Effect of Thermoelastic Properties of the Pyrope-Almandine Solid Solutions on the Entrapment Pressure of Garnet-Related Elastic Geobarometer
The pyrope (Prp)–almandine (Alm) solid solutions are the most fundamental garnet components on the Earth, and both the quartz inclusions in garnet (QuiG) barometry and the garnet inclusions in diamond barometry need to be constrained by the thermoelastic parameters of Prp-Alm solid solution garnets....
Ausführliche Beschreibung
Autor*in: |
Bo Li [verfasserIn] Junjie Jiang [verfasserIn] Jingui Xu [verfasserIn] Sergey N. Tkachev [verfasserIn] Zhilin Ye [verfasserIn] Shijie Huang [verfasserIn] Weihua Guo [verfasserIn] Yongjun Zeng [verfasserIn] Vitali B. Prakapenka [verfasserIn] Dawei Fan [verfasserIn] Wenge Zhou [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
pyrope-almandine solid solution |
---|
Übergeordnetes Werk: |
In: Frontiers in Earth Science - Frontiers Media S.A., 2014, 9(2022) |
---|---|
Übergeordnetes Werk: |
volume:9 ; year:2022 |
Links: |
---|
DOI / URN: |
10.3389/feart.2021.833405 |
---|
Katalog-ID: |
DOAJ086617753 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ086617753 | ||
003 | DE-627 | ||
005 | 20230311052242.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3389/feart.2021.833405 |2 doi | |
035 | |a (DE-627)DOAJ086617753 | ||
035 | |a (DE-599)DOAJb9667576228b42a8a3a96c7e29784f5f | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Bo Li |e verfasserin |4 aut | |
245 | 1 | 0 | |a Effect of Thermoelastic Properties of the Pyrope-Almandine Solid Solutions on the Entrapment Pressure of Garnet-Related Elastic Geobarometer |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The pyrope (Prp)–almandine (Alm) solid solutions are the most fundamental garnet components on the Earth, and both the quartz inclusions in garnet (QuiG) barometry and the garnet inclusions in diamond barometry need to be constrained by the thermoelastic parameters of Prp-Alm solid solution garnets. Here, we report the thermoelastic properties of a series of synthetic Prp-Alm solid solutions based on the high-pressure and high-temperature (HP–HT) in situ synchrotron single-crystal x-ray diffraction (SCXRD) experiments up to ∼20 GPa and 700 K, using diamond anvil cell (DAC). Fitting the SCXRD data by the Birch-Murnaghan equation of state (BM-EoS) and the thermal-pressure EoS, we obtain the thermoelastic parameters of Prp-Alm solid solution garnets, including bulk modulus (K0), its pressure derivative (K′0), and the thermal expansion coefficient (α0). The K0 along the Prp-Alm solid solution changes linearly with Prp content within their uncertainties and can be expressed by K0 (GPa) = 181.0(8) – 0.11(1) Xprp (R2 = 0.91, Xprp is the Prp mole fraction and K′0 fixed at 4). Our result indicates that the compressibility of the Prp-Alm solid solution increases with the increasing Prp content. However, the thermal expansion coefficient of Prp-Alm solid solution at ambient pressure shows a non-linear trend with Prp content and can be expressed by α0 (10−5 K−1) = 2.7 (1) + 3.0 (5) XPrp− 3.2 (4) X2Prp (R2 = 0.985). It shows that the Prp-Alm solid solution with intermediate composition has a larger thermal expansion coefficient than those close to the endmembers at ambient conditions. Furthermore, we also evaluated the influence of thermoelastic properties of the Prp-Alm solid solution on the entrapment pressure (Pe) estimation for two types of elastic geobarometers. Our results indicate that the garnet component may significantly influence entrapment pressure, and among the thermoelastic parameters of garnet, the thermal expansion coefficient has the main effect on the estimation of Pe. | ||
650 | 4 | |a pyrope-almandine solid solution | |
650 | 4 | |a elastic geobarometer | |
650 | 4 | |a equation of state | |
650 | 4 | |a high pressure and high temperature | |
650 | 4 | |a diamond anvil cell | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Bo Li |e verfasserin |4 aut | |
700 | 0 | |a Bo Li |e verfasserin |4 aut | |
700 | 0 | |a Junjie Jiang |e verfasserin |4 aut | |
700 | 0 | |a Jingui Xu |e verfasserin |4 aut | |
700 | 0 | |a Sergey N. Tkachev |e verfasserin |4 aut | |
700 | 0 | |a Zhilin Ye |e verfasserin |4 aut | |
700 | 0 | |a Zhilin Ye |e verfasserin |4 aut | |
700 | 0 | |a Shijie Huang |e verfasserin |4 aut | |
700 | 0 | |a Shijie Huang |e verfasserin |4 aut | |
700 | 0 | |a Weihua Guo |e verfasserin |4 aut | |
700 | 0 | |a Yongjun Zeng |e verfasserin |4 aut | |
700 | 0 | |a Vitali B. Prakapenka |e verfasserin |4 aut | |
700 | 0 | |a Dawei Fan |e verfasserin |4 aut | |
700 | 0 | |a Wenge Zhou |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Frontiers in Earth Science |d Frontiers Media S.A., 2014 |g 9(2022) |w (DE-627)771399731 |w (DE-600)2741235-0 |x 22966463 |7 nnns |
773 | 1 | 8 | |g volume:9 |g year:2022 |
856 | 4 | 0 | |u https://doi.org/10.3389/feart.2021.833405 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/b9667576228b42a8a3a96c7e29784f5f |z kostenfrei |
856 | 4 | 0 | |u https://www.frontiersin.org/articles/10.3389/feart.2021.833405/full |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2296-6463 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 9 |j 2022 |
author_variant |
b l bl b l bl b l bl j j jj j x jx s n t snt z y zy z y zy s h sh s h sh w g wg y z yz v b p vbp d f df w z wz |
---|---|
matchkey_str |
article:22966463:2022----::fetfhrolsipoeteoteyoeladnsldouinotenrpetrsuef |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.3389/feart.2021.833405 doi (DE-627)DOAJ086617753 (DE-599)DOAJb9667576228b42a8a3a96c7e29784f5f DE-627 ger DE-627 rakwb eng Bo Li verfasserin aut Effect of Thermoelastic Properties of the Pyrope-Almandine Solid Solutions on the Entrapment Pressure of Garnet-Related Elastic Geobarometer 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The pyrope (Prp)–almandine (Alm) solid solutions are the most fundamental garnet components on the Earth, and both the quartz inclusions in garnet (QuiG) barometry and the garnet inclusions in diamond barometry need to be constrained by the thermoelastic parameters of Prp-Alm solid solution garnets. Here, we report the thermoelastic properties of a series of synthetic Prp-Alm solid solutions based on the high-pressure and high-temperature (HP–HT) in situ synchrotron single-crystal x-ray diffraction (SCXRD) experiments up to ∼20 GPa and 700 K, using diamond anvil cell (DAC). Fitting the SCXRD data by the Birch-Murnaghan equation of state (BM-EoS) and the thermal-pressure EoS, we obtain the thermoelastic parameters of Prp-Alm solid solution garnets, including bulk modulus (K0), its pressure derivative (K′0), and the thermal expansion coefficient (α0). The K0 along the Prp-Alm solid solution changes linearly with Prp content within their uncertainties and can be expressed by K0 (GPa) = 181.0(8) – 0.11(1) Xprp (R2 = 0.91, Xprp is the Prp mole fraction and K′0 fixed at 4). Our result indicates that the compressibility of the Prp-Alm solid solution increases with the increasing Prp content. However, the thermal expansion coefficient of Prp-Alm solid solution at ambient pressure shows a non-linear trend with Prp content and can be expressed by α0 (10−5 K−1) = 2.7 (1) + 3.0 (5) XPrp− 3.2 (4) X2Prp (R2 = 0.985). It shows that the Prp-Alm solid solution with intermediate composition has a larger thermal expansion coefficient than those close to the endmembers at ambient conditions. Furthermore, we also evaluated the influence of thermoelastic properties of the Prp-Alm solid solution on the entrapment pressure (Pe) estimation for two types of elastic geobarometers. Our results indicate that the garnet component may significantly influence entrapment pressure, and among the thermoelastic parameters of garnet, the thermal expansion coefficient has the main effect on the estimation of Pe. pyrope-almandine solid solution elastic geobarometer equation of state high pressure and high temperature diamond anvil cell Science Q Bo Li verfasserin aut Bo Li verfasserin aut Junjie Jiang verfasserin aut Jingui Xu verfasserin aut Sergey N. Tkachev verfasserin aut Zhilin Ye verfasserin aut Zhilin Ye verfasserin aut Shijie Huang verfasserin aut Shijie Huang verfasserin aut Weihua Guo verfasserin aut Yongjun Zeng verfasserin aut Vitali B. Prakapenka verfasserin aut Dawei Fan verfasserin aut Wenge Zhou verfasserin aut In Frontiers in Earth Science Frontiers Media S.A., 2014 9(2022) (DE-627)771399731 (DE-600)2741235-0 22966463 nnns volume:9 year:2022 https://doi.org/10.3389/feart.2021.833405 kostenfrei https://doaj.org/article/b9667576228b42a8a3a96c7e29784f5f kostenfrei https://www.frontiersin.org/articles/10.3389/feart.2021.833405/full kostenfrei https://doaj.org/toc/2296-6463 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2022 |
spelling |
10.3389/feart.2021.833405 doi (DE-627)DOAJ086617753 (DE-599)DOAJb9667576228b42a8a3a96c7e29784f5f DE-627 ger DE-627 rakwb eng Bo Li verfasserin aut Effect of Thermoelastic Properties of the Pyrope-Almandine Solid Solutions on the Entrapment Pressure of Garnet-Related Elastic Geobarometer 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The pyrope (Prp)–almandine (Alm) solid solutions are the most fundamental garnet components on the Earth, and both the quartz inclusions in garnet (QuiG) barometry and the garnet inclusions in diamond barometry need to be constrained by the thermoelastic parameters of Prp-Alm solid solution garnets. Here, we report the thermoelastic properties of a series of synthetic Prp-Alm solid solutions based on the high-pressure and high-temperature (HP–HT) in situ synchrotron single-crystal x-ray diffraction (SCXRD) experiments up to ∼20 GPa and 700 K, using diamond anvil cell (DAC). Fitting the SCXRD data by the Birch-Murnaghan equation of state (BM-EoS) and the thermal-pressure EoS, we obtain the thermoelastic parameters of Prp-Alm solid solution garnets, including bulk modulus (K0), its pressure derivative (K′0), and the thermal expansion coefficient (α0). The K0 along the Prp-Alm solid solution changes linearly with Prp content within their uncertainties and can be expressed by K0 (GPa) = 181.0(8) – 0.11(1) Xprp (R2 = 0.91, Xprp is the Prp mole fraction and K′0 fixed at 4). Our result indicates that the compressibility of the Prp-Alm solid solution increases with the increasing Prp content. However, the thermal expansion coefficient of Prp-Alm solid solution at ambient pressure shows a non-linear trend with Prp content and can be expressed by α0 (10−5 K−1) = 2.7 (1) + 3.0 (5) XPrp− 3.2 (4) X2Prp (R2 = 0.985). It shows that the Prp-Alm solid solution with intermediate composition has a larger thermal expansion coefficient than those close to the endmembers at ambient conditions. Furthermore, we also evaluated the influence of thermoelastic properties of the Prp-Alm solid solution on the entrapment pressure (Pe) estimation for two types of elastic geobarometers. Our results indicate that the garnet component may significantly influence entrapment pressure, and among the thermoelastic parameters of garnet, the thermal expansion coefficient has the main effect on the estimation of Pe. pyrope-almandine solid solution elastic geobarometer equation of state high pressure and high temperature diamond anvil cell Science Q Bo Li verfasserin aut Bo Li verfasserin aut Junjie Jiang verfasserin aut Jingui Xu verfasserin aut Sergey N. Tkachev verfasserin aut Zhilin Ye verfasserin aut Zhilin Ye verfasserin aut Shijie Huang verfasserin aut Shijie Huang verfasserin aut Weihua Guo verfasserin aut Yongjun Zeng verfasserin aut Vitali B. Prakapenka verfasserin aut Dawei Fan verfasserin aut Wenge Zhou verfasserin aut In Frontiers in Earth Science Frontiers Media S.A., 2014 9(2022) (DE-627)771399731 (DE-600)2741235-0 22966463 nnns volume:9 year:2022 https://doi.org/10.3389/feart.2021.833405 kostenfrei https://doaj.org/article/b9667576228b42a8a3a96c7e29784f5f kostenfrei https://www.frontiersin.org/articles/10.3389/feart.2021.833405/full kostenfrei https://doaj.org/toc/2296-6463 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2022 |
allfields_unstemmed |
10.3389/feart.2021.833405 doi (DE-627)DOAJ086617753 (DE-599)DOAJb9667576228b42a8a3a96c7e29784f5f DE-627 ger DE-627 rakwb eng Bo Li verfasserin aut Effect of Thermoelastic Properties of the Pyrope-Almandine Solid Solutions on the Entrapment Pressure of Garnet-Related Elastic Geobarometer 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The pyrope (Prp)–almandine (Alm) solid solutions are the most fundamental garnet components on the Earth, and both the quartz inclusions in garnet (QuiG) barometry and the garnet inclusions in diamond barometry need to be constrained by the thermoelastic parameters of Prp-Alm solid solution garnets. Here, we report the thermoelastic properties of a series of synthetic Prp-Alm solid solutions based on the high-pressure and high-temperature (HP–HT) in situ synchrotron single-crystal x-ray diffraction (SCXRD) experiments up to ∼20 GPa and 700 K, using diamond anvil cell (DAC). Fitting the SCXRD data by the Birch-Murnaghan equation of state (BM-EoS) and the thermal-pressure EoS, we obtain the thermoelastic parameters of Prp-Alm solid solution garnets, including bulk modulus (K0), its pressure derivative (K′0), and the thermal expansion coefficient (α0). The K0 along the Prp-Alm solid solution changes linearly with Prp content within their uncertainties and can be expressed by K0 (GPa) = 181.0(8) – 0.11(1) Xprp (R2 = 0.91, Xprp is the Prp mole fraction and K′0 fixed at 4). Our result indicates that the compressibility of the Prp-Alm solid solution increases with the increasing Prp content. However, the thermal expansion coefficient of Prp-Alm solid solution at ambient pressure shows a non-linear trend with Prp content and can be expressed by α0 (10−5 K−1) = 2.7 (1) + 3.0 (5) XPrp− 3.2 (4) X2Prp (R2 = 0.985). It shows that the Prp-Alm solid solution with intermediate composition has a larger thermal expansion coefficient than those close to the endmembers at ambient conditions. Furthermore, we also evaluated the influence of thermoelastic properties of the Prp-Alm solid solution on the entrapment pressure (Pe) estimation for two types of elastic geobarometers. Our results indicate that the garnet component may significantly influence entrapment pressure, and among the thermoelastic parameters of garnet, the thermal expansion coefficient has the main effect on the estimation of Pe. pyrope-almandine solid solution elastic geobarometer equation of state high pressure and high temperature diamond anvil cell Science Q Bo Li verfasserin aut Bo Li verfasserin aut Junjie Jiang verfasserin aut Jingui Xu verfasserin aut Sergey N. Tkachev verfasserin aut Zhilin Ye verfasserin aut Zhilin Ye verfasserin aut Shijie Huang verfasserin aut Shijie Huang verfasserin aut Weihua Guo verfasserin aut Yongjun Zeng verfasserin aut Vitali B. Prakapenka verfasserin aut Dawei Fan verfasserin aut Wenge Zhou verfasserin aut In Frontiers in Earth Science Frontiers Media S.A., 2014 9(2022) (DE-627)771399731 (DE-600)2741235-0 22966463 nnns volume:9 year:2022 https://doi.org/10.3389/feart.2021.833405 kostenfrei https://doaj.org/article/b9667576228b42a8a3a96c7e29784f5f kostenfrei https://www.frontiersin.org/articles/10.3389/feart.2021.833405/full kostenfrei https://doaj.org/toc/2296-6463 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2022 |
allfieldsGer |
10.3389/feart.2021.833405 doi (DE-627)DOAJ086617753 (DE-599)DOAJb9667576228b42a8a3a96c7e29784f5f DE-627 ger DE-627 rakwb eng Bo Li verfasserin aut Effect of Thermoelastic Properties of the Pyrope-Almandine Solid Solutions on the Entrapment Pressure of Garnet-Related Elastic Geobarometer 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The pyrope (Prp)–almandine (Alm) solid solutions are the most fundamental garnet components on the Earth, and both the quartz inclusions in garnet (QuiG) barometry and the garnet inclusions in diamond barometry need to be constrained by the thermoelastic parameters of Prp-Alm solid solution garnets. Here, we report the thermoelastic properties of a series of synthetic Prp-Alm solid solutions based on the high-pressure and high-temperature (HP–HT) in situ synchrotron single-crystal x-ray diffraction (SCXRD) experiments up to ∼20 GPa and 700 K, using diamond anvil cell (DAC). Fitting the SCXRD data by the Birch-Murnaghan equation of state (BM-EoS) and the thermal-pressure EoS, we obtain the thermoelastic parameters of Prp-Alm solid solution garnets, including bulk modulus (K0), its pressure derivative (K′0), and the thermal expansion coefficient (α0). The K0 along the Prp-Alm solid solution changes linearly with Prp content within their uncertainties and can be expressed by K0 (GPa) = 181.0(8) – 0.11(1) Xprp (R2 = 0.91, Xprp is the Prp mole fraction and K′0 fixed at 4). Our result indicates that the compressibility of the Prp-Alm solid solution increases with the increasing Prp content. However, the thermal expansion coefficient of Prp-Alm solid solution at ambient pressure shows a non-linear trend with Prp content and can be expressed by α0 (10−5 K−1) = 2.7 (1) + 3.0 (5) XPrp− 3.2 (4) X2Prp (R2 = 0.985). It shows that the Prp-Alm solid solution with intermediate composition has a larger thermal expansion coefficient than those close to the endmembers at ambient conditions. Furthermore, we also evaluated the influence of thermoelastic properties of the Prp-Alm solid solution on the entrapment pressure (Pe) estimation for two types of elastic geobarometers. Our results indicate that the garnet component may significantly influence entrapment pressure, and among the thermoelastic parameters of garnet, the thermal expansion coefficient has the main effect on the estimation of Pe. pyrope-almandine solid solution elastic geobarometer equation of state high pressure and high temperature diamond anvil cell Science Q Bo Li verfasserin aut Bo Li verfasserin aut Junjie Jiang verfasserin aut Jingui Xu verfasserin aut Sergey N. Tkachev verfasserin aut Zhilin Ye verfasserin aut Zhilin Ye verfasserin aut Shijie Huang verfasserin aut Shijie Huang verfasserin aut Weihua Guo verfasserin aut Yongjun Zeng verfasserin aut Vitali B. Prakapenka verfasserin aut Dawei Fan verfasserin aut Wenge Zhou verfasserin aut In Frontiers in Earth Science Frontiers Media S.A., 2014 9(2022) (DE-627)771399731 (DE-600)2741235-0 22966463 nnns volume:9 year:2022 https://doi.org/10.3389/feart.2021.833405 kostenfrei https://doaj.org/article/b9667576228b42a8a3a96c7e29784f5f kostenfrei https://www.frontiersin.org/articles/10.3389/feart.2021.833405/full kostenfrei https://doaj.org/toc/2296-6463 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2022 |
allfieldsSound |
10.3389/feart.2021.833405 doi (DE-627)DOAJ086617753 (DE-599)DOAJb9667576228b42a8a3a96c7e29784f5f DE-627 ger DE-627 rakwb eng Bo Li verfasserin aut Effect of Thermoelastic Properties of the Pyrope-Almandine Solid Solutions on the Entrapment Pressure of Garnet-Related Elastic Geobarometer 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The pyrope (Prp)–almandine (Alm) solid solutions are the most fundamental garnet components on the Earth, and both the quartz inclusions in garnet (QuiG) barometry and the garnet inclusions in diamond barometry need to be constrained by the thermoelastic parameters of Prp-Alm solid solution garnets. Here, we report the thermoelastic properties of a series of synthetic Prp-Alm solid solutions based on the high-pressure and high-temperature (HP–HT) in situ synchrotron single-crystal x-ray diffraction (SCXRD) experiments up to ∼20 GPa and 700 K, using diamond anvil cell (DAC). Fitting the SCXRD data by the Birch-Murnaghan equation of state (BM-EoS) and the thermal-pressure EoS, we obtain the thermoelastic parameters of Prp-Alm solid solution garnets, including bulk modulus (K0), its pressure derivative (K′0), and the thermal expansion coefficient (α0). The K0 along the Prp-Alm solid solution changes linearly with Prp content within their uncertainties and can be expressed by K0 (GPa) = 181.0(8) – 0.11(1) Xprp (R2 = 0.91, Xprp is the Prp mole fraction and K′0 fixed at 4). Our result indicates that the compressibility of the Prp-Alm solid solution increases with the increasing Prp content. However, the thermal expansion coefficient of Prp-Alm solid solution at ambient pressure shows a non-linear trend with Prp content and can be expressed by α0 (10−5 K−1) = 2.7 (1) + 3.0 (5) XPrp− 3.2 (4) X2Prp (R2 = 0.985). It shows that the Prp-Alm solid solution with intermediate composition has a larger thermal expansion coefficient than those close to the endmembers at ambient conditions. Furthermore, we also evaluated the influence of thermoelastic properties of the Prp-Alm solid solution on the entrapment pressure (Pe) estimation for two types of elastic geobarometers. Our results indicate that the garnet component may significantly influence entrapment pressure, and among the thermoelastic parameters of garnet, the thermal expansion coefficient has the main effect on the estimation of Pe. pyrope-almandine solid solution elastic geobarometer equation of state high pressure and high temperature diamond anvil cell Science Q Bo Li verfasserin aut Bo Li verfasserin aut Junjie Jiang verfasserin aut Jingui Xu verfasserin aut Sergey N. Tkachev verfasserin aut Zhilin Ye verfasserin aut Zhilin Ye verfasserin aut Shijie Huang verfasserin aut Shijie Huang verfasserin aut Weihua Guo verfasserin aut Yongjun Zeng verfasserin aut Vitali B. Prakapenka verfasserin aut Dawei Fan verfasserin aut Wenge Zhou verfasserin aut In Frontiers in Earth Science Frontiers Media S.A., 2014 9(2022) (DE-627)771399731 (DE-600)2741235-0 22966463 nnns volume:9 year:2022 https://doi.org/10.3389/feart.2021.833405 kostenfrei https://doaj.org/article/b9667576228b42a8a3a96c7e29784f5f kostenfrei https://www.frontiersin.org/articles/10.3389/feart.2021.833405/full kostenfrei https://doaj.org/toc/2296-6463 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2022 |
language |
English |
source |
In Frontiers in Earth Science 9(2022) volume:9 year:2022 |
sourceStr |
In Frontiers in Earth Science 9(2022) volume:9 year:2022 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
pyrope-almandine solid solution elastic geobarometer equation of state high pressure and high temperature diamond anvil cell Science Q |
isfreeaccess_bool |
true |
container_title |
Frontiers in Earth Science |
authorswithroles_txt_mv |
Bo Li @@aut@@ Junjie Jiang @@aut@@ Jingui Xu @@aut@@ Sergey N. Tkachev @@aut@@ Zhilin Ye @@aut@@ Shijie Huang @@aut@@ Weihua Guo @@aut@@ Yongjun Zeng @@aut@@ Vitali B. Prakapenka @@aut@@ Dawei Fan @@aut@@ Wenge Zhou @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
771399731 |
id |
DOAJ086617753 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ086617753</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230311052242.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/feart.2021.833405</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ086617753</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb9667576228b42a8a3a96c7e29784f5f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Bo Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Effect of Thermoelastic Properties of the Pyrope-Almandine Solid Solutions on the Entrapment Pressure of Garnet-Related Elastic Geobarometer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The pyrope (Prp)–almandine (Alm) solid solutions are the most fundamental garnet components on the Earth, and both the quartz inclusions in garnet (QuiG) barometry and the garnet inclusions in diamond barometry need to be constrained by the thermoelastic parameters of Prp-Alm solid solution garnets. Here, we report the thermoelastic properties of a series of synthetic Prp-Alm solid solutions based on the high-pressure and high-temperature (HP–HT) in situ synchrotron single-crystal x-ray diffraction (SCXRD) experiments up to ∼20 GPa and 700 K, using diamond anvil cell (DAC). Fitting the SCXRD data by the Birch-Murnaghan equation of state (BM-EoS) and the thermal-pressure EoS, we obtain the thermoelastic parameters of Prp-Alm solid solution garnets, including bulk modulus (K0), its pressure derivative (K′0), and the thermal expansion coefficient (α0). The K0 along the Prp-Alm solid solution changes linearly with Prp content within their uncertainties and can be expressed by K0 (GPa) = 181.0(8) – 0.11(1) Xprp (R2 = 0.91, Xprp is the Prp mole fraction and K′0 fixed at 4). Our result indicates that the compressibility of the Prp-Alm solid solution increases with the increasing Prp content. However, the thermal expansion coefficient of Prp-Alm solid solution at ambient pressure shows a non-linear trend with Prp content and can be expressed by α0 (10−5 K−1) = 2.7 (1) + 3.0 (5) XPrp− 3.2 (4) X2Prp (R2 = 0.985). It shows that the Prp-Alm solid solution with intermediate composition has a larger thermal expansion coefficient than those close to the endmembers at ambient conditions. Furthermore, we also evaluated the influence of thermoelastic properties of the Prp-Alm solid solution on the entrapment pressure (Pe) estimation for two types of elastic geobarometers. Our results indicate that the garnet component may significantly influence entrapment pressure, and among the thermoelastic parameters of garnet, the thermal expansion coefficient has the main effect on the estimation of Pe.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pyrope-almandine solid solution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">elastic geobarometer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">equation of state</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">high pressure and high temperature</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">diamond anvil cell</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bo Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bo Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Junjie Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jingui Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sergey N. Tkachev</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhilin Ye</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhilin Ye</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shijie Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shijie Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Weihua Guo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yongjun Zeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vitali B. Prakapenka</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dawei Fan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wenge Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Earth Science</subfield><subfield code="d">Frontiers Media S.A., 2014</subfield><subfield code="g">9(2022)</subfield><subfield code="w">(DE-627)771399731</subfield><subfield code="w">(DE-600)2741235-0</subfield><subfield code="x">22966463</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2022</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/feart.2021.833405</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b9667576228b42a8a3a96c7e29784f5f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/articles/10.3389/feart.2021.833405/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2296-6463</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2022</subfield></datafield></record></collection>
|
author |
Bo Li |
spellingShingle |
Bo Li misc pyrope-almandine solid solution misc elastic geobarometer misc equation of state misc high pressure and high temperature misc diamond anvil cell misc Science misc Q Effect of Thermoelastic Properties of the Pyrope-Almandine Solid Solutions on the Entrapment Pressure of Garnet-Related Elastic Geobarometer |
authorStr |
Bo Li |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)771399731 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
22966463 |
topic_title |
Effect of Thermoelastic Properties of the Pyrope-Almandine Solid Solutions on the Entrapment Pressure of Garnet-Related Elastic Geobarometer pyrope-almandine solid solution elastic geobarometer equation of state high pressure and high temperature diamond anvil cell |
topic |
misc pyrope-almandine solid solution misc elastic geobarometer misc equation of state misc high pressure and high temperature misc diamond anvil cell misc Science misc Q |
topic_unstemmed |
misc pyrope-almandine solid solution misc elastic geobarometer misc equation of state misc high pressure and high temperature misc diamond anvil cell misc Science misc Q |
topic_browse |
misc pyrope-almandine solid solution misc elastic geobarometer misc equation of state misc high pressure and high temperature misc diamond anvil cell misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Frontiers in Earth Science |
hierarchy_parent_id |
771399731 |
hierarchy_top_title |
Frontiers in Earth Science |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)771399731 (DE-600)2741235-0 |
title |
Effect of Thermoelastic Properties of the Pyrope-Almandine Solid Solutions on the Entrapment Pressure of Garnet-Related Elastic Geobarometer |
ctrlnum |
(DE-627)DOAJ086617753 (DE-599)DOAJb9667576228b42a8a3a96c7e29784f5f |
title_full |
Effect of Thermoelastic Properties of the Pyrope-Almandine Solid Solutions on the Entrapment Pressure of Garnet-Related Elastic Geobarometer |
author_sort |
Bo Li |
journal |
Frontiers in Earth Science |
journalStr |
Frontiers in Earth Science |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Bo Li Junjie Jiang Jingui Xu Sergey N. Tkachev Zhilin Ye Shijie Huang Weihua Guo Yongjun Zeng Vitali B. Prakapenka Dawei Fan Wenge Zhou |
container_volume |
9 |
format_se |
Elektronische Aufsätze |
author-letter |
Bo Li |
doi_str_mv |
10.3389/feart.2021.833405 |
author2-role |
verfasserin |
title_sort |
effect of thermoelastic properties of the pyrope-almandine solid solutions on the entrapment pressure of garnet-related elastic geobarometer |
title_auth |
Effect of Thermoelastic Properties of the Pyrope-Almandine Solid Solutions on the Entrapment Pressure of Garnet-Related Elastic Geobarometer |
abstract |
The pyrope (Prp)–almandine (Alm) solid solutions are the most fundamental garnet components on the Earth, and both the quartz inclusions in garnet (QuiG) barometry and the garnet inclusions in diamond barometry need to be constrained by the thermoelastic parameters of Prp-Alm solid solution garnets. Here, we report the thermoelastic properties of a series of synthetic Prp-Alm solid solutions based on the high-pressure and high-temperature (HP–HT) in situ synchrotron single-crystal x-ray diffraction (SCXRD) experiments up to ∼20 GPa and 700 K, using diamond anvil cell (DAC). Fitting the SCXRD data by the Birch-Murnaghan equation of state (BM-EoS) and the thermal-pressure EoS, we obtain the thermoelastic parameters of Prp-Alm solid solution garnets, including bulk modulus (K0), its pressure derivative (K′0), and the thermal expansion coefficient (α0). The K0 along the Prp-Alm solid solution changes linearly with Prp content within their uncertainties and can be expressed by K0 (GPa) = 181.0(8) – 0.11(1) Xprp (R2 = 0.91, Xprp is the Prp mole fraction and K′0 fixed at 4). Our result indicates that the compressibility of the Prp-Alm solid solution increases with the increasing Prp content. However, the thermal expansion coefficient of Prp-Alm solid solution at ambient pressure shows a non-linear trend with Prp content and can be expressed by α0 (10−5 K−1) = 2.7 (1) + 3.0 (5) XPrp− 3.2 (4) X2Prp (R2 = 0.985). It shows that the Prp-Alm solid solution with intermediate composition has a larger thermal expansion coefficient than those close to the endmembers at ambient conditions. Furthermore, we also evaluated the influence of thermoelastic properties of the Prp-Alm solid solution on the entrapment pressure (Pe) estimation for two types of elastic geobarometers. Our results indicate that the garnet component may significantly influence entrapment pressure, and among the thermoelastic parameters of garnet, the thermal expansion coefficient has the main effect on the estimation of Pe. |
abstractGer |
The pyrope (Prp)–almandine (Alm) solid solutions are the most fundamental garnet components on the Earth, and both the quartz inclusions in garnet (QuiG) barometry and the garnet inclusions in diamond barometry need to be constrained by the thermoelastic parameters of Prp-Alm solid solution garnets. Here, we report the thermoelastic properties of a series of synthetic Prp-Alm solid solutions based on the high-pressure and high-temperature (HP–HT) in situ synchrotron single-crystal x-ray diffraction (SCXRD) experiments up to ∼20 GPa and 700 K, using diamond anvil cell (DAC). Fitting the SCXRD data by the Birch-Murnaghan equation of state (BM-EoS) and the thermal-pressure EoS, we obtain the thermoelastic parameters of Prp-Alm solid solution garnets, including bulk modulus (K0), its pressure derivative (K′0), and the thermal expansion coefficient (α0). The K0 along the Prp-Alm solid solution changes linearly with Prp content within their uncertainties and can be expressed by K0 (GPa) = 181.0(8) – 0.11(1) Xprp (R2 = 0.91, Xprp is the Prp mole fraction and K′0 fixed at 4). Our result indicates that the compressibility of the Prp-Alm solid solution increases with the increasing Prp content. However, the thermal expansion coefficient of Prp-Alm solid solution at ambient pressure shows a non-linear trend with Prp content and can be expressed by α0 (10−5 K−1) = 2.7 (1) + 3.0 (5) XPrp− 3.2 (4) X2Prp (R2 = 0.985). It shows that the Prp-Alm solid solution with intermediate composition has a larger thermal expansion coefficient than those close to the endmembers at ambient conditions. Furthermore, we also evaluated the influence of thermoelastic properties of the Prp-Alm solid solution on the entrapment pressure (Pe) estimation for two types of elastic geobarometers. Our results indicate that the garnet component may significantly influence entrapment pressure, and among the thermoelastic parameters of garnet, the thermal expansion coefficient has the main effect on the estimation of Pe. |
abstract_unstemmed |
The pyrope (Prp)–almandine (Alm) solid solutions are the most fundamental garnet components on the Earth, and both the quartz inclusions in garnet (QuiG) barometry and the garnet inclusions in diamond barometry need to be constrained by the thermoelastic parameters of Prp-Alm solid solution garnets. Here, we report the thermoelastic properties of a series of synthetic Prp-Alm solid solutions based on the high-pressure and high-temperature (HP–HT) in situ synchrotron single-crystal x-ray diffraction (SCXRD) experiments up to ∼20 GPa and 700 K, using diamond anvil cell (DAC). Fitting the SCXRD data by the Birch-Murnaghan equation of state (BM-EoS) and the thermal-pressure EoS, we obtain the thermoelastic parameters of Prp-Alm solid solution garnets, including bulk modulus (K0), its pressure derivative (K′0), and the thermal expansion coefficient (α0). The K0 along the Prp-Alm solid solution changes linearly with Prp content within their uncertainties and can be expressed by K0 (GPa) = 181.0(8) – 0.11(1) Xprp (R2 = 0.91, Xprp is the Prp mole fraction and K′0 fixed at 4). Our result indicates that the compressibility of the Prp-Alm solid solution increases with the increasing Prp content. However, the thermal expansion coefficient of Prp-Alm solid solution at ambient pressure shows a non-linear trend with Prp content and can be expressed by α0 (10−5 K−1) = 2.7 (1) + 3.0 (5) XPrp− 3.2 (4) X2Prp (R2 = 0.985). It shows that the Prp-Alm solid solution with intermediate composition has a larger thermal expansion coefficient than those close to the endmembers at ambient conditions. Furthermore, we also evaluated the influence of thermoelastic properties of the Prp-Alm solid solution on the entrapment pressure (Pe) estimation for two types of elastic geobarometers. Our results indicate that the garnet component may significantly influence entrapment pressure, and among the thermoelastic parameters of garnet, the thermal expansion coefficient has the main effect on the estimation of Pe. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Effect of Thermoelastic Properties of the Pyrope-Almandine Solid Solutions on the Entrapment Pressure of Garnet-Related Elastic Geobarometer |
url |
https://doi.org/10.3389/feart.2021.833405 https://doaj.org/article/b9667576228b42a8a3a96c7e29784f5f https://www.frontiersin.org/articles/10.3389/feart.2021.833405/full https://doaj.org/toc/2296-6463 |
remote_bool |
true |
author2 |
Bo Li Junjie Jiang Jingui Xu Sergey N. Tkachev Zhilin Ye Shijie Huang Weihua Guo Yongjun Zeng Vitali B. Prakapenka Dawei Fan Wenge Zhou |
author2Str |
Bo Li Junjie Jiang Jingui Xu Sergey N. Tkachev Zhilin Ye Shijie Huang Weihua Guo Yongjun Zeng Vitali B. Prakapenka Dawei Fan Wenge Zhou |
ppnlink |
771399731 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3389/feart.2021.833405 |
up_date |
2024-07-03T21:45:40.149Z |
_version_ |
1803595955726974976 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ086617753</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230311052242.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/feart.2021.833405</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ086617753</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb9667576228b42a8a3a96c7e29784f5f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Bo Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Effect of Thermoelastic Properties of the Pyrope-Almandine Solid Solutions on the Entrapment Pressure of Garnet-Related Elastic Geobarometer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The pyrope (Prp)–almandine (Alm) solid solutions are the most fundamental garnet components on the Earth, and both the quartz inclusions in garnet (QuiG) barometry and the garnet inclusions in diamond barometry need to be constrained by the thermoelastic parameters of Prp-Alm solid solution garnets. Here, we report the thermoelastic properties of a series of synthetic Prp-Alm solid solutions based on the high-pressure and high-temperature (HP–HT) in situ synchrotron single-crystal x-ray diffraction (SCXRD) experiments up to ∼20 GPa and 700 K, using diamond anvil cell (DAC). Fitting the SCXRD data by the Birch-Murnaghan equation of state (BM-EoS) and the thermal-pressure EoS, we obtain the thermoelastic parameters of Prp-Alm solid solution garnets, including bulk modulus (K0), its pressure derivative (K′0), and the thermal expansion coefficient (α0). The K0 along the Prp-Alm solid solution changes linearly with Prp content within their uncertainties and can be expressed by K0 (GPa) = 181.0(8) – 0.11(1) Xprp (R2 = 0.91, Xprp is the Prp mole fraction and K′0 fixed at 4). Our result indicates that the compressibility of the Prp-Alm solid solution increases with the increasing Prp content. However, the thermal expansion coefficient of Prp-Alm solid solution at ambient pressure shows a non-linear trend with Prp content and can be expressed by α0 (10−5 K−1) = 2.7 (1) + 3.0 (5) XPrp− 3.2 (4) X2Prp (R2 = 0.985). It shows that the Prp-Alm solid solution with intermediate composition has a larger thermal expansion coefficient than those close to the endmembers at ambient conditions. Furthermore, we also evaluated the influence of thermoelastic properties of the Prp-Alm solid solution on the entrapment pressure (Pe) estimation for two types of elastic geobarometers. Our results indicate that the garnet component may significantly influence entrapment pressure, and among the thermoelastic parameters of garnet, the thermal expansion coefficient has the main effect on the estimation of Pe.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pyrope-almandine solid solution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">elastic geobarometer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">equation of state</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">high pressure and high temperature</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">diamond anvil cell</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bo Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bo Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Junjie Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jingui Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sergey N. Tkachev</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhilin Ye</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhilin Ye</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shijie Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shijie Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Weihua Guo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yongjun Zeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vitali B. Prakapenka</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dawei Fan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wenge Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Earth Science</subfield><subfield code="d">Frontiers Media S.A., 2014</subfield><subfield code="g">9(2022)</subfield><subfield code="w">(DE-627)771399731</subfield><subfield code="w">(DE-600)2741235-0</subfield><subfield code="x">22966463</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2022</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/feart.2021.833405</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b9667576228b42a8a3a96c7e29784f5f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/articles/10.3389/feart.2021.833405/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2296-6463</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2022</subfield></datafield></record></collection>
|
score |
7.4010067 |