Building Applications, Opportunities and Challenges of Active Shading Systems: A State-of-the-Art Review
Active shading systems in buildings have emerged as a high performing shading solution that selectively and optimally controls daylight and heat gains. Active shading systems are increasingly used in buildings, due to their ability to mainly improve the building environment, reduce energy consumptio...
Ausführliche Beschreibung
Autor*in: |
Joud Al Dakheel [verfasserIn] Kheira Tabet Aoul [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Energies - MDPI AG, 2008, 10(2017), 10, p 1672 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2017 ; number:10, p 1672 |
Links: |
---|
DOI / URN: |
10.3390/en10101672 |
---|
Katalog-ID: |
DOAJ086598333 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ086598333 | ||
003 | DE-627 | ||
005 | 20230311052054.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/en10101672 |2 doi | |
035 | |a (DE-627)DOAJ086598333 | ||
035 | |a (DE-599)DOAJ4c0f78bf6ac3444f90d1422bb4cfbcbd | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Joud Al Dakheel |e verfasserin |4 aut | |
245 | 1 | 0 | |a Building Applications, Opportunities and Challenges of Active Shading Systems: A State-of-the-Art Review |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Active shading systems in buildings have emerged as a high performing shading solution that selectively and optimally controls daylight and heat gains. Active shading systems are increasingly used in buildings, due to their ability to mainly improve the building environment, reduce energy consumption and in some cases generate energy. They may be categorized into three classes: smart glazing, kinetic shading and integrated renewable energy shading. This paper reviews the current status of the different types in terms of design principle and working mechanism of the systems, performance, control strategies and building applications. Challenges, limitations and future opportunities of the systems are then discussed. The review highlights that despite its high initial cost, the electrochromic (EC) glazing is the most applied smart glazing due to the extensive use of glass in buildings under all climatic conditions. In terms of external shadings, the rotating shading type is the predominantly used one in buildings due to its low initial cost. Algae façades and folding shading systems are still emerging types, with high initial and maintenance costs and requiring specialist installers. The algae façade systems and PV integrated shading systems are a promising solution due to their dual benefits of providing shading and generating electricity. Active shading systems were found to save 12 to 50% of the building cooling electricity consumption. | ||
650 | 4 | |a active shading systems | |
650 | 4 | |a kinetic shading devices | |
650 | 4 | |a smart glazing | |
650 | 4 | |a rotating shading systems | |
650 | 4 | |a folding shading systems | |
650 | 4 | |a photovoltaic (PV) | |
650 | 4 | |a solar collector | |
650 | 4 | |a algae façade system | |
650 | 4 | |a controls | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
700 | 0 | |a Kheira Tabet Aoul |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Energies |d MDPI AG, 2008 |g 10(2017), 10, p 1672 |w (DE-627)572083742 |w (DE-600)2437446-5 |x 19961073 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2017 |g number:10, p 1672 |
856 | 4 | 0 | |u https://doi.org/10.3390/en10101672 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/4c0f78bf6ac3444f90d1422bb4cfbcbd |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1996-1073/10/10/1672 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1996-1073 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2017 |e 10, p 1672 |
author_variant |
j a d jad k t a kta |
---|---|
matchkey_str |
article:19961073:2017----::uligplctospotnteadhlegsfciehdnsse |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.3390/en10101672 doi (DE-627)DOAJ086598333 (DE-599)DOAJ4c0f78bf6ac3444f90d1422bb4cfbcbd DE-627 ger DE-627 rakwb eng Joud Al Dakheel verfasserin aut Building Applications, Opportunities and Challenges of Active Shading Systems: A State-of-the-Art Review 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Active shading systems in buildings have emerged as a high performing shading solution that selectively and optimally controls daylight and heat gains. Active shading systems are increasingly used in buildings, due to their ability to mainly improve the building environment, reduce energy consumption and in some cases generate energy. They may be categorized into three classes: smart glazing, kinetic shading and integrated renewable energy shading. This paper reviews the current status of the different types in terms of design principle and working mechanism of the systems, performance, control strategies and building applications. Challenges, limitations and future opportunities of the systems are then discussed. The review highlights that despite its high initial cost, the electrochromic (EC) glazing is the most applied smart glazing due to the extensive use of glass in buildings under all climatic conditions. In terms of external shadings, the rotating shading type is the predominantly used one in buildings due to its low initial cost. Algae façades and folding shading systems are still emerging types, with high initial and maintenance costs and requiring specialist installers. The algae façade systems and PV integrated shading systems are a promising solution due to their dual benefits of providing shading and generating electricity. Active shading systems were found to save 12 to 50% of the building cooling electricity consumption. active shading systems kinetic shading devices smart glazing rotating shading systems folding shading systems photovoltaic (PV) solar collector algae façade system controls Technology T Kheira Tabet Aoul verfasserin aut In Energies MDPI AG, 2008 10(2017), 10, p 1672 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:10 year:2017 number:10, p 1672 https://doi.org/10.3390/en10101672 kostenfrei https://doaj.org/article/4c0f78bf6ac3444f90d1422bb4cfbcbd kostenfrei https://www.mdpi.com/1996-1073/10/10/1672 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2017 10, p 1672 |
spelling |
10.3390/en10101672 doi (DE-627)DOAJ086598333 (DE-599)DOAJ4c0f78bf6ac3444f90d1422bb4cfbcbd DE-627 ger DE-627 rakwb eng Joud Al Dakheel verfasserin aut Building Applications, Opportunities and Challenges of Active Shading Systems: A State-of-the-Art Review 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Active shading systems in buildings have emerged as a high performing shading solution that selectively and optimally controls daylight and heat gains. Active shading systems are increasingly used in buildings, due to their ability to mainly improve the building environment, reduce energy consumption and in some cases generate energy. They may be categorized into three classes: smart glazing, kinetic shading and integrated renewable energy shading. This paper reviews the current status of the different types in terms of design principle and working mechanism of the systems, performance, control strategies and building applications. Challenges, limitations and future opportunities of the systems are then discussed. The review highlights that despite its high initial cost, the electrochromic (EC) glazing is the most applied smart glazing due to the extensive use of glass in buildings under all climatic conditions. In terms of external shadings, the rotating shading type is the predominantly used one in buildings due to its low initial cost. Algae façades and folding shading systems are still emerging types, with high initial and maintenance costs and requiring specialist installers. The algae façade systems and PV integrated shading systems are a promising solution due to their dual benefits of providing shading and generating electricity. Active shading systems were found to save 12 to 50% of the building cooling electricity consumption. active shading systems kinetic shading devices smart glazing rotating shading systems folding shading systems photovoltaic (PV) solar collector algae façade system controls Technology T Kheira Tabet Aoul verfasserin aut In Energies MDPI AG, 2008 10(2017), 10, p 1672 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:10 year:2017 number:10, p 1672 https://doi.org/10.3390/en10101672 kostenfrei https://doaj.org/article/4c0f78bf6ac3444f90d1422bb4cfbcbd kostenfrei https://www.mdpi.com/1996-1073/10/10/1672 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2017 10, p 1672 |
allfields_unstemmed |
10.3390/en10101672 doi (DE-627)DOAJ086598333 (DE-599)DOAJ4c0f78bf6ac3444f90d1422bb4cfbcbd DE-627 ger DE-627 rakwb eng Joud Al Dakheel verfasserin aut Building Applications, Opportunities and Challenges of Active Shading Systems: A State-of-the-Art Review 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Active shading systems in buildings have emerged as a high performing shading solution that selectively and optimally controls daylight and heat gains. Active shading systems are increasingly used in buildings, due to their ability to mainly improve the building environment, reduce energy consumption and in some cases generate energy. They may be categorized into three classes: smart glazing, kinetic shading and integrated renewable energy shading. This paper reviews the current status of the different types in terms of design principle and working mechanism of the systems, performance, control strategies and building applications. Challenges, limitations and future opportunities of the systems are then discussed. The review highlights that despite its high initial cost, the electrochromic (EC) glazing is the most applied smart glazing due to the extensive use of glass in buildings under all climatic conditions. In terms of external shadings, the rotating shading type is the predominantly used one in buildings due to its low initial cost. Algae façades and folding shading systems are still emerging types, with high initial and maintenance costs and requiring specialist installers. The algae façade systems and PV integrated shading systems are a promising solution due to their dual benefits of providing shading and generating electricity. Active shading systems were found to save 12 to 50% of the building cooling electricity consumption. active shading systems kinetic shading devices smart glazing rotating shading systems folding shading systems photovoltaic (PV) solar collector algae façade system controls Technology T Kheira Tabet Aoul verfasserin aut In Energies MDPI AG, 2008 10(2017), 10, p 1672 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:10 year:2017 number:10, p 1672 https://doi.org/10.3390/en10101672 kostenfrei https://doaj.org/article/4c0f78bf6ac3444f90d1422bb4cfbcbd kostenfrei https://www.mdpi.com/1996-1073/10/10/1672 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2017 10, p 1672 |
allfieldsGer |
10.3390/en10101672 doi (DE-627)DOAJ086598333 (DE-599)DOAJ4c0f78bf6ac3444f90d1422bb4cfbcbd DE-627 ger DE-627 rakwb eng Joud Al Dakheel verfasserin aut Building Applications, Opportunities and Challenges of Active Shading Systems: A State-of-the-Art Review 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Active shading systems in buildings have emerged as a high performing shading solution that selectively and optimally controls daylight and heat gains. Active shading systems are increasingly used in buildings, due to their ability to mainly improve the building environment, reduce energy consumption and in some cases generate energy. They may be categorized into three classes: smart glazing, kinetic shading and integrated renewable energy shading. This paper reviews the current status of the different types in terms of design principle and working mechanism of the systems, performance, control strategies and building applications. Challenges, limitations and future opportunities of the systems are then discussed. The review highlights that despite its high initial cost, the electrochromic (EC) glazing is the most applied smart glazing due to the extensive use of glass in buildings under all climatic conditions. In terms of external shadings, the rotating shading type is the predominantly used one in buildings due to its low initial cost. Algae façades and folding shading systems are still emerging types, with high initial and maintenance costs and requiring specialist installers. The algae façade systems and PV integrated shading systems are a promising solution due to their dual benefits of providing shading and generating electricity. Active shading systems were found to save 12 to 50% of the building cooling electricity consumption. active shading systems kinetic shading devices smart glazing rotating shading systems folding shading systems photovoltaic (PV) solar collector algae façade system controls Technology T Kheira Tabet Aoul verfasserin aut In Energies MDPI AG, 2008 10(2017), 10, p 1672 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:10 year:2017 number:10, p 1672 https://doi.org/10.3390/en10101672 kostenfrei https://doaj.org/article/4c0f78bf6ac3444f90d1422bb4cfbcbd kostenfrei https://www.mdpi.com/1996-1073/10/10/1672 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2017 10, p 1672 |
allfieldsSound |
10.3390/en10101672 doi (DE-627)DOAJ086598333 (DE-599)DOAJ4c0f78bf6ac3444f90d1422bb4cfbcbd DE-627 ger DE-627 rakwb eng Joud Al Dakheel verfasserin aut Building Applications, Opportunities and Challenges of Active Shading Systems: A State-of-the-Art Review 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Active shading systems in buildings have emerged as a high performing shading solution that selectively and optimally controls daylight and heat gains. Active shading systems are increasingly used in buildings, due to their ability to mainly improve the building environment, reduce energy consumption and in some cases generate energy. They may be categorized into three classes: smart glazing, kinetic shading and integrated renewable energy shading. This paper reviews the current status of the different types in terms of design principle and working mechanism of the systems, performance, control strategies and building applications. Challenges, limitations and future opportunities of the systems are then discussed. The review highlights that despite its high initial cost, the electrochromic (EC) glazing is the most applied smart glazing due to the extensive use of glass in buildings under all climatic conditions. In terms of external shadings, the rotating shading type is the predominantly used one in buildings due to its low initial cost. Algae façades and folding shading systems are still emerging types, with high initial and maintenance costs and requiring specialist installers. The algae façade systems and PV integrated shading systems are a promising solution due to their dual benefits of providing shading and generating electricity. Active shading systems were found to save 12 to 50% of the building cooling electricity consumption. active shading systems kinetic shading devices smart glazing rotating shading systems folding shading systems photovoltaic (PV) solar collector algae façade system controls Technology T Kheira Tabet Aoul verfasserin aut In Energies MDPI AG, 2008 10(2017), 10, p 1672 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:10 year:2017 number:10, p 1672 https://doi.org/10.3390/en10101672 kostenfrei https://doaj.org/article/4c0f78bf6ac3444f90d1422bb4cfbcbd kostenfrei https://www.mdpi.com/1996-1073/10/10/1672 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2017 10, p 1672 |
language |
English |
source |
In Energies 10(2017), 10, p 1672 volume:10 year:2017 number:10, p 1672 |
sourceStr |
In Energies 10(2017), 10, p 1672 volume:10 year:2017 number:10, p 1672 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
active shading systems kinetic shading devices smart glazing rotating shading systems folding shading systems photovoltaic (PV) solar collector algae façade system controls Technology T |
isfreeaccess_bool |
true |
container_title |
Energies |
authorswithroles_txt_mv |
Joud Al Dakheel @@aut@@ Kheira Tabet Aoul @@aut@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
572083742 |
id |
DOAJ086598333 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ086598333</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230311052054.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/en10101672</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ086598333</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4c0f78bf6ac3444f90d1422bb4cfbcbd</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Joud Al Dakheel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Building Applications, Opportunities and Challenges of Active Shading Systems: A State-of-the-Art Review</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Active shading systems in buildings have emerged as a high performing shading solution that selectively and optimally controls daylight and heat gains. Active shading systems are increasingly used in buildings, due to their ability to mainly improve the building environment, reduce energy consumption and in some cases generate energy. They may be categorized into three classes: smart glazing, kinetic shading and integrated renewable energy shading. This paper reviews the current status of the different types in terms of design principle and working mechanism of the systems, performance, control strategies and building applications. Challenges, limitations and future opportunities of the systems are then discussed. The review highlights that despite its high initial cost, the electrochromic (EC) glazing is the most applied smart glazing due to the extensive use of glass in buildings under all climatic conditions. In terms of external shadings, the rotating shading type is the predominantly used one in buildings due to its low initial cost. Algae façades and folding shading systems are still emerging types, with high initial and maintenance costs and requiring specialist installers. The algae façade systems and PV integrated shading systems are a promising solution due to their dual benefits of providing shading and generating electricity. Active shading systems were found to save 12 to 50% of the building cooling electricity consumption.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">active shading systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">kinetic shading devices</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">smart glazing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">rotating shading systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">folding shading systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">photovoltaic (PV)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">solar collector</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">algae façade system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">controls</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kheira Tabet Aoul</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Energies</subfield><subfield code="d">MDPI AG, 2008</subfield><subfield code="g">10(2017), 10, p 1672</subfield><subfield code="w">(DE-627)572083742</subfield><subfield code="w">(DE-600)2437446-5</subfield><subfield code="x">19961073</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:10, p 1672</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/en10101672</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4c0f78bf6ac3444f90d1422bb4cfbcbd</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1996-1073/10/10/1672</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1996-1073</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2017</subfield><subfield code="e">10, p 1672</subfield></datafield></record></collection>
|
author |
Joud Al Dakheel |
spellingShingle |
Joud Al Dakheel misc active shading systems misc kinetic shading devices misc smart glazing misc rotating shading systems misc folding shading systems misc photovoltaic (PV) misc solar collector misc algae façade system misc controls misc Technology misc T Building Applications, Opportunities and Challenges of Active Shading Systems: A State-of-the-Art Review |
authorStr |
Joud Al Dakheel |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)572083742 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
19961073 |
topic_title |
Building Applications, Opportunities and Challenges of Active Shading Systems: A State-of-the-Art Review active shading systems kinetic shading devices smart glazing rotating shading systems folding shading systems photovoltaic (PV) solar collector algae façade system controls |
topic |
misc active shading systems misc kinetic shading devices misc smart glazing misc rotating shading systems misc folding shading systems misc photovoltaic (PV) misc solar collector misc algae façade system misc controls misc Technology misc T |
topic_unstemmed |
misc active shading systems misc kinetic shading devices misc smart glazing misc rotating shading systems misc folding shading systems misc photovoltaic (PV) misc solar collector misc algae façade system misc controls misc Technology misc T |
topic_browse |
misc active shading systems misc kinetic shading devices misc smart glazing misc rotating shading systems misc folding shading systems misc photovoltaic (PV) misc solar collector misc algae façade system misc controls misc Technology misc T |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Energies |
hierarchy_parent_id |
572083742 |
hierarchy_top_title |
Energies |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)572083742 (DE-600)2437446-5 |
title |
Building Applications, Opportunities and Challenges of Active Shading Systems: A State-of-the-Art Review |
ctrlnum |
(DE-627)DOAJ086598333 (DE-599)DOAJ4c0f78bf6ac3444f90d1422bb4cfbcbd |
title_full |
Building Applications, Opportunities and Challenges of Active Shading Systems: A State-of-the-Art Review |
author_sort |
Joud Al Dakheel |
journal |
Energies |
journalStr |
Energies |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
author_browse |
Joud Al Dakheel Kheira Tabet Aoul |
container_volume |
10 |
format_se |
Elektronische Aufsätze |
author-letter |
Joud Al Dakheel |
doi_str_mv |
10.3390/en10101672 |
author2-role |
verfasserin |
title_sort |
building applications, opportunities and challenges of active shading systems: a state-of-the-art review |
title_auth |
Building Applications, Opportunities and Challenges of Active Shading Systems: A State-of-the-Art Review |
abstract |
Active shading systems in buildings have emerged as a high performing shading solution that selectively and optimally controls daylight and heat gains. Active shading systems are increasingly used in buildings, due to their ability to mainly improve the building environment, reduce energy consumption and in some cases generate energy. They may be categorized into three classes: smart glazing, kinetic shading and integrated renewable energy shading. This paper reviews the current status of the different types in terms of design principle and working mechanism of the systems, performance, control strategies and building applications. Challenges, limitations and future opportunities of the systems are then discussed. The review highlights that despite its high initial cost, the electrochromic (EC) glazing is the most applied smart glazing due to the extensive use of glass in buildings under all climatic conditions. In terms of external shadings, the rotating shading type is the predominantly used one in buildings due to its low initial cost. Algae façades and folding shading systems are still emerging types, with high initial and maintenance costs and requiring specialist installers. The algae façade systems and PV integrated shading systems are a promising solution due to their dual benefits of providing shading and generating electricity. Active shading systems were found to save 12 to 50% of the building cooling electricity consumption. |
abstractGer |
Active shading systems in buildings have emerged as a high performing shading solution that selectively and optimally controls daylight and heat gains. Active shading systems are increasingly used in buildings, due to their ability to mainly improve the building environment, reduce energy consumption and in some cases generate energy. They may be categorized into three classes: smart glazing, kinetic shading and integrated renewable energy shading. This paper reviews the current status of the different types in terms of design principle and working mechanism of the systems, performance, control strategies and building applications. Challenges, limitations and future opportunities of the systems are then discussed. The review highlights that despite its high initial cost, the electrochromic (EC) glazing is the most applied smart glazing due to the extensive use of glass in buildings under all climatic conditions. In terms of external shadings, the rotating shading type is the predominantly used one in buildings due to its low initial cost. Algae façades and folding shading systems are still emerging types, with high initial and maintenance costs and requiring specialist installers. The algae façade systems and PV integrated shading systems are a promising solution due to their dual benefits of providing shading and generating electricity. Active shading systems were found to save 12 to 50% of the building cooling electricity consumption. |
abstract_unstemmed |
Active shading systems in buildings have emerged as a high performing shading solution that selectively and optimally controls daylight and heat gains. Active shading systems are increasingly used in buildings, due to their ability to mainly improve the building environment, reduce energy consumption and in some cases generate energy. They may be categorized into three classes: smart glazing, kinetic shading and integrated renewable energy shading. This paper reviews the current status of the different types in terms of design principle and working mechanism of the systems, performance, control strategies and building applications. Challenges, limitations and future opportunities of the systems are then discussed. The review highlights that despite its high initial cost, the electrochromic (EC) glazing is the most applied smart glazing due to the extensive use of glass in buildings under all climatic conditions. In terms of external shadings, the rotating shading type is the predominantly used one in buildings due to its low initial cost. Algae façades and folding shading systems are still emerging types, with high initial and maintenance costs and requiring specialist installers. The algae façade systems and PV integrated shading systems are a promising solution due to their dual benefits of providing shading and generating electricity. Active shading systems were found to save 12 to 50% of the building cooling electricity consumption. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
10, p 1672 |
title_short |
Building Applications, Opportunities and Challenges of Active Shading Systems: A State-of-the-Art Review |
url |
https://doi.org/10.3390/en10101672 https://doaj.org/article/4c0f78bf6ac3444f90d1422bb4cfbcbd https://www.mdpi.com/1996-1073/10/10/1672 https://doaj.org/toc/1996-1073 |
remote_bool |
true |
author2 |
Kheira Tabet Aoul |
author2Str |
Kheira Tabet Aoul |
ppnlink |
572083742 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/en10101672 |
up_date |
2024-07-03T21:38:14.923Z |
_version_ |
1803595488874725376 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ086598333</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230311052054.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/en10101672</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ086598333</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4c0f78bf6ac3444f90d1422bb4cfbcbd</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Joud Al Dakheel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Building Applications, Opportunities and Challenges of Active Shading Systems: A State-of-the-Art Review</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Active shading systems in buildings have emerged as a high performing shading solution that selectively and optimally controls daylight and heat gains. Active shading systems are increasingly used in buildings, due to their ability to mainly improve the building environment, reduce energy consumption and in some cases generate energy. They may be categorized into three classes: smart glazing, kinetic shading and integrated renewable energy shading. This paper reviews the current status of the different types in terms of design principle and working mechanism of the systems, performance, control strategies and building applications. Challenges, limitations and future opportunities of the systems are then discussed. The review highlights that despite its high initial cost, the electrochromic (EC) glazing is the most applied smart glazing due to the extensive use of glass in buildings under all climatic conditions. In terms of external shadings, the rotating shading type is the predominantly used one in buildings due to its low initial cost. Algae façades and folding shading systems are still emerging types, with high initial and maintenance costs and requiring specialist installers. The algae façade systems and PV integrated shading systems are a promising solution due to their dual benefits of providing shading and generating electricity. Active shading systems were found to save 12 to 50% of the building cooling electricity consumption.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">active shading systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">kinetic shading devices</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">smart glazing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">rotating shading systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">folding shading systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">photovoltaic (PV)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">solar collector</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">algae façade system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">controls</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kheira Tabet Aoul</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Energies</subfield><subfield code="d">MDPI AG, 2008</subfield><subfield code="g">10(2017), 10, p 1672</subfield><subfield code="w">(DE-627)572083742</subfield><subfield code="w">(DE-600)2437446-5</subfield><subfield code="x">19961073</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:10, p 1672</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/en10101672</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4c0f78bf6ac3444f90d1422bb4cfbcbd</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1996-1073/10/10/1672</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1996-1073</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2017</subfield><subfield code="e">10, p 1672</subfield></datafield></record></collection>
|
score |
7.4007006 |