at varying levels (i.e., 4.8–14.2%) dependent on the extent of total forest cover loss and other subcatchment traits. Convergent cross mapping confirmed the unidirectional, causal relationship between annual forest cover loss and daily discharge rates at the outlet of three of the four subcatchments. The strength of the annual-forest-cover-removal-to-daily-discharge signal within the four subcatchments varied, with the subcatchment with the least annual forest cover loss (<1%, over the 17 years), predictably displaying the weakest signal (p = 0.282). Forest cover removal was shown to increase springtime discharge for all subcatchments, albeit at different rates. This work provides a more comprehensive, mechanistic interpretation of daily snowmelt control of stream/river flow dynamics in northeastern North America. |
abstract_unstemmed |
The objective of this study was to characterise the primary forcing variables and system feedback responsible for daily waterflow dynamics within a large, international river system (Canada and USA) during 17 melt seasons from 2001 to 2018. An analysis based on extreme gradient boosting showed that daily waterflow in four subcatchments of the upper Saint John River (SJR, Wolastoq) basin during the 17 melt seasons was to a large measure controlled by the area’s seasonal warming associated with the springtime increase in regional incident global radiation and northeasterly advection of sensible and latent heat from southerly locations. Historically, seasonal surges in air temperature and cumulative snow degree-days were shown to contribute to roughly 60% of the control on subcatchment discharge by influencing the production and timing of snowmelt. Peak accumulation of snow on the ground provided the second most important control of discharge, accounting for about 15.6% of the overall control at a daily timescale. Cumulative short- and long-term forest cover losses in the four subcatchments provided some control, but at varying levels (i.e., 4.8–14.2%) dependent on the extent of total forest cover loss and other subcatchment traits. Convergent cross mapping confirmed the unidirectional, causal relationship between annual forest cover loss and daily discharge rates at the outlet of three of the four subcatchments. The strength of the annual-forest-cover-removal-to-daily-discharge signal within the four subcatchments varied, with the subcatchment with the least annual forest cover loss (<1%, over the 17 years), predictably displaying the weakest signal (p = 0.282). Forest cover removal was shown to increase springtime discharge for all subcatchments, albeit at different rates. This work provides a more comprehensive, mechanistic interpretation of daily snowmelt control of stream/river flow dynamics in northeastern North America. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Controls of contemporary (2001–2018) springtime waterflow dynamics in a Large, snowmelt-dominated basin in northeastern North America |
url |
https://doi.org/10.1016/j.hydroa.2021.100117 https://doaj.org/article/dbcd2eaeecea4faab3bdcdf80e12d2dd http://www.sciencedirect.com/science/article/pii/S2589915521000456 https://doaj.org/toc/2589-9155 |
remote_bool |
true |
author2 |
Charles P.-A. Bourque |
author2Str |
Charles P.-A. Bourque |
ppnlink |
1683618769 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.hydroa.2021.100117 |
callnumber-a |
TA170-171 |
up_date |
2024-07-03T19:26:26.024Z |
_version_ |
1803587195795144704 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ086229893</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230311044901.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.hydroa.2021.100117</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ086229893</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJdbcd2eaeecea4faab3bdcdf80e12d2dd</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA170-171</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xindi Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Controls of contemporary (2001–2018) springtime waterflow dynamics in a Large, snowmelt-dominated basin in northeastern North America</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The objective of this study was to characterise the primary forcing variables and system feedback responsible for daily waterflow dynamics within a large, international river system (Canada and USA) during 17 melt seasons from 2001 to 2018. An analysis based on extreme gradient boosting showed that daily waterflow in four subcatchments of the upper Saint John River (SJR, Wolastoq) basin during the 17 melt seasons was to a large measure controlled by the area’s seasonal warming associated with the springtime increase in regional incident global radiation and northeasterly advection of sensible and latent heat from southerly locations. Historically, seasonal surges in air temperature and cumulative snow degree-days were shown to contribute to roughly 60% of the control on subcatchment discharge by influencing the production and timing of snowmelt. Peak accumulation of snow on the ground provided the second most important control of discharge, accounting for about 15.6% of the overall control at a daily timescale. Cumulative short- and long-term forest cover losses in the four subcatchments provided some control, but at varying levels (i.e., 4.8–14.2%) dependent on the extent of total forest cover loss and other subcatchment traits. Convergent cross mapping confirmed the unidirectional, causal relationship between annual forest cover loss and daily discharge rates at the outlet of three of the four subcatchments. The strength of the annual-forest-cover-removal-to-daily-discharge signal within the four subcatchments varied, with the subcatchment with the least annual forest cover loss (<1%, over the 17 years), predictably displaying the weakest signal (p = 0.282). Forest cover removal was shown to increase springtime discharge for all subcatchments, albeit at different rates. This work provides a more comprehensive, mechanistic interpretation of daily snowmelt control of stream/river flow dynamics in northeastern North America.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Abiotic and biotic controls</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Causal inference</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Landcover loss</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Snowmelt-dominated dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Structural equation modelling</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Charles P.-A. Bourque</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Hydrology X</subfield><subfield code="d">Elsevier, 2019</subfield><subfield code="g">14(2022), Seite 100117-</subfield><subfield code="w">(DE-627)1683618769</subfield><subfield code="x">25899155</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:100117-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.hydroa.2021.100117</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/dbcd2eaeecea4faab3bdcdf80e12d2dd</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2589915521000456</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2589-9155</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2022</subfield><subfield code="h">100117-</subfield></datafield></record></collection>
|
score |
7.402915 |