Development of high-resolution melting (HRM) assay to differentiate the species of Shigella isolates from stool and food samples
Abstract Shigella species, a group of intracellular foodborne pathogens, are the main causes of bacillary dysentery and shigellosis in humans worldwide. It is essential to determine the species of Shigella in outbreaks and food safety surveillance systems. The available immunological and molecular m...
Ausführliche Beschreibung
Autor*in: |
Babak Pakbin [verfasserIn] Afshin Akhondzadeh Basti [verfasserIn] Ali Khanjari [verfasserIn] Wolfram Manuel Brück [verfasserIn] Leila Azimi [verfasserIn] Abdollah Karimi [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Übergeordnetes Werk: |
In: Scientific Reports - Nature Portfolio, 2011, 12(2022), 1, Seite 13 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2022 ; number:1 ; pages:13 |
Links: |
---|
DOI / URN: |
10.1038/s41598-021-04484-1 |
---|
Katalog-ID: |
DOAJ086734466 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ086734466 | ||
003 | DE-627 | ||
005 | 20230311053134.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1038/s41598-021-04484-1 |2 doi | |
035 | |a (DE-627)DOAJ086734466 | ||
035 | |a (DE-599)DOAJe4b6cbc70866435cb7cb23bc0629c9ed | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Babak Pakbin |e verfasserin |4 aut | |
245 | 1 | 0 | |a Development of high-resolution melting (HRM) assay to differentiate the species of Shigella isolates from stool and food samples |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Shigella species, a group of intracellular foodborne pathogens, are the main causes of bacillary dysentery and shigellosis in humans worldwide. It is essential to determine the species of Shigella in outbreaks and food safety surveillance systems. The available immunological and molecular methods for identifying Shigella species are relatively complicated, expensive and time-consuming. High resolution melting (HRM) assay is a rapid, cost-effective, and easy to perform PCR-based method that has recently been used for the differentiation of bacterial species. In this study, we designed and developed a PCR-HRM assay targeting rrsA gene to distinguish four species of 49 Shigella isolates from clinical and food samples and evaluated the sensitivity and specificity of the assay. The assay demonstrated a good analytical sensitivity with 0.01–0.1 ng of input DNA template and an analytical specificity of 100% to differentiate the Shigella species. The PCR-HRM assay also was able to identify the species of all 49 Shigella isolates from clinical and food samples correctly. Consequently, this rapid and user-friendly method demonstrated good sensitivity and specificity to differentiate species of the Shigella isolates from naturally contaminated samples and has the potential to be implemented in public health and food safety surveillance systems. | ||
653 | 0 | |a Medicine | |
653 | 0 | |a R | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Afshin Akhondzadeh Basti |e verfasserin |4 aut | |
700 | 0 | |a Ali Khanjari |e verfasserin |4 aut | |
700 | 0 | |a Wolfram Manuel Brück |e verfasserin |4 aut | |
700 | 0 | |a Leila Azimi |e verfasserin |4 aut | |
700 | 0 | |a Abdollah Karimi |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Scientific Reports |d Nature Portfolio, 2011 |g 12(2022), 1, Seite 13 |w (DE-627)663366712 |w (DE-600)2615211-3 |x 20452322 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2022 |g number:1 |g pages:13 |
856 | 4 | 0 | |u https://doi.org/10.1038/s41598-021-04484-1 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/e4b6cbc70866435cb7cb23bc0629c9ed |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1038/s41598-021-04484-1 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2045-2322 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_381 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2022 |e 1 |h 13 |
author_variant |
b p bp a a b aab a k ak w m b wmb l a la a k ak |
---|---|
matchkey_str |
article:20452322:2022----::eeomnohgrsltomligrasyoifrnittepceosielio |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1038/s41598-021-04484-1 doi (DE-627)DOAJ086734466 (DE-599)DOAJe4b6cbc70866435cb7cb23bc0629c9ed DE-627 ger DE-627 rakwb eng Babak Pakbin verfasserin aut Development of high-resolution melting (HRM) assay to differentiate the species of Shigella isolates from stool and food samples 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Shigella species, a group of intracellular foodborne pathogens, are the main causes of bacillary dysentery and shigellosis in humans worldwide. It is essential to determine the species of Shigella in outbreaks and food safety surveillance systems. The available immunological and molecular methods for identifying Shigella species are relatively complicated, expensive and time-consuming. High resolution melting (HRM) assay is a rapid, cost-effective, and easy to perform PCR-based method that has recently been used for the differentiation of bacterial species. In this study, we designed and developed a PCR-HRM assay targeting rrsA gene to distinguish four species of 49 Shigella isolates from clinical and food samples and evaluated the sensitivity and specificity of the assay. The assay demonstrated a good analytical sensitivity with 0.01–0.1 ng of input DNA template and an analytical specificity of 100% to differentiate the Shigella species. The PCR-HRM assay also was able to identify the species of all 49 Shigella isolates from clinical and food samples correctly. Consequently, this rapid and user-friendly method demonstrated good sensitivity and specificity to differentiate species of the Shigella isolates from naturally contaminated samples and has the potential to be implemented in public health and food safety surveillance systems. Medicine R Science Q Afshin Akhondzadeh Basti verfasserin aut Ali Khanjari verfasserin aut Wolfram Manuel Brück verfasserin aut Leila Azimi verfasserin aut Abdollah Karimi verfasserin aut In Scientific Reports Nature Portfolio, 2011 12(2022), 1, Seite 13 (DE-627)663366712 (DE-600)2615211-3 20452322 nnns volume:12 year:2022 number:1 pages:13 https://doi.org/10.1038/s41598-021-04484-1 kostenfrei https://doaj.org/article/e4b6cbc70866435cb7cb23bc0629c9ed kostenfrei https://doi.org/10.1038/s41598-021-04484-1 kostenfrei https://doaj.org/toc/2045-2322 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 1 13 |
spelling |
10.1038/s41598-021-04484-1 doi (DE-627)DOAJ086734466 (DE-599)DOAJe4b6cbc70866435cb7cb23bc0629c9ed DE-627 ger DE-627 rakwb eng Babak Pakbin verfasserin aut Development of high-resolution melting (HRM) assay to differentiate the species of Shigella isolates from stool and food samples 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Shigella species, a group of intracellular foodborne pathogens, are the main causes of bacillary dysentery and shigellosis in humans worldwide. It is essential to determine the species of Shigella in outbreaks and food safety surveillance systems. The available immunological and molecular methods for identifying Shigella species are relatively complicated, expensive and time-consuming. High resolution melting (HRM) assay is a rapid, cost-effective, and easy to perform PCR-based method that has recently been used for the differentiation of bacterial species. In this study, we designed and developed a PCR-HRM assay targeting rrsA gene to distinguish four species of 49 Shigella isolates from clinical and food samples and evaluated the sensitivity and specificity of the assay. The assay demonstrated a good analytical sensitivity with 0.01–0.1 ng of input DNA template and an analytical specificity of 100% to differentiate the Shigella species. The PCR-HRM assay also was able to identify the species of all 49 Shigella isolates from clinical and food samples correctly. Consequently, this rapid and user-friendly method demonstrated good sensitivity and specificity to differentiate species of the Shigella isolates from naturally contaminated samples and has the potential to be implemented in public health and food safety surveillance systems. Medicine R Science Q Afshin Akhondzadeh Basti verfasserin aut Ali Khanjari verfasserin aut Wolfram Manuel Brück verfasserin aut Leila Azimi verfasserin aut Abdollah Karimi verfasserin aut In Scientific Reports Nature Portfolio, 2011 12(2022), 1, Seite 13 (DE-627)663366712 (DE-600)2615211-3 20452322 nnns volume:12 year:2022 number:1 pages:13 https://doi.org/10.1038/s41598-021-04484-1 kostenfrei https://doaj.org/article/e4b6cbc70866435cb7cb23bc0629c9ed kostenfrei https://doi.org/10.1038/s41598-021-04484-1 kostenfrei https://doaj.org/toc/2045-2322 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 1 13 |
allfields_unstemmed |
10.1038/s41598-021-04484-1 doi (DE-627)DOAJ086734466 (DE-599)DOAJe4b6cbc70866435cb7cb23bc0629c9ed DE-627 ger DE-627 rakwb eng Babak Pakbin verfasserin aut Development of high-resolution melting (HRM) assay to differentiate the species of Shigella isolates from stool and food samples 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Shigella species, a group of intracellular foodborne pathogens, are the main causes of bacillary dysentery and shigellosis in humans worldwide. It is essential to determine the species of Shigella in outbreaks and food safety surveillance systems. The available immunological and molecular methods for identifying Shigella species are relatively complicated, expensive and time-consuming. High resolution melting (HRM) assay is a rapid, cost-effective, and easy to perform PCR-based method that has recently been used for the differentiation of bacterial species. In this study, we designed and developed a PCR-HRM assay targeting rrsA gene to distinguish four species of 49 Shigella isolates from clinical and food samples and evaluated the sensitivity and specificity of the assay. The assay demonstrated a good analytical sensitivity with 0.01–0.1 ng of input DNA template and an analytical specificity of 100% to differentiate the Shigella species. The PCR-HRM assay also was able to identify the species of all 49 Shigella isolates from clinical and food samples correctly. Consequently, this rapid and user-friendly method demonstrated good sensitivity and specificity to differentiate species of the Shigella isolates from naturally contaminated samples and has the potential to be implemented in public health and food safety surveillance systems. Medicine R Science Q Afshin Akhondzadeh Basti verfasserin aut Ali Khanjari verfasserin aut Wolfram Manuel Brück verfasserin aut Leila Azimi verfasserin aut Abdollah Karimi verfasserin aut In Scientific Reports Nature Portfolio, 2011 12(2022), 1, Seite 13 (DE-627)663366712 (DE-600)2615211-3 20452322 nnns volume:12 year:2022 number:1 pages:13 https://doi.org/10.1038/s41598-021-04484-1 kostenfrei https://doaj.org/article/e4b6cbc70866435cb7cb23bc0629c9ed kostenfrei https://doi.org/10.1038/s41598-021-04484-1 kostenfrei https://doaj.org/toc/2045-2322 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 1 13 |
allfieldsGer |
10.1038/s41598-021-04484-1 doi (DE-627)DOAJ086734466 (DE-599)DOAJe4b6cbc70866435cb7cb23bc0629c9ed DE-627 ger DE-627 rakwb eng Babak Pakbin verfasserin aut Development of high-resolution melting (HRM) assay to differentiate the species of Shigella isolates from stool and food samples 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Shigella species, a group of intracellular foodborne pathogens, are the main causes of bacillary dysentery and shigellosis in humans worldwide. It is essential to determine the species of Shigella in outbreaks and food safety surveillance systems. The available immunological and molecular methods for identifying Shigella species are relatively complicated, expensive and time-consuming. High resolution melting (HRM) assay is a rapid, cost-effective, and easy to perform PCR-based method that has recently been used for the differentiation of bacterial species. In this study, we designed and developed a PCR-HRM assay targeting rrsA gene to distinguish four species of 49 Shigella isolates from clinical and food samples and evaluated the sensitivity and specificity of the assay. The assay demonstrated a good analytical sensitivity with 0.01–0.1 ng of input DNA template and an analytical specificity of 100% to differentiate the Shigella species. The PCR-HRM assay also was able to identify the species of all 49 Shigella isolates from clinical and food samples correctly. Consequently, this rapid and user-friendly method demonstrated good sensitivity and specificity to differentiate species of the Shigella isolates from naturally contaminated samples and has the potential to be implemented in public health and food safety surveillance systems. Medicine R Science Q Afshin Akhondzadeh Basti verfasserin aut Ali Khanjari verfasserin aut Wolfram Manuel Brück verfasserin aut Leila Azimi verfasserin aut Abdollah Karimi verfasserin aut In Scientific Reports Nature Portfolio, 2011 12(2022), 1, Seite 13 (DE-627)663366712 (DE-600)2615211-3 20452322 nnns volume:12 year:2022 number:1 pages:13 https://doi.org/10.1038/s41598-021-04484-1 kostenfrei https://doaj.org/article/e4b6cbc70866435cb7cb23bc0629c9ed kostenfrei https://doi.org/10.1038/s41598-021-04484-1 kostenfrei https://doaj.org/toc/2045-2322 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 1 13 |
allfieldsSound |
10.1038/s41598-021-04484-1 doi (DE-627)DOAJ086734466 (DE-599)DOAJe4b6cbc70866435cb7cb23bc0629c9ed DE-627 ger DE-627 rakwb eng Babak Pakbin verfasserin aut Development of high-resolution melting (HRM) assay to differentiate the species of Shigella isolates from stool and food samples 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Shigella species, a group of intracellular foodborne pathogens, are the main causes of bacillary dysentery and shigellosis in humans worldwide. It is essential to determine the species of Shigella in outbreaks and food safety surveillance systems. The available immunological and molecular methods for identifying Shigella species are relatively complicated, expensive and time-consuming. High resolution melting (HRM) assay is a rapid, cost-effective, and easy to perform PCR-based method that has recently been used for the differentiation of bacterial species. In this study, we designed and developed a PCR-HRM assay targeting rrsA gene to distinguish four species of 49 Shigella isolates from clinical and food samples and evaluated the sensitivity and specificity of the assay. The assay demonstrated a good analytical sensitivity with 0.01–0.1 ng of input DNA template and an analytical specificity of 100% to differentiate the Shigella species. The PCR-HRM assay also was able to identify the species of all 49 Shigella isolates from clinical and food samples correctly. Consequently, this rapid and user-friendly method demonstrated good sensitivity and specificity to differentiate species of the Shigella isolates from naturally contaminated samples and has the potential to be implemented in public health and food safety surveillance systems. Medicine R Science Q Afshin Akhondzadeh Basti verfasserin aut Ali Khanjari verfasserin aut Wolfram Manuel Brück verfasserin aut Leila Azimi verfasserin aut Abdollah Karimi verfasserin aut In Scientific Reports Nature Portfolio, 2011 12(2022), 1, Seite 13 (DE-627)663366712 (DE-600)2615211-3 20452322 nnns volume:12 year:2022 number:1 pages:13 https://doi.org/10.1038/s41598-021-04484-1 kostenfrei https://doaj.org/article/e4b6cbc70866435cb7cb23bc0629c9ed kostenfrei https://doi.org/10.1038/s41598-021-04484-1 kostenfrei https://doaj.org/toc/2045-2322 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 1 13 |
language |
English |
source |
In Scientific Reports 12(2022), 1, Seite 13 volume:12 year:2022 number:1 pages:13 |
sourceStr |
In Scientific Reports 12(2022), 1, Seite 13 volume:12 year:2022 number:1 pages:13 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Medicine R Science Q |
isfreeaccess_bool |
true |
container_title |
Scientific Reports |
authorswithroles_txt_mv |
Babak Pakbin @@aut@@ Afshin Akhondzadeh Basti @@aut@@ Ali Khanjari @@aut@@ Wolfram Manuel Brück @@aut@@ Leila Azimi @@aut@@ Abdollah Karimi @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
663366712 |
id |
DOAJ086734466 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ086734466</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230311053134.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1038/s41598-021-04484-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ086734466</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe4b6cbc70866435cb7cb23bc0629c9ed</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Babak Pakbin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Development of high-resolution melting (HRM) assay to differentiate the species of Shigella isolates from stool and food samples</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Shigella species, a group of intracellular foodborne pathogens, are the main causes of bacillary dysentery and shigellosis in humans worldwide. It is essential to determine the species of Shigella in outbreaks and food safety surveillance systems. The available immunological and molecular methods for identifying Shigella species are relatively complicated, expensive and time-consuming. High resolution melting (HRM) assay is a rapid, cost-effective, and easy to perform PCR-based method that has recently been used for the differentiation of bacterial species. In this study, we designed and developed a PCR-HRM assay targeting rrsA gene to distinguish four species of 49 Shigella isolates from clinical and food samples and evaluated the sensitivity and specificity of the assay. The assay demonstrated a good analytical sensitivity with 0.01–0.1 ng of input DNA template and an analytical specificity of 100% to differentiate the Shigella species. The PCR-HRM assay also was able to identify the species of all 49 Shigella isolates from clinical and food samples correctly. Consequently, this rapid and user-friendly method demonstrated good sensitivity and specificity to differentiate species of the Shigella isolates from naturally contaminated samples and has the potential to be implemented in public health and food safety surveillance systems.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Afshin Akhondzadeh Basti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ali Khanjari</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wolfram Manuel Brück</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Leila Azimi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Abdollah Karimi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Scientific Reports</subfield><subfield code="d">Nature Portfolio, 2011</subfield><subfield code="g">12(2022), 1, Seite 13</subfield><subfield code="w">(DE-627)663366712</subfield><subfield code="w">(DE-600)2615211-3</subfield><subfield code="x">20452322</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:13</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1038/s41598-021-04484-1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e4b6cbc70866435cb7cb23bc0629c9ed</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1038/s41598-021-04484-1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2045-2322</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="h">13</subfield></datafield></record></collection>
|
author |
Babak Pakbin |
spellingShingle |
Babak Pakbin misc Medicine misc R misc Science misc Q Development of high-resolution melting (HRM) assay to differentiate the species of Shigella isolates from stool and food samples |
authorStr |
Babak Pakbin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)663366712 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
20452322 |
topic_title |
Development of high-resolution melting (HRM) assay to differentiate the species of Shigella isolates from stool and food samples |
topic |
misc Medicine misc R misc Science misc Q |
topic_unstemmed |
misc Medicine misc R misc Science misc Q |
topic_browse |
misc Medicine misc R misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Scientific Reports |
hierarchy_parent_id |
663366712 |
hierarchy_top_title |
Scientific Reports |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)663366712 (DE-600)2615211-3 |
title |
Development of high-resolution melting (HRM) assay to differentiate the species of Shigella isolates from stool and food samples |
ctrlnum |
(DE-627)DOAJ086734466 (DE-599)DOAJe4b6cbc70866435cb7cb23bc0629c9ed |
title_full |
Development of high-resolution melting (HRM) assay to differentiate the species of Shigella isolates from stool and food samples |
author_sort |
Babak Pakbin |
journal |
Scientific Reports |
journalStr |
Scientific Reports |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
13 |
author_browse |
Babak Pakbin Afshin Akhondzadeh Basti Ali Khanjari Wolfram Manuel Brück Leila Azimi Abdollah Karimi |
container_volume |
12 |
format_se |
Elektronische Aufsätze |
author-letter |
Babak Pakbin |
doi_str_mv |
10.1038/s41598-021-04484-1 |
author2-role |
verfasserin |
title_sort |
development of high-resolution melting (hrm) assay to differentiate the species of shigella isolates from stool and food samples |
title_auth |
Development of high-resolution melting (HRM) assay to differentiate the species of Shigella isolates from stool and food samples |
abstract |
Abstract Shigella species, a group of intracellular foodborne pathogens, are the main causes of bacillary dysentery and shigellosis in humans worldwide. It is essential to determine the species of Shigella in outbreaks and food safety surveillance systems. The available immunological and molecular methods for identifying Shigella species are relatively complicated, expensive and time-consuming. High resolution melting (HRM) assay is a rapid, cost-effective, and easy to perform PCR-based method that has recently been used for the differentiation of bacterial species. In this study, we designed and developed a PCR-HRM assay targeting rrsA gene to distinguish four species of 49 Shigella isolates from clinical and food samples and evaluated the sensitivity and specificity of the assay. The assay demonstrated a good analytical sensitivity with 0.01–0.1 ng of input DNA template and an analytical specificity of 100% to differentiate the Shigella species. The PCR-HRM assay also was able to identify the species of all 49 Shigella isolates from clinical and food samples correctly. Consequently, this rapid and user-friendly method demonstrated good sensitivity and specificity to differentiate species of the Shigella isolates from naturally contaminated samples and has the potential to be implemented in public health and food safety surveillance systems. |
abstractGer |
Abstract Shigella species, a group of intracellular foodborne pathogens, are the main causes of bacillary dysentery and shigellosis in humans worldwide. It is essential to determine the species of Shigella in outbreaks and food safety surveillance systems. The available immunological and molecular methods for identifying Shigella species are relatively complicated, expensive and time-consuming. High resolution melting (HRM) assay is a rapid, cost-effective, and easy to perform PCR-based method that has recently been used for the differentiation of bacterial species. In this study, we designed and developed a PCR-HRM assay targeting rrsA gene to distinguish four species of 49 Shigella isolates from clinical and food samples and evaluated the sensitivity and specificity of the assay. The assay demonstrated a good analytical sensitivity with 0.01–0.1 ng of input DNA template and an analytical specificity of 100% to differentiate the Shigella species. The PCR-HRM assay also was able to identify the species of all 49 Shigella isolates from clinical and food samples correctly. Consequently, this rapid and user-friendly method demonstrated good sensitivity and specificity to differentiate species of the Shigella isolates from naturally contaminated samples and has the potential to be implemented in public health and food safety surveillance systems. |
abstract_unstemmed |
Abstract Shigella species, a group of intracellular foodborne pathogens, are the main causes of bacillary dysentery and shigellosis in humans worldwide. It is essential to determine the species of Shigella in outbreaks and food safety surveillance systems. The available immunological and molecular methods for identifying Shigella species are relatively complicated, expensive and time-consuming. High resolution melting (HRM) assay is a rapid, cost-effective, and easy to perform PCR-based method that has recently been used for the differentiation of bacterial species. In this study, we designed and developed a PCR-HRM assay targeting rrsA gene to distinguish four species of 49 Shigella isolates from clinical and food samples and evaluated the sensitivity and specificity of the assay. The assay demonstrated a good analytical sensitivity with 0.01–0.1 ng of input DNA template and an analytical specificity of 100% to differentiate the Shigella species. The PCR-HRM assay also was able to identify the species of all 49 Shigella isolates from clinical and food samples correctly. Consequently, this rapid and user-friendly method demonstrated good sensitivity and specificity to differentiate species of the Shigella isolates from naturally contaminated samples and has the potential to be implemented in public health and food safety surveillance systems. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Development of high-resolution melting (HRM) assay to differentiate the species of Shigella isolates from stool and food samples |
url |
https://doi.org/10.1038/s41598-021-04484-1 https://doaj.org/article/e4b6cbc70866435cb7cb23bc0629c9ed https://doaj.org/toc/2045-2322 |
remote_bool |
true |
author2 |
Afshin Akhondzadeh Basti Ali Khanjari Wolfram Manuel Brück Leila Azimi Abdollah Karimi |
author2Str |
Afshin Akhondzadeh Basti Ali Khanjari Wolfram Manuel Brück Leila Azimi Abdollah Karimi |
ppnlink |
663366712 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1038/s41598-021-04484-1 |
up_date |
2024-07-03T22:27:36.704Z |
_version_ |
1803598594533490688 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ086734466</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230311053134.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1038/s41598-021-04484-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ086734466</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe4b6cbc70866435cb7cb23bc0629c9ed</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Babak Pakbin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Development of high-resolution melting (HRM) assay to differentiate the species of Shigella isolates from stool and food samples</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Shigella species, a group of intracellular foodborne pathogens, are the main causes of bacillary dysentery and shigellosis in humans worldwide. It is essential to determine the species of Shigella in outbreaks and food safety surveillance systems. The available immunological and molecular methods for identifying Shigella species are relatively complicated, expensive and time-consuming. High resolution melting (HRM) assay is a rapid, cost-effective, and easy to perform PCR-based method that has recently been used for the differentiation of bacterial species. In this study, we designed and developed a PCR-HRM assay targeting rrsA gene to distinguish four species of 49 Shigella isolates from clinical and food samples and evaluated the sensitivity and specificity of the assay. The assay demonstrated a good analytical sensitivity with 0.01–0.1 ng of input DNA template and an analytical specificity of 100% to differentiate the Shigella species. The PCR-HRM assay also was able to identify the species of all 49 Shigella isolates from clinical and food samples correctly. Consequently, this rapid and user-friendly method demonstrated good sensitivity and specificity to differentiate species of the Shigella isolates from naturally contaminated samples and has the potential to be implemented in public health and food safety surveillance systems.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Afshin Akhondzadeh Basti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ali Khanjari</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wolfram Manuel Brück</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Leila Azimi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Abdollah Karimi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Scientific Reports</subfield><subfield code="d">Nature Portfolio, 2011</subfield><subfield code="g">12(2022), 1, Seite 13</subfield><subfield code="w">(DE-627)663366712</subfield><subfield code="w">(DE-600)2615211-3</subfield><subfield code="x">20452322</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:13</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1038/s41598-021-04484-1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e4b6cbc70866435cb7cb23bc0629c9ed</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1038/s41598-021-04484-1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2045-2322</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="h">13</subfield></datafield></record></collection>
|
score |
7.400776 |