Torque ripple investigation in coaxial magnetic gears
Magnetic gears offer significant advantages such as low noise and vibration level, lower maintenance and higher reliability compared to mechanical gears and are suitable for many applications in the industry. The coaxial magnetic gear has been extensively discussed in the literature, since it achiev...
Ausführliche Beschreibung
Autor*in: |
Tzouganakis Panteleimon [verfasserIn] Gakos Vasilios [verfasserIn] Kalligeros Christos [verfasserIn] Papalexis Christos [verfasserIn] Tsolakis Antonios [verfasserIn] Spitas Vasilios [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch ; Französisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: MATEC Web of Conferences - EDP Sciences, 2013, 366, p 01004(2022) |
---|---|
Übergeordnetes Werk: |
volume:366, p 01004 ; year:2022 |
Links: |
---|
DOI / URN: |
10.1051/matecconf/202236601004 |
---|
Katalog-ID: |
DOAJ086322648 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ086322648 | ||
003 | DE-627 | ||
005 | 20230311050005.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1051/matecconf/202236601004 |2 doi | |
035 | |a (DE-627)DOAJ086322648 | ||
035 | |a (DE-599)DOAJ39c2392e251747f8a6afd402e68ebe86 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng |a fre | ||
050 | 0 | |a TA1-2040 | |
100 | 0 | |a Tzouganakis Panteleimon |e verfasserin |4 aut | |
245 | 1 | 0 | |a Torque ripple investigation in coaxial magnetic gears |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Magnetic gears offer significant advantages such as low noise and vibration level, lower maintenance and higher reliability compared to mechanical gears and are suitable for many applications in the industry. The coaxial magnetic gear has been extensively discussed in the literature, since it achieves higher torque densities amongst other magnetic gear configurations. The magnetic field is generated by permanent magnets mounted on the two rotors and a modulator between them. The modulator consists of ferromagnetic segments that are typically encased in a resin in order to increase its stiffness without compromising the generated magnetic field. However, due to the development of radial forces, oscillations of the ferromagnetic segments occur, which lead to torque ripples that affect the operation of the coaxial magnetic gear drive in applications where accuracy is required. This work introduces a computationally lightweight analytical 2D model in order to determine the applied radial force on the ferromagnetic segments at each angle of rotation of the two rotors and henceforth calculate the displacement of these segments using FEA. In this way it is possible to assess the variation of the torque (ripple) versus the angle of rotation of the input or output shaft. A parametric investigation examining the influence of the ferromagnetic segment thickness on the resulting torque ripple of a specific drive was carried out illustrating the benefits of the analytical models developed herein. | ||
650 | 4 | |a coaxial magnetic gear | |
650 | 4 | |a torque ripples | |
650 | 4 | |a analytical model | |
650 | 4 | |a maxwell stress tensor | |
653 | 0 | |a Engineering (General). Civil engineering (General) | |
700 | 0 | |a Gakos Vasilios |e verfasserin |4 aut | |
700 | 0 | |a Kalligeros Christos |e verfasserin |4 aut | |
700 | 0 | |a Papalexis Christos |e verfasserin |4 aut | |
700 | 0 | |a Tsolakis Antonios |e verfasserin |4 aut | |
700 | 0 | |a Spitas Vasilios |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t MATEC Web of Conferences |d EDP Sciences, 2013 |g 366, p 01004(2022) |w (DE-627)720166209 |w (DE-600)2673602-0 |x 2261236X |7 nnns |
773 | 1 | 8 | |g volume:366, p 01004 |g year:2022 |
856 | 4 | 0 | |u https://doi.org/10.1051/matecconf/202236601004 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/39c2392e251747f8a6afd402e68ebe86 |z kostenfrei |
856 | 4 | 0 | |u https://www.matec-conferences.org/articles/matecconf/pdf/2022/13/matecconf_pt22_01004.pdf |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2261-236X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 366, p 01004 |j 2022 |
author_variant |
t p tp g v gv k c kc p c pc t a ta s v sv |
---|---|
matchkey_str |
article:2261236X:2022----::oqeipenetgtoicai |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TA |
publishDate |
2022 |
allfields |
10.1051/matecconf/202236601004 doi (DE-627)DOAJ086322648 (DE-599)DOAJ39c2392e251747f8a6afd402e68ebe86 DE-627 ger DE-627 rakwb eng fre TA1-2040 Tzouganakis Panteleimon verfasserin aut Torque ripple investigation in coaxial magnetic gears 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Magnetic gears offer significant advantages such as low noise and vibration level, lower maintenance and higher reliability compared to mechanical gears and are suitable for many applications in the industry. The coaxial magnetic gear has been extensively discussed in the literature, since it achieves higher torque densities amongst other magnetic gear configurations. The magnetic field is generated by permanent magnets mounted on the two rotors and a modulator between them. The modulator consists of ferromagnetic segments that are typically encased in a resin in order to increase its stiffness without compromising the generated magnetic field. However, due to the development of radial forces, oscillations of the ferromagnetic segments occur, which lead to torque ripples that affect the operation of the coaxial magnetic gear drive in applications where accuracy is required. This work introduces a computationally lightweight analytical 2D model in order to determine the applied radial force on the ferromagnetic segments at each angle of rotation of the two rotors and henceforth calculate the displacement of these segments using FEA. In this way it is possible to assess the variation of the torque (ripple) versus the angle of rotation of the input or output shaft. A parametric investigation examining the influence of the ferromagnetic segment thickness on the resulting torque ripple of a specific drive was carried out illustrating the benefits of the analytical models developed herein. coaxial magnetic gear torque ripples analytical model maxwell stress tensor Engineering (General). Civil engineering (General) Gakos Vasilios verfasserin aut Kalligeros Christos verfasserin aut Papalexis Christos verfasserin aut Tsolakis Antonios verfasserin aut Spitas Vasilios verfasserin aut In MATEC Web of Conferences EDP Sciences, 2013 366, p 01004(2022) (DE-627)720166209 (DE-600)2673602-0 2261236X nnns volume:366, p 01004 year:2022 https://doi.org/10.1051/matecconf/202236601004 kostenfrei https://doaj.org/article/39c2392e251747f8a6afd402e68ebe86 kostenfrei https://www.matec-conferences.org/articles/matecconf/pdf/2022/13/matecconf_pt22_01004.pdf kostenfrei https://doaj.org/toc/2261-236X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 366, p 01004 2022 |
spelling |
10.1051/matecconf/202236601004 doi (DE-627)DOAJ086322648 (DE-599)DOAJ39c2392e251747f8a6afd402e68ebe86 DE-627 ger DE-627 rakwb eng fre TA1-2040 Tzouganakis Panteleimon verfasserin aut Torque ripple investigation in coaxial magnetic gears 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Magnetic gears offer significant advantages such as low noise and vibration level, lower maintenance and higher reliability compared to mechanical gears and are suitable for many applications in the industry. The coaxial magnetic gear has been extensively discussed in the literature, since it achieves higher torque densities amongst other magnetic gear configurations. The magnetic field is generated by permanent magnets mounted on the two rotors and a modulator between them. The modulator consists of ferromagnetic segments that are typically encased in a resin in order to increase its stiffness without compromising the generated magnetic field. However, due to the development of radial forces, oscillations of the ferromagnetic segments occur, which lead to torque ripples that affect the operation of the coaxial magnetic gear drive in applications where accuracy is required. This work introduces a computationally lightweight analytical 2D model in order to determine the applied radial force on the ferromagnetic segments at each angle of rotation of the two rotors and henceforth calculate the displacement of these segments using FEA. In this way it is possible to assess the variation of the torque (ripple) versus the angle of rotation of the input or output shaft. A parametric investigation examining the influence of the ferromagnetic segment thickness on the resulting torque ripple of a specific drive was carried out illustrating the benefits of the analytical models developed herein. coaxial magnetic gear torque ripples analytical model maxwell stress tensor Engineering (General). Civil engineering (General) Gakos Vasilios verfasserin aut Kalligeros Christos verfasserin aut Papalexis Christos verfasserin aut Tsolakis Antonios verfasserin aut Spitas Vasilios verfasserin aut In MATEC Web of Conferences EDP Sciences, 2013 366, p 01004(2022) (DE-627)720166209 (DE-600)2673602-0 2261236X nnns volume:366, p 01004 year:2022 https://doi.org/10.1051/matecconf/202236601004 kostenfrei https://doaj.org/article/39c2392e251747f8a6afd402e68ebe86 kostenfrei https://www.matec-conferences.org/articles/matecconf/pdf/2022/13/matecconf_pt22_01004.pdf kostenfrei https://doaj.org/toc/2261-236X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 366, p 01004 2022 |
allfields_unstemmed |
10.1051/matecconf/202236601004 doi (DE-627)DOAJ086322648 (DE-599)DOAJ39c2392e251747f8a6afd402e68ebe86 DE-627 ger DE-627 rakwb eng fre TA1-2040 Tzouganakis Panteleimon verfasserin aut Torque ripple investigation in coaxial magnetic gears 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Magnetic gears offer significant advantages such as low noise and vibration level, lower maintenance and higher reliability compared to mechanical gears and are suitable for many applications in the industry. The coaxial magnetic gear has been extensively discussed in the literature, since it achieves higher torque densities amongst other magnetic gear configurations. The magnetic field is generated by permanent magnets mounted on the two rotors and a modulator between them. The modulator consists of ferromagnetic segments that are typically encased in a resin in order to increase its stiffness without compromising the generated magnetic field. However, due to the development of radial forces, oscillations of the ferromagnetic segments occur, which lead to torque ripples that affect the operation of the coaxial magnetic gear drive in applications where accuracy is required. This work introduces a computationally lightweight analytical 2D model in order to determine the applied radial force on the ferromagnetic segments at each angle of rotation of the two rotors and henceforth calculate the displacement of these segments using FEA. In this way it is possible to assess the variation of the torque (ripple) versus the angle of rotation of the input or output shaft. A parametric investigation examining the influence of the ferromagnetic segment thickness on the resulting torque ripple of a specific drive was carried out illustrating the benefits of the analytical models developed herein. coaxial magnetic gear torque ripples analytical model maxwell stress tensor Engineering (General). Civil engineering (General) Gakos Vasilios verfasserin aut Kalligeros Christos verfasserin aut Papalexis Christos verfasserin aut Tsolakis Antonios verfasserin aut Spitas Vasilios verfasserin aut In MATEC Web of Conferences EDP Sciences, 2013 366, p 01004(2022) (DE-627)720166209 (DE-600)2673602-0 2261236X nnns volume:366, p 01004 year:2022 https://doi.org/10.1051/matecconf/202236601004 kostenfrei https://doaj.org/article/39c2392e251747f8a6afd402e68ebe86 kostenfrei https://www.matec-conferences.org/articles/matecconf/pdf/2022/13/matecconf_pt22_01004.pdf kostenfrei https://doaj.org/toc/2261-236X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 366, p 01004 2022 |
allfieldsGer |
10.1051/matecconf/202236601004 doi (DE-627)DOAJ086322648 (DE-599)DOAJ39c2392e251747f8a6afd402e68ebe86 DE-627 ger DE-627 rakwb eng fre TA1-2040 Tzouganakis Panteleimon verfasserin aut Torque ripple investigation in coaxial magnetic gears 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Magnetic gears offer significant advantages such as low noise and vibration level, lower maintenance and higher reliability compared to mechanical gears and are suitable for many applications in the industry. The coaxial magnetic gear has been extensively discussed in the literature, since it achieves higher torque densities amongst other magnetic gear configurations. The magnetic field is generated by permanent magnets mounted on the two rotors and a modulator between them. The modulator consists of ferromagnetic segments that are typically encased in a resin in order to increase its stiffness without compromising the generated magnetic field. However, due to the development of radial forces, oscillations of the ferromagnetic segments occur, which lead to torque ripples that affect the operation of the coaxial magnetic gear drive in applications where accuracy is required. This work introduces a computationally lightweight analytical 2D model in order to determine the applied radial force on the ferromagnetic segments at each angle of rotation of the two rotors and henceforth calculate the displacement of these segments using FEA. In this way it is possible to assess the variation of the torque (ripple) versus the angle of rotation of the input or output shaft. A parametric investigation examining the influence of the ferromagnetic segment thickness on the resulting torque ripple of a specific drive was carried out illustrating the benefits of the analytical models developed herein. coaxial magnetic gear torque ripples analytical model maxwell stress tensor Engineering (General). Civil engineering (General) Gakos Vasilios verfasserin aut Kalligeros Christos verfasserin aut Papalexis Christos verfasserin aut Tsolakis Antonios verfasserin aut Spitas Vasilios verfasserin aut In MATEC Web of Conferences EDP Sciences, 2013 366, p 01004(2022) (DE-627)720166209 (DE-600)2673602-0 2261236X nnns volume:366, p 01004 year:2022 https://doi.org/10.1051/matecconf/202236601004 kostenfrei https://doaj.org/article/39c2392e251747f8a6afd402e68ebe86 kostenfrei https://www.matec-conferences.org/articles/matecconf/pdf/2022/13/matecconf_pt22_01004.pdf kostenfrei https://doaj.org/toc/2261-236X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 366, p 01004 2022 |
allfieldsSound |
10.1051/matecconf/202236601004 doi (DE-627)DOAJ086322648 (DE-599)DOAJ39c2392e251747f8a6afd402e68ebe86 DE-627 ger DE-627 rakwb eng fre TA1-2040 Tzouganakis Panteleimon verfasserin aut Torque ripple investigation in coaxial magnetic gears 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Magnetic gears offer significant advantages such as low noise and vibration level, lower maintenance and higher reliability compared to mechanical gears and are suitable for many applications in the industry. The coaxial magnetic gear has been extensively discussed in the literature, since it achieves higher torque densities amongst other magnetic gear configurations. The magnetic field is generated by permanent magnets mounted on the two rotors and a modulator between them. The modulator consists of ferromagnetic segments that are typically encased in a resin in order to increase its stiffness without compromising the generated magnetic field. However, due to the development of radial forces, oscillations of the ferromagnetic segments occur, which lead to torque ripples that affect the operation of the coaxial magnetic gear drive in applications where accuracy is required. This work introduces a computationally lightweight analytical 2D model in order to determine the applied radial force on the ferromagnetic segments at each angle of rotation of the two rotors and henceforth calculate the displacement of these segments using FEA. In this way it is possible to assess the variation of the torque (ripple) versus the angle of rotation of the input or output shaft. A parametric investigation examining the influence of the ferromagnetic segment thickness on the resulting torque ripple of a specific drive was carried out illustrating the benefits of the analytical models developed herein. coaxial magnetic gear torque ripples analytical model maxwell stress tensor Engineering (General). Civil engineering (General) Gakos Vasilios verfasserin aut Kalligeros Christos verfasserin aut Papalexis Christos verfasserin aut Tsolakis Antonios verfasserin aut Spitas Vasilios verfasserin aut In MATEC Web of Conferences EDP Sciences, 2013 366, p 01004(2022) (DE-627)720166209 (DE-600)2673602-0 2261236X nnns volume:366, p 01004 year:2022 https://doi.org/10.1051/matecconf/202236601004 kostenfrei https://doaj.org/article/39c2392e251747f8a6afd402e68ebe86 kostenfrei https://www.matec-conferences.org/articles/matecconf/pdf/2022/13/matecconf_pt22_01004.pdf kostenfrei https://doaj.org/toc/2261-236X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 366, p 01004 2022 |
language |
English French |
source |
In MATEC Web of Conferences 366, p 01004(2022) volume:366, p 01004 year:2022 |
sourceStr |
In MATEC Web of Conferences 366, p 01004(2022) volume:366, p 01004 year:2022 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
coaxial magnetic gear torque ripples analytical model maxwell stress tensor Engineering (General). Civil engineering (General) |
isfreeaccess_bool |
true |
container_title |
MATEC Web of Conferences |
authorswithroles_txt_mv |
Tzouganakis Panteleimon @@aut@@ Gakos Vasilios @@aut@@ Kalligeros Christos @@aut@@ Papalexis Christos @@aut@@ Tsolakis Antonios @@aut@@ Spitas Vasilios @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
720166209 |
id |
DOAJ086322648 |
language_de |
englisch franzoesisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ086322648</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230311050005.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1051/matecconf/202236601004</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ086322648</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ39c2392e251747f8a6afd402e68ebe86</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield><subfield code="a">fre</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Tzouganakis Panteleimon</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Torque ripple investigation in coaxial magnetic gears</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Magnetic gears offer significant advantages such as low noise and vibration level, lower maintenance and higher reliability compared to mechanical gears and are suitable for many applications in the industry. The coaxial magnetic gear has been extensively discussed in the literature, since it achieves higher torque densities amongst other magnetic gear configurations. The magnetic field is generated by permanent magnets mounted on the two rotors and a modulator between them. The modulator consists of ferromagnetic segments that are typically encased in a resin in order to increase its stiffness without compromising the generated magnetic field. However, due to the development of radial forces, oscillations of the ferromagnetic segments occur, which lead to torque ripples that affect the operation of the coaxial magnetic gear drive in applications where accuracy is required. This work introduces a computationally lightweight analytical 2D model in order to determine the applied radial force on the ferromagnetic segments at each angle of rotation of the two rotors and henceforth calculate the displacement of these segments using FEA. In this way it is possible to assess the variation of the torque (ripple) versus the angle of rotation of the input or output shaft. A parametric investigation examining the influence of the ferromagnetic segment thickness on the resulting torque ripple of a specific drive was carried out illustrating the benefits of the analytical models developed herein.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">coaxial magnetic gear</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">torque ripples</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">analytical model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">maxwell stress tensor</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gakos Vasilios</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kalligeros Christos</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Papalexis Christos</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tsolakis Antonios</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Spitas Vasilios</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">MATEC Web of Conferences</subfield><subfield code="d">EDP Sciences, 2013</subfield><subfield code="g">366, p 01004(2022)</subfield><subfield code="w">(DE-627)720166209</subfield><subfield code="w">(DE-600)2673602-0</subfield><subfield code="x">2261236X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:366, p 01004</subfield><subfield code="g">year:2022</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1051/matecconf/202236601004</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/39c2392e251747f8a6afd402e68ebe86</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.matec-conferences.org/articles/matecconf/pdf/2022/13/matecconf_pt22_01004.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2261-236X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">366, p 01004</subfield><subfield code="j">2022</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Tzouganakis Panteleimon |
spellingShingle |
Tzouganakis Panteleimon misc TA1-2040 misc coaxial magnetic gear misc torque ripples misc analytical model misc maxwell stress tensor misc Engineering (General). Civil engineering (General) Torque ripple investigation in coaxial magnetic gears |
authorStr |
Tzouganakis Panteleimon |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)720166209 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA1-2040 |
illustrated |
Not Illustrated |
issn |
2261236X |
topic_title |
TA1-2040 Torque ripple investigation in coaxial magnetic gears coaxial magnetic gear torque ripples analytical model maxwell stress tensor |
topic |
misc TA1-2040 misc coaxial magnetic gear misc torque ripples misc analytical model misc maxwell stress tensor misc Engineering (General). Civil engineering (General) |
topic_unstemmed |
misc TA1-2040 misc coaxial magnetic gear misc torque ripples misc analytical model misc maxwell stress tensor misc Engineering (General). Civil engineering (General) |
topic_browse |
misc TA1-2040 misc coaxial magnetic gear misc torque ripples misc analytical model misc maxwell stress tensor misc Engineering (General). Civil engineering (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
MATEC Web of Conferences |
hierarchy_parent_id |
720166209 |
hierarchy_top_title |
MATEC Web of Conferences |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)720166209 (DE-600)2673602-0 |
title |
Torque ripple investigation in coaxial magnetic gears |
ctrlnum |
(DE-627)DOAJ086322648 (DE-599)DOAJ39c2392e251747f8a6afd402e68ebe86 |
title_full |
Torque ripple investigation in coaxial magnetic gears |
author_sort |
Tzouganakis Panteleimon |
journal |
MATEC Web of Conferences |
journalStr |
MATEC Web of Conferences |
callnumber-first-code |
T |
lang_code |
eng fre |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Tzouganakis Panteleimon Gakos Vasilios Kalligeros Christos Papalexis Christos Tsolakis Antonios Spitas Vasilios |
container_volume |
366, p 01004 |
class |
TA1-2040 |
format_se |
Elektronische Aufsätze |
author-letter |
Tzouganakis Panteleimon |
doi_str_mv |
10.1051/matecconf/202236601004 |
author2-role |
verfasserin |
title_sort |
torque ripple investigation in coaxial magnetic gears |
callnumber |
TA1-2040 |
title_auth |
Torque ripple investigation in coaxial magnetic gears |
abstract |
Magnetic gears offer significant advantages such as low noise and vibration level, lower maintenance and higher reliability compared to mechanical gears and are suitable for many applications in the industry. The coaxial magnetic gear has been extensively discussed in the literature, since it achieves higher torque densities amongst other magnetic gear configurations. The magnetic field is generated by permanent magnets mounted on the two rotors and a modulator between them. The modulator consists of ferromagnetic segments that are typically encased in a resin in order to increase its stiffness without compromising the generated magnetic field. However, due to the development of radial forces, oscillations of the ferromagnetic segments occur, which lead to torque ripples that affect the operation of the coaxial magnetic gear drive in applications where accuracy is required. This work introduces a computationally lightweight analytical 2D model in order to determine the applied radial force on the ferromagnetic segments at each angle of rotation of the two rotors and henceforth calculate the displacement of these segments using FEA. In this way it is possible to assess the variation of the torque (ripple) versus the angle of rotation of the input or output shaft. A parametric investigation examining the influence of the ferromagnetic segment thickness on the resulting torque ripple of a specific drive was carried out illustrating the benefits of the analytical models developed herein. |
abstractGer |
Magnetic gears offer significant advantages such as low noise and vibration level, lower maintenance and higher reliability compared to mechanical gears and are suitable for many applications in the industry. The coaxial magnetic gear has been extensively discussed in the literature, since it achieves higher torque densities amongst other magnetic gear configurations. The magnetic field is generated by permanent magnets mounted on the two rotors and a modulator between them. The modulator consists of ferromagnetic segments that are typically encased in a resin in order to increase its stiffness without compromising the generated magnetic field. However, due to the development of radial forces, oscillations of the ferromagnetic segments occur, which lead to torque ripples that affect the operation of the coaxial magnetic gear drive in applications where accuracy is required. This work introduces a computationally lightweight analytical 2D model in order to determine the applied radial force on the ferromagnetic segments at each angle of rotation of the two rotors and henceforth calculate the displacement of these segments using FEA. In this way it is possible to assess the variation of the torque (ripple) versus the angle of rotation of the input or output shaft. A parametric investigation examining the influence of the ferromagnetic segment thickness on the resulting torque ripple of a specific drive was carried out illustrating the benefits of the analytical models developed herein. |
abstract_unstemmed |
Magnetic gears offer significant advantages such as low noise and vibration level, lower maintenance and higher reliability compared to mechanical gears and are suitable for many applications in the industry. The coaxial magnetic gear has been extensively discussed in the literature, since it achieves higher torque densities amongst other magnetic gear configurations. The magnetic field is generated by permanent magnets mounted on the two rotors and a modulator between them. The modulator consists of ferromagnetic segments that are typically encased in a resin in order to increase its stiffness without compromising the generated magnetic field. However, due to the development of radial forces, oscillations of the ferromagnetic segments occur, which lead to torque ripples that affect the operation of the coaxial magnetic gear drive in applications where accuracy is required. This work introduces a computationally lightweight analytical 2D model in order to determine the applied radial force on the ferromagnetic segments at each angle of rotation of the two rotors and henceforth calculate the displacement of these segments using FEA. In this way it is possible to assess the variation of the torque (ripple) versus the angle of rotation of the input or output shaft. A parametric investigation examining the influence of the ferromagnetic segment thickness on the resulting torque ripple of a specific drive was carried out illustrating the benefits of the analytical models developed herein. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Torque ripple investigation in coaxial magnetic gears |
url |
https://doi.org/10.1051/matecconf/202236601004 https://doaj.org/article/39c2392e251747f8a6afd402e68ebe86 https://www.matec-conferences.org/articles/matecconf/pdf/2022/13/matecconf_pt22_01004.pdf https://doaj.org/toc/2261-236X |
remote_bool |
true |
author2 |
Gakos Vasilios Kalligeros Christos Papalexis Christos Tsolakis Antonios Spitas Vasilios |
author2Str |
Gakos Vasilios Kalligeros Christos Papalexis Christos Tsolakis Antonios Spitas Vasilios |
ppnlink |
720166209 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1051/matecconf/202236601004 |
callnumber-a |
TA1-2040 |
up_date |
2024-07-03T19:58:17.819Z |
_version_ |
1803589200454352896 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ086322648</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230311050005.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1051/matecconf/202236601004</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ086322648</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ39c2392e251747f8a6afd402e68ebe86</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield><subfield code="a">fre</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Tzouganakis Panteleimon</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Torque ripple investigation in coaxial magnetic gears</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Magnetic gears offer significant advantages such as low noise and vibration level, lower maintenance and higher reliability compared to mechanical gears and are suitable for many applications in the industry. The coaxial magnetic gear has been extensively discussed in the literature, since it achieves higher torque densities amongst other magnetic gear configurations. The magnetic field is generated by permanent magnets mounted on the two rotors and a modulator between them. The modulator consists of ferromagnetic segments that are typically encased in a resin in order to increase its stiffness without compromising the generated magnetic field. However, due to the development of radial forces, oscillations of the ferromagnetic segments occur, which lead to torque ripples that affect the operation of the coaxial magnetic gear drive in applications where accuracy is required. This work introduces a computationally lightweight analytical 2D model in order to determine the applied radial force on the ferromagnetic segments at each angle of rotation of the two rotors and henceforth calculate the displacement of these segments using FEA. In this way it is possible to assess the variation of the torque (ripple) versus the angle of rotation of the input or output shaft. A parametric investigation examining the influence of the ferromagnetic segment thickness on the resulting torque ripple of a specific drive was carried out illustrating the benefits of the analytical models developed herein.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">coaxial magnetic gear</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">torque ripples</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">analytical model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">maxwell stress tensor</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gakos Vasilios</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kalligeros Christos</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Papalexis Christos</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tsolakis Antonios</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Spitas Vasilios</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">MATEC Web of Conferences</subfield><subfield code="d">EDP Sciences, 2013</subfield><subfield code="g">366, p 01004(2022)</subfield><subfield code="w">(DE-627)720166209</subfield><subfield code="w">(DE-600)2673602-0</subfield><subfield code="x">2261236X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:366, p 01004</subfield><subfield code="g">year:2022</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1051/matecconf/202236601004</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/39c2392e251747f8a6afd402e68ebe86</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.matec-conferences.org/articles/matecconf/pdf/2022/13/matecconf_pt22_01004.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2261-236X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">366, p 01004</subfield><subfield code="j">2022</subfield></datafield></record></collection>
|
score |
7.402128 |