Identification of Metabolic Phenotypes in Young Adults with Obesity by <sup<1</sup<H NMR Metabolomics of Blood Serum
(1) Since the obesity prevalence rate has been consistently increasing, it is necessary to find an effective way to prevent and treat it. Although progress is being made to reduce obesity in the young adult population, a better understanding of obesity-related metabolomics and related biochemical me...
Ausführliche Beschreibung
Autor*in: |
Khin Thandar Htun [verfasserIn] Jie Pan [verfasserIn] Duanghathai Pasanta [verfasserIn] Montree Tungjai [verfasserIn] Chatchanok Udomtanakunchai [verfasserIn] Sirirat Chancharunee [verfasserIn] Siriprapa Kaewjaeng [verfasserIn] Hong Joo Kim [verfasserIn] Jakrapong Kaewkhao [verfasserIn] Suchart Kothan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Life - MDPI AG, 2012, 11(2021), 6, p 574 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2021 ; number:6, p 574 |
Links: |
---|
DOI / URN: |
10.3390/life11060574 |
---|
Katalog-ID: |
DOAJ086640259 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ086640259 | ||
003 | DE-627 | ||
005 | 20240412174007.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/life11060574 |2 doi | |
035 | |a (DE-627)DOAJ086640259 | ||
035 | |a (DE-599)DOAJ1ea6a2c2bd9747fc8d89baa67108660d | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Khin Thandar Htun |e verfasserin |4 aut | |
245 | 1 | 0 | |a Identification of Metabolic Phenotypes in Young Adults with Obesity by <sup<1</sup<H NMR Metabolomics of Blood Serum |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a (1) Since the obesity prevalence rate has been consistently increasing, it is necessary to find an effective way to prevent and treat it. Although progress is being made to reduce obesity in the young adult population, a better understanding of obesity-related metabolomics and related biochemical mechanisms is urgently needed for developing appropriate screening strategies. Therefore, the aim of this study is to identify the serum metabolic profile associated with young adult obesity and its metabolic phenotypes. (2) Methods: The serum metabolic profile of 30 obese and 30 normal-weight young adults was obtained using proton nuclear magnetic resonance spectroscopy (<sup<1</sup<H NMR). <sup<1</sup<H NMR spectra were integrated into 24 integration regions, which reflect relative metabolites, and were used as statistical variables. (3) Results: The obese group showed increased levels of lipids, glucose, glutamate, N-acetyl glycoprotein, alanine, lactate, 3 hydroxybutyrate and branch chain amino acid (BCAA), and decreased levels of choline as compared with the normal-weight group. Non-hyperlipidemia obese adults showed lower levels of lipids and lactate, glutamate, acetoacetate, N-acetyl glycoprotein, isoleucine, and higher levels of choline and glutamine, as compared with hyperlipidemic obese adults. (4) Conclusions: This study reveals valuable findings in the field of metabolomics and young adult obesity. We propose several serum biomarkers that distinguish between normal weight and obese adults, i.e., glutamine (higher in the normal group, <i<p</i< < 0.05), and lactate, BCAAs, acetoacetate and 3-hydroxybutyrate (higher in the obese group, <i<p</i< < 0.05). In addition, visceral fat and serum TG, glutamate, acetoacetate, N-acetyl glycoprotein, unsaturated lipid, isoleucine, and VLDL/LDL are higher (<i<p</i< < 0.05) in the obese with hyperlipidemia. Therefore, they can be used as biomarkers to identify these two types of obesity. | ||
650 | 4 | |a <sup<1</sup<H NMR | |
650 | 4 | |a young adults | |
650 | 4 | |a obesity | |
650 | 4 | |a hyperlipidemia | |
650 | 4 | |a metabolic profile | |
650 | 4 | |a metabolic syndrome | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Jie Pan |e verfasserin |4 aut | |
700 | 0 | |a Duanghathai Pasanta |e verfasserin |4 aut | |
700 | 0 | |a Montree Tungjai |e verfasserin |4 aut | |
700 | 0 | |a Chatchanok Udomtanakunchai |e verfasserin |4 aut | |
700 | 0 | |a Sirirat Chancharunee |e verfasserin |4 aut | |
700 | 0 | |a Siriprapa Kaewjaeng |e verfasserin |4 aut | |
700 | 0 | |a Hong Joo Kim |e verfasserin |4 aut | |
700 | 0 | |a Jakrapong Kaewkhao |e verfasserin |4 aut | |
700 | 0 | |a Suchart Kothan |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Life |d MDPI AG, 2012 |g 11(2021), 6, p 574 |w (DE-627)718627156 |w (DE-600)2662250-6 |x 20751729 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2021 |g number:6, p 574 |
856 | 4 | 0 | |u https://doi.org/10.3390/life11060574 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/1ea6a2c2bd9747fc8d89baa67108660d |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2075-1729/11/6/574 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2075-1729 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2021 |e 6, p 574 |
author_variant |
k t h kth j p jp d p dp m t mt c u cu s c sc s k sk h j k hjk j k jk s k sk |
---|---|
matchkey_str |
article:20751729:2021----::dniiainfeaoipeoyeiyugdlsihbstbspspnr |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.3390/life11060574 doi (DE-627)DOAJ086640259 (DE-599)DOAJ1ea6a2c2bd9747fc8d89baa67108660d DE-627 ger DE-627 rakwb eng Khin Thandar Htun verfasserin aut Identification of Metabolic Phenotypes in Young Adults with Obesity by <sup<1</sup<H NMR Metabolomics of Blood Serum 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier (1) Since the obesity prevalence rate has been consistently increasing, it is necessary to find an effective way to prevent and treat it. Although progress is being made to reduce obesity in the young adult population, a better understanding of obesity-related metabolomics and related biochemical mechanisms is urgently needed for developing appropriate screening strategies. Therefore, the aim of this study is to identify the serum metabolic profile associated with young adult obesity and its metabolic phenotypes. (2) Methods: The serum metabolic profile of 30 obese and 30 normal-weight young adults was obtained using proton nuclear magnetic resonance spectroscopy (<sup<1</sup<H NMR). <sup<1</sup<H NMR spectra were integrated into 24 integration regions, which reflect relative metabolites, and were used as statistical variables. (3) Results: The obese group showed increased levels of lipids, glucose, glutamate, N-acetyl glycoprotein, alanine, lactate, 3 hydroxybutyrate and branch chain amino acid (BCAA), and decreased levels of choline as compared with the normal-weight group. Non-hyperlipidemia obese adults showed lower levels of lipids and lactate, glutamate, acetoacetate, N-acetyl glycoprotein, isoleucine, and higher levels of choline and glutamine, as compared with hyperlipidemic obese adults. (4) Conclusions: This study reveals valuable findings in the field of metabolomics and young adult obesity. We propose several serum biomarkers that distinguish between normal weight and obese adults, i.e., glutamine (higher in the normal group, <i<p</i< < 0.05), and lactate, BCAAs, acetoacetate and 3-hydroxybutyrate (higher in the obese group, <i<p</i< < 0.05). In addition, visceral fat and serum TG, glutamate, acetoacetate, N-acetyl glycoprotein, unsaturated lipid, isoleucine, and VLDL/LDL are higher (<i<p</i< < 0.05) in the obese with hyperlipidemia. Therefore, they can be used as biomarkers to identify these two types of obesity. <sup<1</sup<H NMR young adults obesity hyperlipidemia metabolic profile metabolic syndrome Science Q Jie Pan verfasserin aut Duanghathai Pasanta verfasserin aut Montree Tungjai verfasserin aut Chatchanok Udomtanakunchai verfasserin aut Sirirat Chancharunee verfasserin aut Siriprapa Kaewjaeng verfasserin aut Hong Joo Kim verfasserin aut Jakrapong Kaewkhao verfasserin aut Suchart Kothan verfasserin aut In Life MDPI AG, 2012 11(2021), 6, p 574 (DE-627)718627156 (DE-600)2662250-6 20751729 nnns volume:11 year:2021 number:6, p 574 https://doi.org/10.3390/life11060574 kostenfrei https://doaj.org/article/1ea6a2c2bd9747fc8d89baa67108660d kostenfrei https://www.mdpi.com/2075-1729/11/6/574 kostenfrei https://doaj.org/toc/2075-1729 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 6, p 574 |
spelling |
10.3390/life11060574 doi (DE-627)DOAJ086640259 (DE-599)DOAJ1ea6a2c2bd9747fc8d89baa67108660d DE-627 ger DE-627 rakwb eng Khin Thandar Htun verfasserin aut Identification of Metabolic Phenotypes in Young Adults with Obesity by <sup<1</sup<H NMR Metabolomics of Blood Serum 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier (1) Since the obesity prevalence rate has been consistently increasing, it is necessary to find an effective way to prevent and treat it. Although progress is being made to reduce obesity in the young adult population, a better understanding of obesity-related metabolomics and related biochemical mechanisms is urgently needed for developing appropriate screening strategies. Therefore, the aim of this study is to identify the serum metabolic profile associated with young adult obesity and its metabolic phenotypes. (2) Methods: The serum metabolic profile of 30 obese and 30 normal-weight young adults was obtained using proton nuclear magnetic resonance spectroscopy (<sup<1</sup<H NMR). <sup<1</sup<H NMR spectra were integrated into 24 integration regions, which reflect relative metabolites, and were used as statistical variables. (3) Results: The obese group showed increased levels of lipids, glucose, glutamate, N-acetyl glycoprotein, alanine, lactate, 3 hydroxybutyrate and branch chain amino acid (BCAA), and decreased levels of choline as compared with the normal-weight group. Non-hyperlipidemia obese adults showed lower levels of lipids and lactate, glutamate, acetoacetate, N-acetyl glycoprotein, isoleucine, and higher levels of choline and glutamine, as compared with hyperlipidemic obese adults. (4) Conclusions: This study reveals valuable findings in the field of metabolomics and young adult obesity. We propose several serum biomarkers that distinguish between normal weight and obese adults, i.e., glutamine (higher in the normal group, <i<p</i< < 0.05), and lactate, BCAAs, acetoacetate and 3-hydroxybutyrate (higher in the obese group, <i<p</i< < 0.05). In addition, visceral fat and serum TG, glutamate, acetoacetate, N-acetyl glycoprotein, unsaturated lipid, isoleucine, and VLDL/LDL are higher (<i<p</i< < 0.05) in the obese with hyperlipidemia. Therefore, they can be used as biomarkers to identify these two types of obesity. <sup<1</sup<H NMR young adults obesity hyperlipidemia metabolic profile metabolic syndrome Science Q Jie Pan verfasserin aut Duanghathai Pasanta verfasserin aut Montree Tungjai verfasserin aut Chatchanok Udomtanakunchai verfasserin aut Sirirat Chancharunee verfasserin aut Siriprapa Kaewjaeng verfasserin aut Hong Joo Kim verfasserin aut Jakrapong Kaewkhao verfasserin aut Suchart Kothan verfasserin aut In Life MDPI AG, 2012 11(2021), 6, p 574 (DE-627)718627156 (DE-600)2662250-6 20751729 nnns volume:11 year:2021 number:6, p 574 https://doi.org/10.3390/life11060574 kostenfrei https://doaj.org/article/1ea6a2c2bd9747fc8d89baa67108660d kostenfrei https://www.mdpi.com/2075-1729/11/6/574 kostenfrei https://doaj.org/toc/2075-1729 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 6, p 574 |
allfields_unstemmed |
10.3390/life11060574 doi (DE-627)DOAJ086640259 (DE-599)DOAJ1ea6a2c2bd9747fc8d89baa67108660d DE-627 ger DE-627 rakwb eng Khin Thandar Htun verfasserin aut Identification of Metabolic Phenotypes in Young Adults with Obesity by <sup<1</sup<H NMR Metabolomics of Blood Serum 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier (1) Since the obesity prevalence rate has been consistently increasing, it is necessary to find an effective way to prevent and treat it. Although progress is being made to reduce obesity in the young adult population, a better understanding of obesity-related metabolomics and related biochemical mechanisms is urgently needed for developing appropriate screening strategies. Therefore, the aim of this study is to identify the serum metabolic profile associated with young adult obesity and its metabolic phenotypes. (2) Methods: The serum metabolic profile of 30 obese and 30 normal-weight young adults was obtained using proton nuclear magnetic resonance spectroscopy (<sup<1</sup<H NMR). <sup<1</sup<H NMR spectra were integrated into 24 integration regions, which reflect relative metabolites, and were used as statistical variables. (3) Results: The obese group showed increased levels of lipids, glucose, glutamate, N-acetyl glycoprotein, alanine, lactate, 3 hydroxybutyrate and branch chain amino acid (BCAA), and decreased levels of choline as compared with the normal-weight group. Non-hyperlipidemia obese adults showed lower levels of lipids and lactate, glutamate, acetoacetate, N-acetyl glycoprotein, isoleucine, and higher levels of choline and glutamine, as compared with hyperlipidemic obese adults. (4) Conclusions: This study reveals valuable findings in the field of metabolomics and young adult obesity. We propose several serum biomarkers that distinguish between normal weight and obese adults, i.e., glutamine (higher in the normal group, <i<p</i< < 0.05), and lactate, BCAAs, acetoacetate and 3-hydroxybutyrate (higher in the obese group, <i<p</i< < 0.05). In addition, visceral fat and serum TG, glutamate, acetoacetate, N-acetyl glycoprotein, unsaturated lipid, isoleucine, and VLDL/LDL are higher (<i<p</i< < 0.05) in the obese with hyperlipidemia. Therefore, they can be used as biomarkers to identify these two types of obesity. <sup<1</sup<H NMR young adults obesity hyperlipidemia metabolic profile metabolic syndrome Science Q Jie Pan verfasserin aut Duanghathai Pasanta verfasserin aut Montree Tungjai verfasserin aut Chatchanok Udomtanakunchai verfasserin aut Sirirat Chancharunee verfasserin aut Siriprapa Kaewjaeng verfasserin aut Hong Joo Kim verfasserin aut Jakrapong Kaewkhao verfasserin aut Suchart Kothan verfasserin aut In Life MDPI AG, 2012 11(2021), 6, p 574 (DE-627)718627156 (DE-600)2662250-6 20751729 nnns volume:11 year:2021 number:6, p 574 https://doi.org/10.3390/life11060574 kostenfrei https://doaj.org/article/1ea6a2c2bd9747fc8d89baa67108660d kostenfrei https://www.mdpi.com/2075-1729/11/6/574 kostenfrei https://doaj.org/toc/2075-1729 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 6, p 574 |
allfieldsGer |
10.3390/life11060574 doi (DE-627)DOAJ086640259 (DE-599)DOAJ1ea6a2c2bd9747fc8d89baa67108660d DE-627 ger DE-627 rakwb eng Khin Thandar Htun verfasserin aut Identification of Metabolic Phenotypes in Young Adults with Obesity by <sup<1</sup<H NMR Metabolomics of Blood Serum 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier (1) Since the obesity prevalence rate has been consistently increasing, it is necessary to find an effective way to prevent and treat it. Although progress is being made to reduce obesity in the young adult population, a better understanding of obesity-related metabolomics and related biochemical mechanisms is urgently needed for developing appropriate screening strategies. Therefore, the aim of this study is to identify the serum metabolic profile associated with young adult obesity and its metabolic phenotypes. (2) Methods: The serum metabolic profile of 30 obese and 30 normal-weight young adults was obtained using proton nuclear magnetic resonance spectroscopy (<sup<1</sup<H NMR). <sup<1</sup<H NMR spectra were integrated into 24 integration regions, which reflect relative metabolites, and were used as statistical variables. (3) Results: The obese group showed increased levels of lipids, glucose, glutamate, N-acetyl glycoprotein, alanine, lactate, 3 hydroxybutyrate and branch chain amino acid (BCAA), and decreased levels of choline as compared with the normal-weight group. Non-hyperlipidemia obese adults showed lower levels of lipids and lactate, glutamate, acetoacetate, N-acetyl glycoprotein, isoleucine, and higher levels of choline and glutamine, as compared with hyperlipidemic obese adults. (4) Conclusions: This study reveals valuable findings in the field of metabolomics and young adult obesity. We propose several serum biomarkers that distinguish between normal weight and obese adults, i.e., glutamine (higher in the normal group, <i<p</i< < 0.05), and lactate, BCAAs, acetoacetate and 3-hydroxybutyrate (higher in the obese group, <i<p</i< < 0.05). In addition, visceral fat and serum TG, glutamate, acetoacetate, N-acetyl glycoprotein, unsaturated lipid, isoleucine, and VLDL/LDL are higher (<i<p</i< < 0.05) in the obese with hyperlipidemia. Therefore, they can be used as biomarkers to identify these two types of obesity. <sup<1</sup<H NMR young adults obesity hyperlipidemia metabolic profile metabolic syndrome Science Q Jie Pan verfasserin aut Duanghathai Pasanta verfasserin aut Montree Tungjai verfasserin aut Chatchanok Udomtanakunchai verfasserin aut Sirirat Chancharunee verfasserin aut Siriprapa Kaewjaeng verfasserin aut Hong Joo Kim verfasserin aut Jakrapong Kaewkhao verfasserin aut Suchart Kothan verfasserin aut In Life MDPI AG, 2012 11(2021), 6, p 574 (DE-627)718627156 (DE-600)2662250-6 20751729 nnns volume:11 year:2021 number:6, p 574 https://doi.org/10.3390/life11060574 kostenfrei https://doaj.org/article/1ea6a2c2bd9747fc8d89baa67108660d kostenfrei https://www.mdpi.com/2075-1729/11/6/574 kostenfrei https://doaj.org/toc/2075-1729 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 6, p 574 |
allfieldsSound |
10.3390/life11060574 doi (DE-627)DOAJ086640259 (DE-599)DOAJ1ea6a2c2bd9747fc8d89baa67108660d DE-627 ger DE-627 rakwb eng Khin Thandar Htun verfasserin aut Identification of Metabolic Phenotypes in Young Adults with Obesity by <sup<1</sup<H NMR Metabolomics of Blood Serum 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier (1) Since the obesity prevalence rate has been consistently increasing, it is necessary to find an effective way to prevent and treat it. Although progress is being made to reduce obesity in the young adult population, a better understanding of obesity-related metabolomics and related biochemical mechanisms is urgently needed for developing appropriate screening strategies. Therefore, the aim of this study is to identify the serum metabolic profile associated with young adult obesity and its metabolic phenotypes. (2) Methods: The serum metabolic profile of 30 obese and 30 normal-weight young adults was obtained using proton nuclear magnetic resonance spectroscopy (<sup<1</sup<H NMR). <sup<1</sup<H NMR spectra were integrated into 24 integration regions, which reflect relative metabolites, and were used as statistical variables. (3) Results: The obese group showed increased levels of lipids, glucose, glutamate, N-acetyl glycoprotein, alanine, lactate, 3 hydroxybutyrate and branch chain amino acid (BCAA), and decreased levels of choline as compared with the normal-weight group. Non-hyperlipidemia obese adults showed lower levels of lipids and lactate, glutamate, acetoacetate, N-acetyl glycoprotein, isoleucine, and higher levels of choline and glutamine, as compared with hyperlipidemic obese adults. (4) Conclusions: This study reveals valuable findings in the field of metabolomics and young adult obesity. We propose several serum biomarkers that distinguish between normal weight and obese adults, i.e., glutamine (higher in the normal group, <i<p</i< < 0.05), and lactate, BCAAs, acetoacetate and 3-hydroxybutyrate (higher in the obese group, <i<p</i< < 0.05). In addition, visceral fat and serum TG, glutamate, acetoacetate, N-acetyl glycoprotein, unsaturated lipid, isoleucine, and VLDL/LDL are higher (<i<p</i< < 0.05) in the obese with hyperlipidemia. Therefore, they can be used as biomarkers to identify these two types of obesity. <sup<1</sup<H NMR young adults obesity hyperlipidemia metabolic profile metabolic syndrome Science Q Jie Pan verfasserin aut Duanghathai Pasanta verfasserin aut Montree Tungjai verfasserin aut Chatchanok Udomtanakunchai verfasserin aut Sirirat Chancharunee verfasserin aut Siriprapa Kaewjaeng verfasserin aut Hong Joo Kim verfasserin aut Jakrapong Kaewkhao verfasserin aut Suchart Kothan verfasserin aut In Life MDPI AG, 2012 11(2021), 6, p 574 (DE-627)718627156 (DE-600)2662250-6 20751729 nnns volume:11 year:2021 number:6, p 574 https://doi.org/10.3390/life11060574 kostenfrei https://doaj.org/article/1ea6a2c2bd9747fc8d89baa67108660d kostenfrei https://www.mdpi.com/2075-1729/11/6/574 kostenfrei https://doaj.org/toc/2075-1729 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 6, p 574 |
language |
English |
source |
In Life 11(2021), 6, p 574 volume:11 year:2021 number:6, p 574 |
sourceStr |
In Life 11(2021), 6, p 574 volume:11 year:2021 number:6, p 574 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
<sup<1</sup<H NMR young adults obesity hyperlipidemia metabolic profile metabolic syndrome Science Q |
isfreeaccess_bool |
true |
container_title |
Life |
authorswithroles_txt_mv |
Khin Thandar Htun @@aut@@ Jie Pan @@aut@@ Duanghathai Pasanta @@aut@@ Montree Tungjai @@aut@@ Chatchanok Udomtanakunchai @@aut@@ Sirirat Chancharunee @@aut@@ Siriprapa Kaewjaeng @@aut@@ Hong Joo Kim @@aut@@ Jakrapong Kaewkhao @@aut@@ Suchart Kothan @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
718627156 |
id |
DOAJ086640259 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ086640259</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412174007.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/life11060574</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ086640259</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ1ea6a2c2bd9747fc8d89baa67108660d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Khin Thandar Htun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Identification of Metabolic Phenotypes in Young Adults with Obesity by <sup<1</sup<H NMR Metabolomics of Blood Serum</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">(1) Since the obesity prevalence rate has been consistently increasing, it is necessary to find an effective way to prevent and treat it. Although progress is being made to reduce obesity in the young adult population, a better understanding of obesity-related metabolomics and related biochemical mechanisms is urgently needed for developing appropriate screening strategies. Therefore, the aim of this study is to identify the serum metabolic profile associated with young adult obesity and its metabolic phenotypes. (2) Methods: The serum metabolic profile of 30 obese and 30 normal-weight young adults was obtained using proton nuclear magnetic resonance spectroscopy (<sup<1</sup<H NMR). <sup<1</sup<H NMR spectra were integrated into 24 integration regions, which reflect relative metabolites, and were used as statistical variables. (3) Results: The obese group showed increased levels of lipids, glucose, glutamate, N-acetyl glycoprotein, alanine, lactate, 3 hydroxybutyrate and branch chain amino acid (BCAA), and decreased levels of choline as compared with the normal-weight group. Non-hyperlipidemia obese adults showed lower levels of lipids and lactate, glutamate, acetoacetate, N-acetyl glycoprotein, isoleucine, and higher levels of choline and glutamine, as compared with hyperlipidemic obese adults. (4) Conclusions: This study reveals valuable findings in the field of metabolomics and young adult obesity. We propose several serum biomarkers that distinguish between normal weight and obese adults, i.e., glutamine (higher in the normal group, <i<p</i< < 0.05), and lactate, BCAAs, acetoacetate and 3-hydroxybutyrate (higher in the obese group, <i<p</i< < 0.05). In addition, visceral fat and serum TG, glutamate, acetoacetate, N-acetyl glycoprotein, unsaturated lipid, isoleucine, and VLDL/LDL are higher (<i<p</i< < 0.05) in the obese with hyperlipidemia. Therefore, they can be used as biomarkers to identify these two types of obesity.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><sup<1</sup<H NMR</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">young adults</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">obesity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hyperlipidemia</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">metabolic profile</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">metabolic syndrome</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jie Pan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Duanghathai Pasanta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Montree Tungjai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chatchanok Udomtanakunchai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sirirat Chancharunee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Siriprapa Kaewjaeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hong Joo Kim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jakrapong Kaewkhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Suchart Kothan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Life</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">11(2021), 6, p 574</subfield><subfield code="w">(DE-627)718627156</subfield><subfield code="w">(DE-600)2662250-6</subfield><subfield code="x">20751729</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:6, p 574</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/life11060574</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/1ea6a2c2bd9747fc8d89baa67108660d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2075-1729/11/6/574</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2075-1729</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2021</subfield><subfield code="e">6, p 574</subfield></datafield></record></collection>
|
author |
Khin Thandar Htun |
spellingShingle |
Khin Thandar Htun misc <sup<1</sup<H NMR misc young adults misc obesity misc hyperlipidemia misc metabolic profile misc metabolic syndrome misc Science misc Q Identification of Metabolic Phenotypes in Young Adults with Obesity by <sup<1</sup<H NMR Metabolomics of Blood Serum |
authorStr |
Khin Thandar Htun |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)718627156 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
20751729 |
topic_title |
Identification of Metabolic Phenotypes in Young Adults with Obesity by <sup<1</sup<H NMR Metabolomics of Blood Serum <sup<1</sup<H NMR young adults obesity hyperlipidemia metabolic profile metabolic syndrome |
topic |
misc <sup<1</sup<H NMR misc young adults misc obesity misc hyperlipidemia misc metabolic profile misc metabolic syndrome misc Science misc Q |
topic_unstemmed |
misc <sup<1</sup<H NMR misc young adults misc obesity misc hyperlipidemia misc metabolic profile misc metabolic syndrome misc Science misc Q |
topic_browse |
misc <sup<1</sup<H NMR misc young adults misc obesity misc hyperlipidemia misc metabolic profile misc metabolic syndrome misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Life |
hierarchy_parent_id |
718627156 |
hierarchy_top_title |
Life |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)718627156 (DE-600)2662250-6 |
title |
Identification of Metabolic Phenotypes in Young Adults with Obesity by <sup<1</sup<H NMR Metabolomics of Blood Serum |
ctrlnum |
(DE-627)DOAJ086640259 (DE-599)DOAJ1ea6a2c2bd9747fc8d89baa67108660d |
title_full |
Identification of Metabolic Phenotypes in Young Adults with Obesity by <sup<1</sup<H NMR Metabolomics of Blood Serum |
author_sort |
Khin Thandar Htun |
journal |
Life |
journalStr |
Life |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Khin Thandar Htun Jie Pan Duanghathai Pasanta Montree Tungjai Chatchanok Udomtanakunchai Sirirat Chancharunee Siriprapa Kaewjaeng Hong Joo Kim Jakrapong Kaewkhao Suchart Kothan |
container_volume |
11 |
format_se |
Elektronische Aufsätze |
author-letter |
Khin Thandar Htun |
doi_str_mv |
10.3390/life11060574 |
author2-role |
verfasserin |
title_sort |
identification of metabolic phenotypes in young adults with obesity by <sup<1</sup<h nmr metabolomics of blood serum |
title_auth |
Identification of Metabolic Phenotypes in Young Adults with Obesity by <sup<1</sup<H NMR Metabolomics of Blood Serum |
abstract |
(1) Since the obesity prevalence rate has been consistently increasing, it is necessary to find an effective way to prevent and treat it. Although progress is being made to reduce obesity in the young adult population, a better understanding of obesity-related metabolomics and related biochemical mechanisms is urgently needed for developing appropriate screening strategies. Therefore, the aim of this study is to identify the serum metabolic profile associated with young adult obesity and its metabolic phenotypes. (2) Methods: The serum metabolic profile of 30 obese and 30 normal-weight young adults was obtained using proton nuclear magnetic resonance spectroscopy (<sup<1</sup<H NMR). <sup<1</sup<H NMR spectra were integrated into 24 integration regions, which reflect relative metabolites, and were used as statistical variables. (3) Results: The obese group showed increased levels of lipids, glucose, glutamate, N-acetyl glycoprotein, alanine, lactate, 3 hydroxybutyrate and branch chain amino acid (BCAA), and decreased levels of choline as compared with the normal-weight group. Non-hyperlipidemia obese adults showed lower levels of lipids and lactate, glutamate, acetoacetate, N-acetyl glycoprotein, isoleucine, and higher levels of choline and glutamine, as compared with hyperlipidemic obese adults. (4) Conclusions: This study reveals valuable findings in the field of metabolomics and young adult obesity. We propose several serum biomarkers that distinguish between normal weight and obese adults, i.e., glutamine (higher in the normal group, <i<p</i< < 0.05), and lactate, BCAAs, acetoacetate and 3-hydroxybutyrate (higher in the obese group, <i<p</i< < 0.05). In addition, visceral fat and serum TG, glutamate, acetoacetate, N-acetyl glycoprotein, unsaturated lipid, isoleucine, and VLDL/LDL are higher (<i<p</i< < 0.05) in the obese with hyperlipidemia. Therefore, they can be used as biomarkers to identify these two types of obesity. |
abstractGer |
(1) Since the obesity prevalence rate has been consistently increasing, it is necessary to find an effective way to prevent and treat it. Although progress is being made to reduce obesity in the young adult population, a better understanding of obesity-related metabolomics and related biochemical mechanisms is urgently needed for developing appropriate screening strategies. Therefore, the aim of this study is to identify the serum metabolic profile associated with young adult obesity and its metabolic phenotypes. (2) Methods: The serum metabolic profile of 30 obese and 30 normal-weight young adults was obtained using proton nuclear magnetic resonance spectroscopy (<sup<1</sup<H NMR). <sup<1</sup<H NMR spectra were integrated into 24 integration regions, which reflect relative metabolites, and were used as statistical variables. (3) Results: The obese group showed increased levels of lipids, glucose, glutamate, N-acetyl glycoprotein, alanine, lactate, 3 hydroxybutyrate and branch chain amino acid (BCAA), and decreased levels of choline as compared with the normal-weight group. Non-hyperlipidemia obese adults showed lower levels of lipids and lactate, glutamate, acetoacetate, N-acetyl glycoprotein, isoleucine, and higher levels of choline and glutamine, as compared with hyperlipidemic obese adults. (4) Conclusions: This study reveals valuable findings in the field of metabolomics and young adult obesity. We propose several serum biomarkers that distinguish between normal weight and obese adults, i.e., glutamine (higher in the normal group, <i<p</i< < 0.05), and lactate, BCAAs, acetoacetate and 3-hydroxybutyrate (higher in the obese group, <i<p</i< < 0.05). In addition, visceral fat and serum TG, glutamate, acetoacetate, N-acetyl glycoprotein, unsaturated lipid, isoleucine, and VLDL/LDL are higher (<i<p</i< < 0.05) in the obese with hyperlipidemia. Therefore, they can be used as biomarkers to identify these two types of obesity. |
abstract_unstemmed |
(1) Since the obesity prevalence rate has been consistently increasing, it is necessary to find an effective way to prevent and treat it. Although progress is being made to reduce obesity in the young adult population, a better understanding of obesity-related metabolomics and related biochemical mechanisms is urgently needed for developing appropriate screening strategies. Therefore, the aim of this study is to identify the serum metabolic profile associated with young adult obesity and its metabolic phenotypes. (2) Methods: The serum metabolic profile of 30 obese and 30 normal-weight young adults was obtained using proton nuclear magnetic resonance spectroscopy (<sup<1</sup<H NMR). <sup<1</sup<H NMR spectra were integrated into 24 integration regions, which reflect relative metabolites, and were used as statistical variables. (3) Results: The obese group showed increased levels of lipids, glucose, glutamate, N-acetyl glycoprotein, alanine, lactate, 3 hydroxybutyrate and branch chain amino acid (BCAA), and decreased levels of choline as compared with the normal-weight group. Non-hyperlipidemia obese adults showed lower levels of lipids and lactate, glutamate, acetoacetate, N-acetyl glycoprotein, isoleucine, and higher levels of choline and glutamine, as compared with hyperlipidemic obese adults. (4) Conclusions: This study reveals valuable findings in the field of metabolomics and young adult obesity. We propose several serum biomarkers that distinguish between normal weight and obese adults, i.e., glutamine (higher in the normal group, <i<p</i< < 0.05), and lactate, BCAAs, acetoacetate and 3-hydroxybutyrate (higher in the obese group, <i<p</i< < 0.05). In addition, visceral fat and serum TG, glutamate, acetoacetate, N-acetyl glycoprotein, unsaturated lipid, isoleucine, and VLDL/LDL are higher (<i<p</i< < 0.05) in the obese with hyperlipidemia. Therefore, they can be used as biomarkers to identify these two types of obesity. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
6, p 574 |
title_short |
Identification of Metabolic Phenotypes in Young Adults with Obesity by <sup<1</sup<H NMR Metabolomics of Blood Serum |
url |
https://doi.org/10.3390/life11060574 https://doaj.org/article/1ea6a2c2bd9747fc8d89baa67108660d https://www.mdpi.com/2075-1729/11/6/574 https://doaj.org/toc/2075-1729 |
remote_bool |
true |
author2 |
Jie Pan Duanghathai Pasanta Montree Tungjai Chatchanok Udomtanakunchai Sirirat Chancharunee Siriprapa Kaewjaeng Hong Joo Kim Jakrapong Kaewkhao Suchart Kothan |
author2Str |
Jie Pan Duanghathai Pasanta Montree Tungjai Chatchanok Udomtanakunchai Sirirat Chancharunee Siriprapa Kaewjaeng Hong Joo Kim Jakrapong Kaewkhao Suchart Kothan |
ppnlink |
718627156 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/life11060574 |
up_date |
2024-07-03T21:54:28.459Z |
_version_ |
1803596509703307264 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ086640259</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412174007.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/life11060574</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ086640259</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ1ea6a2c2bd9747fc8d89baa67108660d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Khin Thandar Htun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Identification of Metabolic Phenotypes in Young Adults with Obesity by <sup<1</sup<H NMR Metabolomics of Blood Serum</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">(1) Since the obesity prevalence rate has been consistently increasing, it is necessary to find an effective way to prevent and treat it. Although progress is being made to reduce obesity in the young adult population, a better understanding of obesity-related metabolomics and related biochemical mechanisms is urgently needed for developing appropriate screening strategies. Therefore, the aim of this study is to identify the serum metabolic profile associated with young adult obesity and its metabolic phenotypes. (2) Methods: The serum metabolic profile of 30 obese and 30 normal-weight young adults was obtained using proton nuclear magnetic resonance spectroscopy (<sup<1</sup<H NMR). <sup<1</sup<H NMR spectra were integrated into 24 integration regions, which reflect relative metabolites, and were used as statistical variables. (3) Results: The obese group showed increased levels of lipids, glucose, glutamate, N-acetyl glycoprotein, alanine, lactate, 3 hydroxybutyrate and branch chain amino acid (BCAA), and decreased levels of choline as compared with the normal-weight group. Non-hyperlipidemia obese adults showed lower levels of lipids and lactate, glutamate, acetoacetate, N-acetyl glycoprotein, isoleucine, and higher levels of choline and glutamine, as compared with hyperlipidemic obese adults. (4) Conclusions: This study reveals valuable findings in the field of metabolomics and young adult obesity. We propose several serum biomarkers that distinguish between normal weight and obese adults, i.e., glutamine (higher in the normal group, <i<p</i< < 0.05), and lactate, BCAAs, acetoacetate and 3-hydroxybutyrate (higher in the obese group, <i<p</i< < 0.05). In addition, visceral fat and serum TG, glutamate, acetoacetate, N-acetyl glycoprotein, unsaturated lipid, isoleucine, and VLDL/LDL are higher (<i<p</i< < 0.05) in the obese with hyperlipidemia. Therefore, they can be used as biomarkers to identify these two types of obesity.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><sup<1</sup<H NMR</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">young adults</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">obesity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hyperlipidemia</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">metabolic profile</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">metabolic syndrome</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jie Pan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Duanghathai Pasanta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Montree Tungjai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chatchanok Udomtanakunchai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sirirat Chancharunee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Siriprapa Kaewjaeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hong Joo Kim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jakrapong Kaewkhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Suchart Kothan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Life</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">11(2021), 6, p 574</subfield><subfield code="w">(DE-627)718627156</subfield><subfield code="w">(DE-600)2662250-6</subfield><subfield code="x">20751729</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:6, p 574</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/life11060574</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/1ea6a2c2bd9747fc8d89baa67108660d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2075-1729/11/6/574</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2075-1729</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2021</subfield><subfield code="e">6, p 574</subfield></datafield></record></collection>
|
score |
7.401101 |