Partitioning the Effects of Soil Legacy and Pathogen Exposure Determining Soil Suppressiveness via Induced Systemic Resistance
Beneficial host-associated bacteria can assist plant protection against pathogens. In particular, specific microbes are able to induce plant systemic resistance. However, it remains largely elusive which specific microbial taxa and functions trigger plant immune responses associated with disease sup...
Ausführliche Beschreibung
Autor*in: |
Na Zhang [verfasserIn] Chengzhi Zhu [verfasserIn] Zongzhuan Shen [verfasserIn] Chengyuan Tao [verfasserIn] Yannan Ou [verfasserIn] Rong Li [verfasserIn] Xuhui Deng [verfasserIn] Qirong Shen [verfasserIn] Francisco Dini-Andreote [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Plants - MDPI AG, 2013, 11(2022), 21, p 2816 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2022 ; number:21, p 2816 |
Links: |
---|
DOI / URN: |
10.3390/plants11212816 |
---|
Katalog-ID: |
DOAJ086453238 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ086453238 | ||
003 | DE-627 | ||
005 | 20240414171428.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/plants11212816 |2 doi | |
035 | |a (DE-627)DOAJ086453238 | ||
035 | |a (DE-599)DOAJ30baa126ce234d3094f086c8af293164 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QK1-989 | |
100 | 0 | |a Na Zhang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Partitioning the Effects of Soil Legacy and Pathogen Exposure Determining Soil Suppressiveness via Induced Systemic Resistance |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Beneficial host-associated bacteria can assist plant protection against pathogens. In particular, specific microbes are able to induce plant systemic resistance. However, it remains largely elusive which specific microbial taxa and functions trigger plant immune responses associated with disease suppression. Here, we experimentally studied this by setting up two independent microcosm experiments that differed in the time at which plants were exposed to the pathogen and the soil legacy (i.e., soils with historically suppressive or conducive). Overall, we found soil legacy effects to have a major influence on disease suppression irrespective of the time prior to pathogen exposure. Rhizosphere bacterial communities of tomato plants were significantly different between the two soils, with potential beneficial strains occurring at higher relative abundances in the suppressive soil. Root transcriptome analysis revealed the soil legacy to induce differences in gene expression, most importantly, genes involved in the pathway of phenylpropanoid biosynthesis. Last, we found genes in the phenylpropanoid biosynthesis pathway to correlate with specific microbial taxa, including <i<Gp6</i<, <i<Actinomarinicola</i<, <i<Niastella</i<, <i<Phaeodactylibacter</i<, <i<Longimicrobium</i<, <i<Bythopirellula</i<, <i<Brevundimonas</i<, <i<Ferruginivarius</i<, <i<Kushneria</i<, <i<Methylomarinovum</i<, <i<Pseudolabrys</i<, <i<Sphingobium</i<, <i<Sphingomonas</i<, and <i<Alterococcus</i<. Taken together, our study points to the potential regulation of plant systemic resistance by specific microbial taxa, and the importance of soil legacy on disease incidence and eliciting plant-defense mechanisms. | ||
650 | 4 | |a bacterial wilt | |
650 | 4 | |a suppressive soil | |
650 | 4 | |a split-root system | |
650 | 4 | |a soil legacy | |
650 | 4 | |a transcriptome | |
650 | 4 | |a plant systemic resistance | |
653 | 0 | |a Botany | |
700 | 0 | |a Chengzhi Zhu |e verfasserin |4 aut | |
700 | 0 | |a Zongzhuan Shen |e verfasserin |4 aut | |
700 | 0 | |a Chengyuan Tao |e verfasserin |4 aut | |
700 | 0 | |a Yannan Ou |e verfasserin |4 aut | |
700 | 0 | |a Rong Li |e verfasserin |4 aut | |
700 | 0 | |a Xuhui Deng |e verfasserin |4 aut | |
700 | 0 | |a Qirong Shen |e verfasserin |4 aut | |
700 | 0 | |a Francisco Dini-Andreote |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Plants |d MDPI AG, 2013 |g 11(2022), 21, p 2816 |w (DE-627)737288345 |w (DE-600)2704341-1 |x 22237747 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2022 |g number:21, p 2816 |
856 | 4 | 0 | |u https://doi.org/10.3390/plants11212816 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/30baa126ce234d3094f086c8af293164 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2223-7747/11/21/2816 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2223-7747 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2022 |e 21, p 2816 |
author_variant |
n z nz c z cz z s zs c t ct y o yo r l rl x d xd q s qs f d a fda |
---|---|
matchkey_str |
article:22237747:2022----::attoighefcsfoleaynptoeepsrdtriigolupesvn |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
QK |
publishDate |
2022 |
allfields |
10.3390/plants11212816 doi (DE-627)DOAJ086453238 (DE-599)DOAJ30baa126ce234d3094f086c8af293164 DE-627 ger DE-627 rakwb eng QK1-989 Na Zhang verfasserin aut Partitioning the Effects of Soil Legacy and Pathogen Exposure Determining Soil Suppressiveness via Induced Systemic Resistance 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Beneficial host-associated bacteria can assist plant protection against pathogens. In particular, specific microbes are able to induce plant systemic resistance. However, it remains largely elusive which specific microbial taxa and functions trigger plant immune responses associated with disease suppression. Here, we experimentally studied this by setting up two independent microcosm experiments that differed in the time at which plants were exposed to the pathogen and the soil legacy (i.e., soils with historically suppressive or conducive). Overall, we found soil legacy effects to have a major influence on disease suppression irrespective of the time prior to pathogen exposure. Rhizosphere bacterial communities of tomato plants were significantly different between the two soils, with potential beneficial strains occurring at higher relative abundances in the suppressive soil. Root transcriptome analysis revealed the soil legacy to induce differences in gene expression, most importantly, genes involved in the pathway of phenylpropanoid biosynthesis. Last, we found genes in the phenylpropanoid biosynthesis pathway to correlate with specific microbial taxa, including <i<Gp6</i<, <i<Actinomarinicola</i<, <i<Niastella</i<, <i<Phaeodactylibacter</i<, <i<Longimicrobium</i<, <i<Bythopirellula</i<, <i<Brevundimonas</i<, <i<Ferruginivarius</i<, <i<Kushneria</i<, <i<Methylomarinovum</i<, <i<Pseudolabrys</i<, <i<Sphingobium</i<, <i<Sphingomonas</i<, and <i<Alterococcus</i<. Taken together, our study points to the potential regulation of plant systemic resistance by specific microbial taxa, and the importance of soil legacy on disease incidence and eliciting plant-defense mechanisms. bacterial wilt suppressive soil split-root system soil legacy transcriptome plant systemic resistance Botany Chengzhi Zhu verfasserin aut Zongzhuan Shen verfasserin aut Chengyuan Tao verfasserin aut Yannan Ou verfasserin aut Rong Li verfasserin aut Xuhui Deng verfasserin aut Qirong Shen verfasserin aut Francisco Dini-Andreote verfasserin aut In Plants MDPI AG, 2013 11(2022), 21, p 2816 (DE-627)737288345 (DE-600)2704341-1 22237747 nnns volume:11 year:2022 number:21, p 2816 https://doi.org/10.3390/plants11212816 kostenfrei https://doaj.org/article/30baa126ce234d3094f086c8af293164 kostenfrei https://www.mdpi.com/2223-7747/11/21/2816 kostenfrei https://doaj.org/toc/2223-7747 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2022 21, p 2816 |
spelling |
10.3390/plants11212816 doi (DE-627)DOAJ086453238 (DE-599)DOAJ30baa126ce234d3094f086c8af293164 DE-627 ger DE-627 rakwb eng QK1-989 Na Zhang verfasserin aut Partitioning the Effects of Soil Legacy and Pathogen Exposure Determining Soil Suppressiveness via Induced Systemic Resistance 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Beneficial host-associated bacteria can assist plant protection against pathogens. In particular, specific microbes are able to induce plant systemic resistance. However, it remains largely elusive which specific microbial taxa and functions trigger plant immune responses associated with disease suppression. Here, we experimentally studied this by setting up two independent microcosm experiments that differed in the time at which plants were exposed to the pathogen and the soil legacy (i.e., soils with historically suppressive or conducive). Overall, we found soil legacy effects to have a major influence on disease suppression irrespective of the time prior to pathogen exposure. Rhizosphere bacterial communities of tomato plants were significantly different between the two soils, with potential beneficial strains occurring at higher relative abundances in the suppressive soil. Root transcriptome analysis revealed the soil legacy to induce differences in gene expression, most importantly, genes involved in the pathway of phenylpropanoid biosynthesis. Last, we found genes in the phenylpropanoid biosynthesis pathway to correlate with specific microbial taxa, including <i<Gp6</i<, <i<Actinomarinicola</i<, <i<Niastella</i<, <i<Phaeodactylibacter</i<, <i<Longimicrobium</i<, <i<Bythopirellula</i<, <i<Brevundimonas</i<, <i<Ferruginivarius</i<, <i<Kushneria</i<, <i<Methylomarinovum</i<, <i<Pseudolabrys</i<, <i<Sphingobium</i<, <i<Sphingomonas</i<, and <i<Alterococcus</i<. Taken together, our study points to the potential regulation of plant systemic resistance by specific microbial taxa, and the importance of soil legacy on disease incidence and eliciting plant-defense mechanisms. bacterial wilt suppressive soil split-root system soil legacy transcriptome plant systemic resistance Botany Chengzhi Zhu verfasserin aut Zongzhuan Shen verfasserin aut Chengyuan Tao verfasserin aut Yannan Ou verfasserin aut Rong Li verfasserin aut Xuhui Deng verfasserin aut Qirong Shen verfasserin aut Francisco Dini-Andreote verfasserin aut In Plants MDPI AG, 2013 11(2022), 21, p 2816 (DE-627)737288345 (DE-600)2704341-1 22237747 nnns volume:11 year:2022 number:21, p 2816 https://doi.org/10.3390/plants11212816 kostenfrei https://doaj.org/article/30baa126ce234d3094f086c8af293164 kostenfrei https://www.mdpi.com/2223-7747/11/21/2816 kostenfrei https://doaj.org/toc/2223-7747 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2022 21, p 2816 |
allfields_unstemmed |
10.3390/plants11212816 doi (DE-627)DOAJ086453238 (DE-599)DOAJ30baa126ce234d3094f086c8af293164 DE-627 ger DE-627 rakwb eng QK1-989 Na Zhang verfasserin aut Partitioning the Effects of Soil Legacy and Pathogen Exposure Determining Soil Suppressiveness via Induced Systemic Resistance 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Beneficial host-associated bacteria can assist plant protection against pathogens. In particular, specific microbes are able to induce plant systemic resistance. However, it remains largely elusive which specific microbial taxa and functions trigger plant immune responses associated with disease suppression. Here, we experimentally studied this by setting up two independent microcosm experiments that differed in the time at which plants were exposed to the pathogen and the soil legacy (i.e., soils with historically suppressive or conducive). Overall, we found soil legacy effects to have a major influence on disease suppression irrespective of the time prior to pathogen exposure. Rhizosphere bacterial communities of tomato plants were significantly different between the two soils, with potential beneficial strains occurring at higher relative abundances in the suppressive soil. Root transcriptome analysis revealed the soil legacy to induce differences in gene expression, most importantly, genes involved in the pathway of phenylpropanoid biosynthesis. Last, we found genes in the phenylpropanoid biosynthesis pathway to correlate with specific microbial taxa, including <i<Gp6</i<, <i<Actinomarinicola</i<, <i<Niastella</i<, <i<Phaeodactylibacter</i<, <i<Longimicrobium</i<, <i<Bythopirellula</i<, <i<Brevundimonas</i<, <i<Ferruginivarius</i<, <i<Kushneria</i<, <i<Methylomarinovum</i<, <i<Pseudolabrys</i<, <i<Sphingobium</i<, <i<Sphingomonas</i<, and <i<Alterococcus</i<. Taken together, our study points to the potential regulation of plant systemic resistance by specific microbial taxa, and the importance of soil legacy on disease incidence and eliciting plant-defense mechanisms. bacterial wilt suppressive soil split-root system soil legacy transcriptome plant systemic resistance Botany Chengzhi Zhu verfasserin aut Zongzhuan Shen verfasserin aut Chengyuan Tao verfasserin aut Yannan Ou verfasserin aut Rong Li verfasserin aut Xuhui Deng verfasserin aut Qirong Shen verfasserin aut Francisco Dini-Andreote verfasserin aut In Plants MDPI AG, 2013 11(2022), 21, p 2816 (DE-627)737288345 (DE-600)2704341-1 22237747 nnns volume:11 year:2022 number:21, p 2816 https://doi.org/10.3390/plants11212816 kostenfrei https://doaj.org/article/30baa126ce234d3094f086c8af293164 kostenfrei https://www.mdpi.com/2223-7747/11/21/2816 kostenfrei https://doaj.org/toc/2223-7747 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2022 21, p 2816 |
allfieldsGer |
10.3390/plants11212816 doi (DE-627)DOAJ086453238 (DE-599)DOAJ30baa126ce234d3094f086c8af293164 DE-627 ger DE-627 rakwb eng QK1-989 Na Zhang verfasserin aut Partitioning the Effects of Soil Legacy and Pathogen Exposure Determining Soil Suppressiveness via Induced Systemic Resistance 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Beneficial host-associated bacteria can assist plant protection against pathogens. In particular, specific microbes are able to induce plant systemic resistance. However, it remains largely elusive which specific microbial taxa and functions trigger plant immune responses associated with disease suppression. Here, we experimentally studied this by setting up two independent microcosm experiments that differed in the time at which plants were exposed to the pathogen and the soil legacy (i.e., soils with historically suppressive or conducive). Overall, we found soil legacy effects to have a major influence on disease suppression irrespective of the time prior to pathogen exposure. Rhizosphere bacterial communities of tomato plants were significantly different between the two soils, with potential beneficial strains occurring at higher relative abundances in the suppressive soil. Root transcriptome analysis revealed the soil legacy to induce differences in gene expression, most importantly, genes involved in the pathway of phenylpropanoid biosynthesis. Last, we found genes in the phenylpropanoid biosynthesis pathway to correlate with specific microbial taxa, including <i<Gp6</i<, <i<Actinomarinicola</i<, <i<Niastella</i<, <i<Phaeodactylibacter</i<, <i<Longimicrobium</i<, <i<Bythopirellula</i<, <i<Brevundimonas</i<, <i<Ferruginivarius</i<, <i<Kushneria</i<, <i<Methylomarinovum</i<, <i<Pseudolabrys</i<, <i<Sphingobium</i<, <i<Sphingomonas</i<, and <i<Alterococcus</i<. Taken together, our study points to the potential regulation of plant systemic resistance by specific microbial taxa, and the importance of soil legacy on disease incidence and eliciting plant-defense mechanisms. bacterial wilt suppressive soil split-root system soil legacy transcriptome plant systemic resistance Botany Chengzhi Zhu verfasserin aut Zongzhuan Shen verfasserin aut Chengyuan Tao verfasserin aut Yannan Ou verfasserin aut Rong Li verfasserin aut Xuhui Deng verfasserin aut Qirong Shen verfasserin aut Francisco Dini-Andreote verfasserin aut In Plants MDPI AG, 2013 11(2022), 21, p 2816 (DE-627)737288345 (DE-600)2704341-1 22237747 nnns volume:11 year:2022 number:21, p 2816 https://doi.org/10.3390/plants11212816 kostenfrei https://doaj.org/article/30baa126ce234d3094f086c8af293164 kostenfrei https://www.mdpi.com/2223-7747/11/21/2816 kostenfrei https://doaj.org/toc/2223-7747 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2022 21, p 2816 |
allfieldsSound |
10.3390/plants11212816 doi (DE-627)DOAJ086453238 (DE-599)DOAJ30baa126ce234d3094f086c8af293164 DE-627 ger DE-627 rakwb eng QK1-989 Na Zhang verfasserin aut Partitioning the Effects of Soil Legacy and Pathogen Exposure Determining Soil Suppressiveness via Induced Systemic Resistance 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Beneficial host-associated bacteria can assist plant protection against pathogens. In particular, specific microbes are able to induce plant systemic resistance. However, it remains largely elusive which specific microbial taxa and functions trigger plant immune responses associated with disease suppression. Here, we experimentally studied this by setting up two independent microcosm experiments that differed in the time at which plants were exposed to the pathogen and the soil legacy (i.e., soils with historically suppressive or conducive). Overall, we found soil legacy effects to have a major influence on disease suppression irrespective of the time prior to pathogen exposure. Rhizosphere bacterial communities of tomato plants were significantly different between the two soils, with potential beneficial strains occurring at higher relative abundances in the suppressive soil. Root transcriptome analysis revealed the soil legacy to induce differences in gene expression, most importantly, genes involved in the pathway of phenylpropanoid biosynthesis. Last, we found genes in the phenylpropanoid biosynthesis pathway to correlate with specific microbial taxa, including <i<Gp6</i<, <i<Actinomarinicola</i<, <i<Niastella</i<, <i<Phaeodactylibacter</i<, <i<Longimicrobium</i<, <i<Bythopirellula</i<, <i<Brevundimonas</i<, <i<Ferruginivarius</i<, <i<Kushneria</i<, <i<Methylomarinovum</i<, <i<Pseudolabrys</i<, <i<Sphingobium</i<, <i<Sphingomonas</i<, and <i<Alterococcus</i<. Taken together, our study points to the potential regulation of plant systemic resistance by specific microbial taxa, and the importance of soil legacy on disease incidence and eliciting plant-defense mechanisms. bacterial wilt suppressive soil split-root system soil legacy transcriptome plant systemic resistance Botany Chengzhi Zhu verfasserin aut Zongzhuan Shen verfasserin aut Chengyuan Tao verfasserin aut Yannan Ou verfasserin aut Rong Li verfasserin aut Xuhui Deng verfasserin aut Qirong Shen verfasserin aut Francisco Dini-Andreote verfasserin aut In Plants MDPI AG, 2013 11(2022), 21, p 2816 (DE-627)737288345 (DE-600)2704341-1 22237747 nnns volume:11 year:2022 number:21, p 2816 https://doi.org/10.3390/plants11212816 kostenfrei https://doaj.org/article/30baa126ce234d3094f086c8af293164 kostenfrei https://www.mdpi.com/2223-7747/11/21/2816 kostenfrei https://doaj.org/toc/2223-7747 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2022 21, p 2816 |
language |
English |
source |
In Plants 11(2022), 21, p 2816 volume:11 year:2022 number:21, p 2816 |
sourceStr |
In Plants 11(2022), 21, p 2816 volume:11 year:2022 number:21, p 2816 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
bacterial wilt suppressive soil split-root system soil legacy transcriptome plant systemic resistance Botany |
isfreeaccess_bool |
true |
container_title |
Plants |
authorswithroles_txt_mv |
Na Zhang @@aut@@ Chengzhi Zhu @@aut@@ Zongzhuan Shen @@aut@@ Chengyuan Tao @@aut@@ Yannan Ou @@aut@@ Rong Li @@aut@@ Xuhui Deng @@aut@@ Qirong Shen @@aut@@ Francisco Dini-Andreote @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
737288345 |
id |
DOAJ086453238 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ086453238</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414171428.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/plants11212816</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ086453238</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ30baa126ce234d3094f086c8af293164</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QK1-989</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Na Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Partitioning the Effects of Soil Legacy and Pathogen Exposure Determining Soil Suppressiveness via Induced Systemic Resistance</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Beneficial host-associated bacteria can assist plant protection against pathogens. In particular, specific microbes are able to induce plant systemic resistance. However, it remains largely elusive which specific microbial taxa and functions trigger plant immune responses associated with disease suppression. Here, we experimentally studied this by setting up two independent microcosm experiments that differed in the time at which plants were exposed to the pathogen and the soil legacy (i.e., soils with historically suppressive or conducive). Overall, we found soil legacy effects to have a major influence on disease suppression irrespective of the time prior to pathogen exposure. Rhizosphere bacterial communities of tomato plants were significantly different between the two soils, with potential beneficial strains occurring at higher relative abundances in the suppressive soil. Root transcriptome analysis revealed the soil legacy to induce differences in gene expression, most importantly, genes involved in the pathway of phenylpropanoid biosynthesis. Last, we found genes in the phenylpropanoid biosynthesis pathway to correlate with specific microbial taxa, including <i<Gp6</i<, <i<Actinomarinicola</i<, <i<Niastella</i<, <i<Phaeodactylibacter</i<, <i<Longimicrobium</i<, <i<Bythopirellula</i<, <i<Brevundimonas</i<, <i<Ferruginivarius</i<, <i<Kushneria</i<, <i<Methylomarinovum</i<, <i<Pseudolabrys</i<, <i<Sphingobium</i<, <i<Sphingomonas</i<, and <i<Alterococcus</i<. Taken together, our study points to the potential regulation of plant systemic resistance by specific microbial taxa, and the importance of soil legacy on disease incidence and eliciting plant-defense mechanisms.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bacterial wilt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">suppressive soil</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">split-root system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">soil legacy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">transcriptome</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">plant systemic resistance</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Botany</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chengzhi Zhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zongzhuan Shen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chengyuan Tao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yannan Ou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rong Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xuhui Deng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qirong Shen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Francisco Dini-Andreote</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Plants</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">11(2022), 21, p 2816</subfield><subfield code="w">(DE-627)737288345</subfield><subfield code="w">(DE-600)2704341-1</subfield><subfield code="x">22237747</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:21, p 2816</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/plants11212816</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/30baa126ce234d3094f086c8af293164</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2223-7747/11/21/2816</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2223-7747</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2022</subfield><subfield code="e">21, p 2816</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Na Zhang |
spellingShingle |
Na Zhang misc QK1-989 misc bacterial wilt misc suppressive soil misc split-root system misc soil legacy misc transcriptome misc plant systemic resistance misc Botany Partitioning the Effects of Soil Legacy and Pathogen Exposure Determining Soil Suppressiveness via Induced Systemic Resistance |
authorStr |
Na Zhang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)737288345 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QK1-989 |
illustrated |
Not Illustrated |
issn |
22237747 |
topic_title |
QK1-989 Partitioning the Effects of Soil Legacy and Pathogen Exposure Determining Soil Suppressiveness via Induced Systemic Resistance bacterial wilt suppressive soil split-root system soil legacy transcriptome plant systemic resistance |
topic |
misc QK1-989 misc bacterial wilt misc suppressive soil misc split-root system misc soil legacy misc transcriptome misc plant systemic resistance misc Botany |
topic_unstemmed |
misc QK1-989 misc bacterial wilt misc suppressive soil misc split-root system misc soil legacy misc transcriptome misc plant systemic resistance misc Botany |
topic_browse |
misc QK1-989 misc bacterial wilt misc suppressive soil misc split-root system misc soil legacy misc transcriptome misc plant systemic resistance misc Botany |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Plants |
hierarchy_parent_id |
737288345 |
hierarchy_top_title |
Plants |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)737288345 (DE-600)2704341-1 |
title |
Partitioning the Effects of Soil Legacy and Pathogen Exposure Determining Soil Suppressiveness via Induced Systemic Resistance |
ctrlnum |
(DE-627)DOAJ086453238 (DE-599)DOAJ30baa126ce234d3094f086c8af293164 |
title_full |
Partitioning the Effects of Soil Legacy and Pathogen Exposure Determining Soil Suppressiveness via Induced Systemic Resistance |
author_sort |
Na Zhang |
journal |
Plants |
journalStr |
Plants |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Na Zhang Chengzhi Zhu Zongzhuan Shen Chengyuan Tao Yannan Ou Rong Li Xuhui Deng Qirong Shen Francisco Dini-Andreote |
container_volume |
11 |
class |
QK1-989 |
format_se |
Elektronische Aufsätze |
author-letter |
Na Zhang |
doi_str_mv |
10.3390/plants11212816 |
author2-role |
verfasserin |
title_sort |
partitioning the effects of soil legacy and pathogen exposure determining soil suppressiveness via induced systemic resistance |
callnumber |
QK1-989 |
title_auth |
Partitioning the Effects of Soil Legacy and Pathogen Exposure Determining Soil Suppressiveness via Induced Systemic Resistance |
abstract |
Beneficial host-associated bacteria can assist plant protection against pathogens. In particular, specific microbes are able to induce plant systemic resistance. However, it remains largely elusive which specific microbial taxa and functions trigger plant immune responses associated with disease suppression. Here, we experimentally studied this by setting up two independent microcosm experiments that differed in the time at which plants were exposed to the pathogen and the soil legacy (i.e., soils with historically suppressive or conducive). Overall, we found soil legacy effects to have a major influence on disease suppression irrespective of the time prior to pathogen exposure. Rhizosphere bacterial communities of tomato plants were significantly different between the two soils, with potential beneficial strains occurring at higher relative abundances in the suppressive soil. Root transcriptome analysis revealed the soil legacy to induce differences in gene expression, most importantly, genes involved in the pathway of phenylpropanoid biosynthesis. Last, we found genes in the phenylpropanoid biosynthesis pathway to correlate with specific microbial taxa, including <i<Gp6</i<, <i<Actinomarinicola</i<, <i<Niastella</i<, <i<Phaeodactylibacter</i<, <i<Longimicrobium</i<, <i<Bythopirellula</i<, <i<Brevundimonas</i<, <i<Ferruginivarius</i<, <i<Kushneria</i<, <i<Methylomarinovum</i<, <i<Pseudolabrys</i<, <i<Sphingobium</i<, <i<Sphingomonas</i<, and <i<Alterococcus</i<. Taken together, our study points to the potential regulation of plant systemic resistance by specific microbial taxa, and the importance of soil legacy on disease incidence and eliciting plant-defense mechanisms. |
abstractGer |
Beneficial host-associated bacteria can assist plant protection against pathogens. In particular, specific microbes are able to induce plant systemic resistance. However, it remains largely elusive which specific microbial taxa and functions trigger plant immune responses associated with disease suppression. Here, we experimentally studied this by setting up two independent microcosm experiments that differed in the time at which plants were exposed to the pathogen and the soil legacy (i.e., soils with historically suppressive or conducive). Overall, we found soil legacy effects to have a major influence on disease suppression irrespective of the time prior to pathogen exposure. Rhizosphere bacterial communities of tomato plants were significantly different between the two soils, with potential beneficial strains occurring at higher relative abundances in the suppressive soil. Root transcriptome analysis revealed the soil legacy to induce differences in gene expression, most importantly, genes involved in the pathway of phenylpropanoid biosynthesis. Last, we found genes in the phenylpropanoid biosynthesis pathway to correlate with specific microbial taxa, including <i<Gp6</i<, <i<Actinomarinicola</i<, <i<Niastella</i<, <i<Phaeodactylibacter</i<, <i<Longimicrobium</i<, <i<Bythopirellula</i<, <i<Brevundimonas</i<, <i<Ferruginivarius</i<, <i<Kushneria</i<, <i<Methylomarinovum</i<, <i<Pseudolabrys</i<, <i<Sphingobium</i<, <i<Sphingomonas</i<, and <i<Alterococcus</i<. Taken together, our study points to the potential regulation of plant systemic resistance by specific microbial taxa, and the importance of soil legacy on disease incidence and eliciting plant-defense mechanisms. |
abstract_unstemmed |
Beneficial host-associated bacteria can assist plant protection against pathogens. In particular, specific microbes are able to induce plant systemic resistance. However, it remains largely elusive which specific microbial taxa and functions trigger plant immune responses associated with disease suppression. Here, we experimentally studied this by setting up two independent microcosm experiments that differed in the time at which plants were exposed to the pathogen and the soil legacy (i.e., soils with historically suppressive or conducive). Overall, we found soil legacy effects to have a major influence on disease suppression irrespective of the time prior to pathogen exposure. Rhizosphere bacterial communities of tomato plants were significantly different between the two soils, with potential beneficial strains occurring at higher relative abundances in the suppressive soil. Root transcriptome analysis revealed the soil legacy to induce differences in gene expression, most importantly, genes involved in the pathway of phenylpropanoid biosynthesis. Last, we found genes in the phenylpropanoid biosynthesis pathway to correlate with specific microbial taxa, including <i<Gp6</i<, <i<Actinomarinicola</i<, <i<Niastella</i<, <i<Phaeodactylibacter</i<, <i<Longimicrobium</i<, <i<Bythopirellula</i<, <i<Brevundimonas</i<, <i<Ferruginivarius</i<, <i<Kushneria</i<, <i<Methylomarinovum</i<, <i<Pseudolabrys</i<, <i<Sphingobium</i<, <i<Sphingomonas</i<, and <i<Alterococcus</i<. Taken together, our study points to the potential regulation of plant systemic resistance by specific microbial taxa, and the importance of soil legacy on disease incidence and eliciting plant-defense mechanisms. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
21, p 2816 |
title_short |
Partitioning the Effects of Soil Legacy and Pathogen Exposure Determining Soil Suppressiveness via Induced Systemic Resistance |
url |
https://doi.org/10.3390/plants11212816 https://doaj.org/article/30baa126ce234d3094f086c8af293164 https://www.mdpi.com/2223-7747/11/21/2816 https://doaj.org/toc/2223-7747 |
remote_bool |
true |
author2 |
Chengzhi Zhu Zongzhuan Shen Chengyuan Tao Yannan Ou Rong Li Xuhui Deng Qirong Shen Francisco Dini-Andreote |
author2Str |
Chengzhi Zhu Zongzhuan Shen Chengyuan Tao Yannan Ou Rong Li Xuhui Deng Qirong Shen Francisco Dini-Andreote |
ppnlink |
737288345 |
callnumber-subject |
QK - Botany |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/plants11212816 |
callnumber-a |
QK1-989 |
up_date |
2024-07-03T20:46:34.082Z |
_version_ |
1803592237406224384 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ086453238</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414171428.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/plants11212816</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ086453238</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ30baa126ce234d3094f086c8af293164</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QK1-989</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Na Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Partitioning the Effects of Soil Legacy and Pathogen Exposure Determining Soil Suppressiveness via Induced Systemic Resistance</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Beneficial host-associated bacteria can assist plant protection against pathogens. In particular, specific microbes are able to induce plant systemic resistance. However, it remains largely elusive which specific microbial taxa and functions trigger plant immune responses associated with disease suppression. Here, we experimentally studied this by setting up two independent microcosm experiments that differed in the time at which plants were exposed to the pathogen and the soil legacy (i.e., soils with historically suppressive or conducive). Overall, we found soil legacy effects to have a major influence on disease suppression irrespective of the time prior to pathogen exposure. Rhizosphere bacterial communities of tomato plants were significantly different between the two soils, with potential beneficial strains occurring at higher relative abundances in the suppressive soil. Root transcriptome analysis revealed the soil legacy to induce differences in gene expression, most importantly, genes involved in the pathway of phenylpropanoid biosynthesis. Last, we found genes in the phenylpropanoid biosynthesis pathway to correlate with specific microbial taxa, including <i<Gp6</i<, <i<Actinomarinicola</i<, <i<Niastella</i<, <i<Phaeodactylibacter</i<, <i<Longimicrobium</i<, <i<Bythopirellula</i<, <i<Brevundimonas</i<, <i<Ferruginivarius</i<, <i<Kushneria</i<, <i<Methylomarinovum</i<, <i<Pseudolabrys</i<, <i<Sphingobium</i<, <i<Sphingomonas</i<, and <i<Alterococcus</i<. Taken together, our study points to the potential regulation of plant systemic resistance by specific microbial taxa, and the importance of soil legacy on disease incidence and eliciting plant-defense mechanisms.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bacterial wilt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">suppressive soil</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">split-root system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">soil legacy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">transcriptome</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">plant systemic resistance</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Botany</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chengzhi Zhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zongzhuan Shen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chengyuan Tao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yannan Ou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rong Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xuhui Deng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qirong Shen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Francisco Dini-Andreote</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Plants</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">11(2022), 21, p 2816</subfield><subfield code="w">(DE-627)737288345</subfield><subfield code="w">(DE-600)2704341-1</subfield><subfield code="x">22237747</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:21, p 2816</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/plants11212816</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/30baa126ce234d3094f086c8af293164</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2223-7747/11/21/2816</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2223-7747</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2022</subfield><subfield code="e">21, p 2816</subfield></datafield></record></collection>
|
score |
7.4016123 |