Advanced Molecular Imaging (MRI/MRS/<sup<1</sup<H NMR) for Metabolic Information in Young Adults with Health Risk Obesity
Background: Obesity or being overweight is a medical condition of abnormal body fat accumulation which is associated with a higher risk of developing metabolic syndrome. The distinct body fat depots on specific parts of the anatomy have unique metabolic properties and different types of regional exc...
Ausführliche Beschreibung
Autor*in: |
Khin Thandar Htun [verfasserIn] Jie Pan [verfasserIn] Duanghathai Pasanta [verfasserIn] Montree Tungjai [verfasserIn] Chatchanok Udomtanakunchai [verfasserIn] Thanaporn Petcharoen [verfasserIn] Nattacha Chamta [verfasserIn] Supak Kosicharoen [verfasserIn] Kiattisak Chukua [verfasserIn] Christopher Lai [verfasserIn] Suchart Kothan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Life - MDPI AG, 2012, 11(2021), 10, p 1035 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2021 ; number:10, p 1035 |
Links: |
---|
DOI / URN: |
10.3390/life11101035 |
---|
Katalog-ID: |
DOAJ086783254 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ086783254 | ||
003 | DE-627 | ||
005 | 20240412135151.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/life11101035 |2 doi | |
035 | |a (DE-627)DOAJ086783254 | ||
035 | |a (DE-599)DOAJ1c42bdaf707a40699fef86c3a1362e7c | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Khin Thandar Htun |e verfasserin |4 aut | |
245 | 1 | 0 | |a Advanced Molecular Imaging (MRI/MRS/<sup<1</sup<H NMR) for Metabolic Information in Young Adults with Health Risk Obesity |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Background: Obesity or being overweight is a medical condition of abnormal body fat accumulation which is associated with a higher risk of developing metabolic syndrome. The distinct body fat depots on specific parts of the anatomy have unique metabolic properties and different types of regional excessive fat distribution can be a disease hazard. The aim of this study was to identify the metabolome and molecular imaging phenotypes among a young adult population. Methods: The amount and distribution of fat and lipid metabolites profile in the abdomen, liver, and calf muscles of 46 normal weight, 17 overweight, and 13 obese participants were acquired using MRI and MR spectroscopy (MRS), respectively. The serum metabolic profile was obtained using proton NMR spectroscopy. NMR spectra were integrated into seven integration regions, which reflect relative metabolites. Results: A significant metabolic disorder symptom appeared in the overweight and obese group, and increased lipid deposition occurred in the abdomen, hepatocytes, and muscles that were statistically significant. Overall, the visceral fat depots had a marked influence on dyslipidemia biomarkers, blood triglyceride (r = 0.592, <i<p</i< < 0.001), and high-density lipoprotein cholesterol (r = −0.484, <i<p</i< < 0.001). Intrahepatocellular lipid was associated with diabetes predictors for hemoglobin (HbA1c%; r = 0.379, <i<p</i< < 0.001) and for fasting blood sugar (r = 0.333, <i<p</i< < 0.05). The lipid signals in serum triglyceride and glucose signals gave similar correspondence to biochemical lipid profiles. Conclusions: This study proves the association between alteration in metabolome in young adults, which is the key population for early prevention of obesity and metabolic syndrome. This study suggests that dyslipidemia prevalence is influenced mainly by the visceral fat depot, and liver fat depot is a key determinant for glucose metabolism and hyperglycemia. Moreover, noninvasive advanced molecular imaging completely elucidated the impact of fat distribution on the anthropometric and laboratory parameters, especially indices of the metabolic syndrome biomarkers in young adults. | ||
650 | 4 | |a MRI | |
650 | 4 | |a MRS | |
650 | 4 | |a <sup<1</sup<H NMR | |
650 | 4 | |a obesity | |
650 | 4 | |a young adults | |
650 | 4 | |a metabolic syndrome | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Jie Pan |e verfasserin |4 aut | |
700 | 0 | |a Duanghathai Pasanta |e verfasserin |4 aut | |
700 | 0 | |a Montree Tungjai |e verfasserin |4 aut | |
700 | 0 | |a Chatchanok Udomtanakunchai |e verfasserin |4 aut | |
700 | 0 | |a Thanaporn Petcharoen |e verfasserin |4 aut | |
700 | 0 | |a Nattacha Chamta |e verfasserin |4 aut | |
700 | 0 | |a Supak Kosicharoen |e verfasserin |4 aut | |
700 | 0 | |a Kiattisak Chukua |e verfasserin |4 aut | |
700 | 0 | |a Christopher Lai |e verfasserin |4 aut | |
700 | 0 | |a Suchart Kothan |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Life |d MDPI AG, 2012 |g 11(2021), 10, p 1035 |w (DE-627)718627156 |w (DE-600)2662250-6 |x 20751729 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2021 |g number:10, p 1035 |
856 | 4 | 0 | |u https://doi.org/10.3390/life11101035 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/1c42bdaf707a40699fef86c3a1362e7c |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2075-1729/11/10/1035 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2075-1729 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2021 |e 10, p 1035 |
author_variant |
k t h kth j p jp d p dp m t mt c u cu t p tp n c nc s k sk k c kc c l cl s k sk |
---|---|
matchkey_str |
article:20751729:2021----::dacdoeuaiaigrmsu1uhmfreaoiifrainnona |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.3390/life11101035 doi (DE-627)DOAJ086783254 (DE-599)DOAJ1c42bdaf707a40699fef86c3a1362e7c DE-627 ger DE-627 rakwb eng Khin Thandar Htun verfasserin aut Advanced Molecular Imaging (MRI/MRS/<sup<1</sup<H NMR) for Metabolic Information in Young Adults with Health Risk Obesity 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: Obesity or being overweight is a medical condition of abnormal body fat accumulation which is associated with a higher risk of developing metabolic syndrome. The distinct body fat depots on specific parts of the anatomy have unique metabolic properties and different types of regional excessive fat distribution can be a disease hazard. The aim of this study was to identify the metabolome and molecular imaging phenotypes among a young adult population. Methods: The amount and distribution of fat and lipid metabolites profile in the abdomen, liver, and calf muscles of 46 normal weight, 17 overweight, and 13 obese participants were acquired using MRI and MR spectroscopy (MRS), respectively. The serum metabolic profile was obtained using proton NMR spectroscopy. NMR spectra were integrated into seven integration regions, which reflect relative metabolites. Results: A significant metabolic disorder symptom appeared in the overweight and obese group, and increased lipid deposition occurred in the abdomen, hepatocytes, and muscles that were statistically significant. Overall, the visceral fat depots had a marked influence on dyslipidemia biomarkers, blood triglyceride (r = 0.592, <i<p</i< < 0.001), and high-density lipoprotein cholesterol (r = −0.484, <i<p</i< < 0.001). Intrahepatocellular lipid was associated with diabetes predictors for hemoglobin (HbA1c%; r = 0.379, <i<p</i< < 0.001) and for fasting blood sugar (r = 0.333, <i<p</i< < 0.05). The lipid signals in serum triglyceride and glucose signals gave similar correspondence to biochemical lipid profiles. Conclusions: This study proves the association between alteration in metabolome in young adults, which is the key population for early prevention of obesity and metabolic syndrome. This study suggests that dyslipidemia prevalence is influenced mainly by the visceral fat depot, and liver fat depot is a key determinant for glucose metabolism and hyperglycemia. Moreover, noninvasive advanced molecular imaging completely elucidated the impact of fat distribution on the anthropometric and laboratory parameters, especially indices of the metabolic syndrome biomarkers in young adults. MRI MRS <sup<1</sup<H NMR obesity young adults metabolic syndrome Science Q Jie Pan verfasserin aut Duanghathai Pasanta verfasserin aut Montree Tungjai verfasserin aut Chatchanok Udomtanakunchai verfasserin aut Thanaporn Petcharoen verfasserin aut Nattacha Chamta verfasserin aut Supak Kosicharoen verfasserin aut Kiattisak Chukua verfasserin aut Christopher Lai verfasserin aut Suchart Kothan verfasserin aut In Life MDPI AG, 2012 11(2021), 10, p 1035 (DE-627)718627156 (DE-600)2662250-6 20751729 nnns volume:11 year:2021 number:10, p 1035 https://doi.org/10.3390/life11101035 kostenfrei https://doaj.org/article/1c42bdaf707a40699fef86c3a1362e7c kostenfrei https://www.mdpi.com/2075-1729/11/10/1035 kostenfrei https://doaj.org/toc/2075-1729 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 10, p 1035 |
spelling |
10.3390/life11101035 doi (DE-627)DOAJ086783254 (DE-599)DOAJ1c42bdaf707a40699fef86c3a1362e7c DE-627 ger DE-627 rakwb eng Khin Thandar Htun verfasserin aut Advanced Molecular Imaging (MRI/MRS/<sup<1</sup<H NMR) for Metabolic Information in Young Adults with Health Risk Obesity 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: Obesity or being overweight is a medical condition of abnormal body fat accumulation which is associated with a higher risk of developing metabolic syndrome. The distinct body fat depots on specific parts of the anatomy have unique metabolic properties and different types of regional excessive fat distribution can be a disease hazard. The aim of this study was to identify the metabolome and molecular imaging phenotypes among a young adult population. Methods: The amount and distribution of fat and lipid metabolites profile in the abdomen, liver, and calf muscles of 46 normal weight, 17 overweight, and 13 obese participants were acquired using MRI and MR spectroscopy (MRS), respectively. The serum metabolic profile was obtained using proton NMR spectroscopy. NMR spectra were integrated into seven integration regions, which reflect relative metabolites. Results: A significant metabolic disorder symptom appeared in the overweight and obese group, and increased lipid deposition occurred in the abdomen, hepatocytes, and muscles that were statistically significant. Overall, the visceral fat depots had a marked influence on dyslipidemia biomarkers, blood triglyceride (r = 0.592, <i<p</i< < 0.001), and high-density lipoprotein cholesterol (r = −0.484, <i<p</i< < 0.001). Intrahepatocellular lipid was associated with diabetes predictors for hemoglobin (HbA1c%; r = 0.379, <i<p</i< < 0.001) and for fasting blood sugar (r = 0.333, <i<p</i< < 0.05). The lipid signals in serum triglyceride and glucose signals gave similar correspondence to biochemical lipid profiles. Conclusions: This study proves the association between alteration in metabolome in young adults, which is the key population for early prevention of obesity and metabolic syndrome. This study suggests that dyslipidemia prevalence is influenced mainly by the visceral fat depot, and liver fat depot is a key determinant for glucose metabolism and hyperglycemia. Moreover, noninvasive advanced molecular imaging completely elucidated the impact of fat distribution on the anthropometric and laboratory parameters, especially indices of the metabolic syndrome biomarkers in young adults. MRI MRS <sup<1</sup<H NMR obesity young adults metabolic syndrome Science Q Jie Pan verfasserin aut Duanghathai Pasanta verfasserin aut Montree Tungjai verfasserin aut Chatchanok Udomtanakunchai verfasserin aut Thanaporn Petcharoen verfasserin aut Nattacha Chamta verfasserin aut Supak Kosicharoen verfasserin aut Kiattisak Chukua verfasserin aut Christopher Lai verfasserin aut Suchart Kothan verfasserin aut In Life MDPI AG, 2012 11(2021), 10, p 1035 (DE-627)718627156 (DE-600)2662250-6 20751729 nnns volume:11 year:2021 number:10, p 1035 https://doi.org/10.3390/life11101035 kostenfrei https://doaj.org/article/1c42bdaf707a40699fef86c3a1362e7c kostenfrei https://www.mdpi.com/2075-1729/11/10/1035 kostenfrei https://doaj.org/toc/2075-1729 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 10, p 1035 |
allfields_unstemmed |
10.3390/life11101035 doi (DE-627)DOAJ086783254 (DE-599)DOAJ1c42bdaf707a40699fef86c3a1362e7c DE-627 ger DE-627 rakwb eng Khin Thandar Htun verfasserin aut Advanced Molecular Imaging (MRI/MRS/<sup<1</sup<H NMR) for Metabolic Information in Young Adults with Health Risk Obesity 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: Obesity or being overweight is a medical condition of abnormal body fat accumulation which is associated with a higher risk of developing metabolic syndrome. The distinct body fat depots on specific parts of the anatomy have unique metabolic properties and different types of regional excessive fat distribution can be a disease hazard. The aim of this study was to identify the metabolome and molecular imaging phenotypes among a young adult population. Methods: The amount and distribution of fat and lipid metabolites profile in the abdomen, liver, and calf muscles of 46 normal weight, 17 overweight, and 13 obese participants were acquired using MRI and MR spectroscopy (MRS), respectively. The serum metabolic profile was obtained using proton NMR spectroscopy. NMR spectra were integrated into seven integration regions, which reflect relative metabolites. Results: A significant metabolic disorder symptom appeared in the overweight and obese group, and increased lipid deposition occurred in the abdomen, hepatocytes, and muscles that were statistically significant. Overall, the visceral fat depots had a marked influence on dyslipidemia biomarkers, blood triglyceride (r = 0.592, <i<p</i< < 0.001), and high-density lipoprotein cholesterol (r = −0.484, <i<p</i< < 0.001). Intrahepatocellular lipid was associated with diabetes predictors for hemoglobin (HbA1c%; r = 0.379, <i<p</i< < 0.001) and for fasting blood sugar (r = 0.333, <i<p</i< < 0.05). The lipid signals in serum triglyceride and glucose signals gave similar correspondence to biochemical lipid profiles. Conclusions: This study proves the association between alteration in metabolome in young adults, which is the key population for early prevention of obesity and metabolic syndrome. This study suggests that dyslipidemia prevalence is influenced mainly by the visceral fat depot, and liver fat depot is a key determinant for glucose metabolism and hyperglycemia. Moreover, noninvasive advanced molecular imaging completely elucidated the impact of fat distribution on the anthropometric and laboratory parameters, especially indices of the metabolic syndrome biomarkers in young adults. MRI MRS <sup<1</sup<H NMR obesity young adults metabolic syndrome Science Q Jie Pan verfasserin aut Duanghathai Pasanta verfasserin aut Montree Tungjai verfasserin aut Chatchanok Udomtanakunchai verfasserin aut Thanaporn Petcharoen verfasserin aut Nattacha Chamta verfasserin aut Supak Kosicharoen verfasserin aut Kiattisak Chukua verfasserin aut Christopher Lai verfasserin aut Suchart Kothan verfasserin aut In Life MDPI AG, 2012 11(2021), 10, p 1035 (DE-627)718627156 (DE-600)2662250-6 20751729 nnns volume:11 year:2021 number:10, p 1035 https://doi.org/10.3390/life11101035 kostenfrei https://doaj.org/article/1c42bdaf707a40699fef86c3a1362e7c kostenfrei https://www.mdpi.com/2075-1729/11/10/1035 kostenfrei https://doaj.org/toc/2075-1729 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 10, p 1035 |
allfieldsGer |
10.3390/life11101035 doi (DE-627)DOAJ086783254 (DE-599)DOAJ1c42bdaf707a40699fef86c3a1362e7c DE-627 ger DE-627 rakwb eng Khin Thandar Htun verfasserin aut Advanced Molecular Imaging (MRI/MRS/<sup<1</sup<H NMR) for Metabolic Information in Young Adults with Health Risk Obesity 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: Obesity or being overweight is a medical condition of abnormal body fat accumulation which is associated with a higher risk of developing metabolic syndrome. The distinct body fat depots on specific parts of the anatomy have unique metabolic properties and different types of regional excessive fat distribution can be a disease hazard. The aim of this study was to identify the metabolome and molecular imaging phenotypes among a young adult population. Methods: The amount and distribution of fat and lipid metabolites profile in the abdomen, liver, and calf muscles of 46 normal weight, 17 overweight, and 13 obese participants were acquired using MRI and MR spectroscopy (MRS), respectively. The serum metabolic profile was obtained using proton NMR spectroscopy. NMR spectra were integrated into seven integration regions, which reflect relative metabolites. Results: A significant metabolic disorder symptom appeared in the overweight and obese group, and increased lipid deposition occurred in the abdomen, hepatocytes, and muscles that were statistically significant. Overall, the visceral fat depots had a marked influence on dyslipidemia biomarkers, blood triglyceride (r = 0.592, <i<p</i< < 0.001), and high-density lipoprotein cholesterol (r = −0.484, <i<p</i< < 0.001). Intrahepatocellular lipid was associated with diabetes predictors for hemoglobin (HbA1c%; r = 0.379, <i<p</i< < 0.001) and for fasting blood sugar (r = 0.333, <i<p</i< < 0.05). The lipid signals in serum triglyceride and glucose signals gave similar correspondence to biochemical lipid profiles. Conclusions: This study proves the association between alteration in metabolome in young adults, which is the key population for early prevention of obesity and metabolic syndrome. This study suggests that dyslipidemia prevalence is influenced mainly by the visceral fat depot, and liver fat depot is a key determinant for glucose metabolism and hyperglycemia. Moreover, noninvasive advanced molecular imaging completely elucidated the impact of fat distribution on the anthropometric and laboratory parameters, especially indices of the metabolic syndrome biomarkers in young adults. MRI MRS <sup<1</sup<H NMR obesity young adults metabolic syndrome Science Q Jie Pan verfasserin aut Duanghathai Pasanta verfasserin aut Montree Tungjai verfasserin aut Chatchanok Udomtanakunchai verfasserin aut Thanaporn Petcharoen verfasserin aut Nattacha Chamta verfasserin aut Supak Kosicharoen verfasserin aut Kiattisak Chukua verfasserin aut Christopher Lai verfasserin aut Suchart Kothan verfasserin aut In Life MDPI AG, 2012 11(2021), 10, p 1035 (DE-627)718627156 (DE-600)2662250-6 20751729 nnns volume:11 year:2021 number:10, p 1035 https://doi.org/10.3390/life11101035 kostenfrei https://doaj.org/article/1c42bdaf707a40699fef86c3a1362e7c kostenfrei https://www.mdpi.com/2075-1729/11/10/1035 kostenfrei https://doaj.org/toc/2075-1729 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 10, p 1035 |
allfieldsSound |
10.3390/life11101035 doi (DE-627)DOAJ086783254 (DE-599)DOAJ1c42bdaf707a40699fef86c3a1362e7c DE-627 ger DE-627 rakwb eng Khin Thandar Htun verfasserin aut Advanced Molecular Imaging (MRI/MRS/<sup<1</sup<H NMR) for Metabolic Information in Young Adults with Health Risk Obesity 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: Obesity or being overweight is a medical condition of abnormal body fat accumulation which is associated with a higher risk of developing metabolic syndrome. The distinct body fat depots on specific parts of the anatomy have unique metabolic properties and different types of regional excessive fat distribution can be a disease hazard. The aim of this study was to identify the metabolome and molecular imaging phenotypes among a young adult population. Methods: The amount and distribution of fat and lipid metabolites profile in the abdomen, liver, and calf muscles of 46 normal weight, 17 overweight, and 13 obese participants were acquired using MRI and MR spectroscopy (MRS), respectively. The serum metabolic profile was obtained using proton NMR spectroscopy. NMR spectra were integrated into seven integration regions, which reflect relative metabolites. Results: A significant metabolic disorder symptom appeared in the overweight and obese group, and increased lipid deposition occurred in the abdomen, hepatocytes, and muscles that were statistically significant. Overall, the visceral fat depots had a marked influence on dyslipidemia biomarkers, blood triglyceride (r = 0.592, <i<p</i< < 0.001), and high-density lipoprotein cholesterol (r = −0.484, <i<p</i< < 0.001). Intrahepatocellular lipid was associated with diabetes predictors for hemoglobin (HbA1c%; r = 0.379, <i<p</i< < 0.001) and for fasting blood sugar (r = 0.333, <i<p</i< < 0.05). The lipid signals in serum triglyceride and glucose signals gave similar correspondence to biochemical lipid profiles. Conclusions: This study proves the association between alteration in metabolome in young adults, which is the key population for early prevention of obesity and metabolic syndrome. This study suggests that dyslipidemia prevalence is influenced mainly by the visceral fat depot, and liver fat depot is a key determinant for glucose metabolism and hyperglycemia. Moreover, noninvasive advanced molecular imaging completely elucidated the impact of fat distribution on the anthropometric and laboratory parameters, especially indices of the metabolic syndrome biomarkers in young adults. MRI MRS <sup<1</sup<H NMR obesity young adults metabolic syndrome Science Q Jie Pan verfasserin aut Duanghathai Pasanta verfasserin aut Montree Tungjai verfasserin aut Chatchanok Udomtanakunchai verfasserin aut Thanaporn Petcharoen verfasserin aut Nattacha Chamta verfasserin aut Supak Kosicharoen verfasserin aut Kiattisak Chukua verfasserin aut Christopher Lai verfasserin aut Suchart Kothan verfasserin aut In Life MDPI AG, 2012 11(2021), 10, p 1035 (DE-627)718627156 (DE-600)2662250-6 20751729 nnns volume:11 year:2021 number:10, p 1035 https://doi.org/10.3390/life11101035 kostenfrei https://doaj.org/article/1c42bdaf707a40699fef86c3a1362e7c kostenfrei https://www.mdpi.com/2075-1729/11/10/1035 kostenfrei https://doaj.org/toc/2075-1729 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 10, p 1035 |
language |
English |
source |
In Life 11(2021), 10, p 1035 volume:11 year:2021 number:10, p 1035 |
sourceStr |
In Life 11(2021), 10, p 1035 volume:11 year:2021 number:10, p 1035 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
MRI MRS <sup<1</sup<H NMR obesity young adults metabolic syndrome Science Q |
isfreeaccess_bool |
true |
container_title |
Life |
authorswithroles_txt_mv |
Khin Thandar Htun @@aut@@ Jie Pan @@aut@@ Duanghathai Pasanta @@aut@@ Montree Tungjai @@aut@@ Chatchanok Udomtanakunchai @@aut@@ Thanaporn Petcharoen @@aut@@ Nattacha Chamta @@aut@@ Supak Kosicharoen @@aut@@ Kiattisak Chukua @@aut@@ Christopher Lai @@aut@@ Suchart Kothan @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
718627156 |
id |
DOAJ086783254 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ086783254</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412135151.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/life11101035</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ086783254</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ1c42bdaf707a40699fef86c3a1362e7c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Khin Thandar Htun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Advanced Molecular Imaging (MRI/MRS/<sup<1</sup<H NMR) for Metabolic Information in Young Adults with Health Risk Obesity</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background: Obesity or being overweight is a medical condition of abnormal body fat accumulation which is associated with a higher risk of developing metabolic syndrome. The distinct body fat depots on specific parts of the anatomy have unique metabolic properties and different types of regional excessive fat distribution can be a disease hazard. The aim of this study was to identify the metabolome and molecular imaging phenotypes among a young adult population. Methods: The amount and distribution of fat and lipid metabolites profile in the abdomen, liver, and calf muscles of 46 normal weight, 17 overweight, and 13 obese participants were acquired using MRI and MR spectroscopy (MRS), respectively. The serum metabolic profile was obtained using proton NMR spectroscopy. NMR spectra were integrated into seven integration regions, which reflect relative metabolites. Results: A significant metabolic disorder symptom appeared in the overweight and obese group, and increased lipid deposition occurred in the abdomen, hepatocytes, and muscles that were statistically significant. Overall, the visceral fat depots had a marked influence on dyslipidemia biomarkers, blood triglyceride (r = 0.592, <i<p</i< < 0.001), and high-density lipoprotein cholesterol (r = −0.484, <i<p</i< < 0.001). Intrahepatocellular lipid was associated with diabetes predictors for hemoglobin (HbA1c%; r = 0.379, <i<p</i< < 0.001) and for fasting blood sugar (r = 0.333, <i<p</i< < 0.05). The lipid signals in serum triglyceride and glucose signals gave similar correspondence to biochemical lipid profiles. Conclusions: This study proves the association between alteration in metabolome in young adults, which is the key population for early prevention of obesity and metabolic syndrome. This study suggests that dyslipidemia prevalence is influenced mainly by the visceral fat depot, and liver fat depot is a key determinant for glucose metabolism and hyperglycemia. Moreover, noninvasive advanced molecular imaging completely elucidated the impact of fat distribution on the anthropometric and laboratory parameters, especially indices of the metabolic syndrome biomarkers in young adults.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MRI</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MRS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><sup<1</sup<H NMR</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">obesity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">young adults</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">metabolic syndrome</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jie Pan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Duanghathai Pasanta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Montree Tungjai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chatchanok Udomtanakunchai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Thanaporn Petcharoen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nattacha Chamta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Supak Kosicharoen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kiattisak Chukua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Christopher Lai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Suchart Kothan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Life</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">11(2021), 10, p 1035</subfield><subfield code="w">(DE-627)718627156</subfield><subfield code="w">(DE-600)2662250-6</subfield><subfield code="x">20751729</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:10, p 1035</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/life11101035</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/1c42bdaf707a40699fef86c3a1362e7c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2075-1729/11/10/1035</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2075-1729</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2021</subfield><subfield code="e">10, p 1035</subfield></datafield></record></collection>
|
author |
Khin Thandar Htun |
spellingShingle |
Khin Thandar Htun misc MRI misc MRS misc <sup<1</sup<H NMR misc obesity misc young adults misc metabolic syndrome misc Science misc Q Advanced Molecular Imaging (MRI/MRS/<sup<1</sup<H NMR) for Metabolic Information in Young Adults with Health Risk Obesity |
authorStr |
Khin Thandar Htun |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)718627156 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
20751729 |
topic_title |
Advanced Molecular Imaging (MRI/MRS/<sup<1</sup<H NMR) for Metabolic Information in Young Adults with Health Risk Obesity MRI MRS <sup<1</sup<H NMR obesity young adults metabolic syndrome |
topic |
misc MRI misc MRS misc <sup<1</sup<H NMR misc obesity misc young adults misc metabolic syndrome misc Science misc Q |
topic_unstemmed |
misc MRI misc MRS misc <sup<1</sup<H NMR misc obesity misc young adults misc metabolic syndrome misc Science misc Q |
topic_browse |
misc MRI misc MRS misc <sup<1</sup<H NMR misc obesity misc young adults misc metabolic syndrome misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Life |
hierarchy_parent_id |
718627156 |
hierarchy_top_title |
Life |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)718627156 (DE-600)2662250-6 |
title |
Advanced Molecular Imaging (MRI/MRS/<sup<1</sup<H NMR) for Metabolic Information in Young Adults with Health Risk Obesity |
ctrlnum |
(DE-627)DOAJ086783254 (DE-599)DOAJ1c42bdaf707a40699fef86c3a1362e7c |
title_full |
Advanced Molecular Imaging (MRI/MRS/<sup<1</sup<H NMR) for Metabolic Information in Young Adults with Health Risk Obesity |
author_sort |
Khin Thandar Htun |
journal |
Life |
journalStr |
Life |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Khin Thandar Htun Jie Pan Duanghathai Pasanta Montree Tungjai Chatchanok Udomtanakunchai Thanaporn Petcharoen Nattacha Chamta Supak Kosicharoen Kiattisak Chukua Christopher Lai Suchart Kothan |
container_volume |
11 |
format_se |
Elektronische Aufsätze |
author-letter |
Khin Thandar Htun |
doi_str_mv |
10.3390/life11101035 |
author2-role |
verfasserin |
title_sort |
advanced molecular imaging (mri/mrs/<sup<1</sup<h nmr) for metabolic information in young adults with health risk obesity |
title_auth |
Advanced Molecular Imaging (MRI/MRS/<sup<1</sup<H NMR) for Metabolic Information in Young Adults with Health Risk Obesity |
abstract |
Background: Obesity or being overweight is a medical condition of abnormal body fat accumulation which is associated with a higher risk of developing metabolic syndrome. The distinct body fat depots on specific parts of the anatomy have unique metabolic properties and different types of regional excessive fat distribution can be a disease hazard. The aim of this study was to identify the metabolome and molecular imaging phenotypes among a young adult population. Methods: The amount and distribution of fat and lipid metabolites profile in the abdomen, liver, and calf muscles of 46 normal weight, 17 overweight, and 13 obese participants were acquired using MRI and MR spectroscopy (MRS), respectively. The serum metabolic profile was obtained using proton NMR spectroscopy. NMR spectra were integrated into seven integration regions, which reflect relative metabolites. Results: A significant metabolic disorder symptom appeared in the overweight and obese group, and increased lipid deposition occurred in the abdomen, hepatocytes, and muscles that were statistically significant. Overall, the visceral fat depots had a marked influence on dyslipidemia biomarkers, blood triglyceride (r = 0.592, <i<p</i< < 0.001), and high-density lipoprotein cholesterol (r = −0.484, <i<p</i< < 0.001). Intrahepatocellular lipid was associated with diabetes predictors for hemoglobin (HbA1c%; r = 0.379, <i<p</i< < 0.001) and for fasting blood sugar (r = 0.333, <i<p</i< < 0.05). The lipid signals in serum triglyceride and glucose signals gave similar correspondence to biochemical lipid profiles. Conclusions: This study proves the association between alteration in metabolome in young adults, which is the key population for early prevention of obesity and metabolic syndrome. This study suggests that dyslipidemia prevalence is influenced mainly by the visceral fat depot, and liver fat depot is a key determinant for glucose metabolism and hyperglycemia. Moreover, noninvasive advanced molecular imaging completely elucidated the impact of fat distribution on the anthropometric and laboratory parameters, especially indices of the metabolic syndrome biomarkers in young adults. |
abstractGer |
Background: Obesity or being overweight is a medical condition of abnormal body fat accumulation which is associated with a higher risk of developing metabolic syndrome. The distinct body fat depots on specific parts of the anatomy have unique metabolic properties and different types of regional excessive fat distribution can be a disease hazard. The aim of this study was to identify the metabolome and molecular imaging phenotypes among a young adult population. Methods: The amount and distribution of fat and lipid metabolites profile in the abdomen, liver, and calf muscles of 46 normal weight, 17 overweight, and 13 obese participants were acquired using MRI and MR spectroscopy (MRS), respectively. The serum metabolic profile was obtained using proton NMR spectroscopy. NMR spectra were integrated into seven integration regions, which reflect relative metabolites. Results: A significant metabolic disorder symptom appeared in the overweight and obese group, and increased lipid deposition occurred in the abdomen, hepatocytes, and muscles that were statistically significant. Overall, the visceral fat depots had a marked influence on dyslipidemia biomarkers, blood triglyceride (r = 0.592, <i<p</i< < 0.001), and high-density lipoprotein cholesterol (r = −0.484, <i<p</i< < 0.001). Intrahepatocellular lipid was associated with diabetes predictors for hemoglobin (HbA1c%; r = 0.379, <i<p</i< < 0.001) and for fasting blood sugar (r = 0.333, <i<p</i< < 0.05). The lipid signals in serum triglyceride and glucose signals gave similar correspondence to biochemical lipid profiles. Conclusions: This study proves the association between alteration in metabolome in young adults, which is the key population for early prevention of obesity and metabolic syndrome. This study suggests that dyslipidemia prevalence is influenced mainly by the visceral fat depot, and liver fat depot is a key determinant for glucose metabolism and hyperglycemia. Moreover, noninvasive advanced molecular imaging completely elucidated the impact of fat distribution on the anthropometric and laboratory parameters, especially indices of the metabolic syndrome biomarkers in young adults. |
abstract_unstemmed |
Background: Obesity or being overweight is a medical condition of abnormal body fat accumulation which is associated with a higher risk of developing metabolic syndrome. The distinct body fat depots on specific parts of the anatomy have unique metabolic properties and different types of regional excessive fat distribution can be a disease hazard. The aim of this study was to identify the metabolome and molecular imaging phenotypes among a young adult population. Methods: The amount and distribution of fat and lipid metabolites profile in the abdomen, liver, and calf muscles of 46 normal weight, 17 overweight, and 13 obese participants were acquired using MRI and MR spectroscopy (MRS), respectively. The serum metabolic profile was obtained using proton NMR spectroscopy. NMR spectra were integrated into seven integration regions, which reflect relative metabolites. Results: A significant metabolic disorder symptom appeared in the overweight and obese group, and increased lipid deposition occurred in the abdomen, hepatocytes, and muscles that were statistically significant. Overall, the visceral fat depots had a marked influence on dyslipidemia biomarkers, blood triglyceride (r = 0.592, <i<p</i< < 0.001), and high-density lipoprotein cholesterol (r = −0.484, <i<p</i< < 0.001). Intrahepatocellular lipid was associated with diabetes predictors for hemoglobin (HbA1c%; r = 0.379, <i<p</i< < 0.001) and for fasting blood sugar (r = 0.333, <i<p</i< < 0.05). The lipid signals in serum triglyceride and glucose signals gave similar correspondence to biochemical lipid profiles. Conclusions: This study proves the association between alteration in metabolome in young adults, which is the key population for early prevention of obesity and metabolic syndrome. This study suggests that dyslipidemia prevalence is influenced mainly by the visceral fat depot, and liver fat depot is a key determinant for glucose metabolism and hyperglycemia. Moreover, noninvasive advanced molecular imaging completely elucidated the impact of fat distribution on the anthropometric and laboratory parameters, especially indices of the metabolic syndrome biomarkers in young adults. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
10, p 1035 |
title_short |
Advanced Molecular Imaging (MRI/MRS/<sup<1</sup<H NMR) for Metabolic Information in Young Adults with Health Risk Obesity |
url |
https://doi.org/10.3390/life11101035 https://doaj.org/article/1c42bdaf707a40699fef86c3a1362e7c https://www.mdpi.com/2075-1729/11/10/1035 https://doaj.org/toc/2075-1729 |
remote_bool |
true |
author2 |
Jie Pan Duanghathai Pasanta Montree Tungjai Chatchanok Udomtanakunchai Thanaporn Petcharoen Nattacha Chamta Supak Kosicharoen Kiattisak Chukua Christopher Lai Suchart Kothan |
author2Str |
Jie Pan Duanghathai Pasanta Montree Tungjai Chatchanok Udomtanakunchai Thanaporn Petcharoen Nattacha Chamta Supak Kosicharoen Kiattisak Chukua Christopher Lai Suchart Kothan |
ppnlink |
718627156 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/life11101035 |
up_date |
2024-07-03T22:44:04.830Z |
_version_ |
1803599630652407808 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ086783254</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412135151.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/life11101035</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ086783254</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ1c42bdaf707a40699fef86c3a1362e7c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Khin Thandar Htun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Advanced Molecular Imaging (MRI/MRS/<sup<1</sup<H NMR) for Metabolic Information in Young Adults with Health Risk Obesity</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background: Obesity or being overweight is a medical condition of abnormal body fat accumulation which is associated with a higher risk of developing metabolic syndrome. The distinct body fat depots on specific parts of the anatomy have unique metabolic properties and different types of regional excessive fat distribution can be a disease hazard. The aim of this study was to identify the metabolome and molecular imaging phenotypes among a young adult population. Methods: The amount and distribution of fat and lipid metabolites profile in the abdomen, liver, and calf muscles of 46 normal weight, 17 overweight, and 13 obese participants were acquired using MRI and MR spectroscopy (MRS), respectively. The serum metabolic profile was obtained using proton NMR spectroscopy. NMR spectra were integrated into seven integration regions, which reflect relative metabolites. Results: A significant metabolic disorder symptom appeared in the overweight and obese group, and increased lipid deposition occurred in the abdomen, hepatocytes, and muscles that were statistically significant. Overall, the visceral fat depots had a marked influence on dyslipidemia biomarkers, blood triglyceride (r = 0.592, <i<p</i< < 0.001), and high-density lipoprotein cholesterol (r = −0.484, <i<p</i< < 0.001). Intrahepatocellular lipid was associated with diabetes predictors for hemoglobin (HbA1c%; r = 0.379, <i<p</i< < 0.001) and for fasting blood sugar (r = 0.333, <i<p</i< < 0.05). The lipid signals in serum triglyceride and glucose signals gave similar correspondence to biochemical lipid profiles. Conclusions: This study proves the association between alteration in metabolome in young adults, which is the key population for early prevention of obesity and metabolic syndrome. This study suggests that dyslipidemia prevalence is influenced mainly by the visceral fat depot, and liver fat depot is a key determinant for glucose metabolism and hyperglycemia. Moreover, noninvasive advanced molecular imaging completely elucidated the impact of fat distribution on the anthropometric and laboratory parameters, especially indices of the metabolic syndrome biomarkers in young adults.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MRI</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MRS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><sup<1</sup<H NMR</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">obesity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">young adults</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">metabolic syndrome</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jie Pan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Duanghathai Pasanta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Montree Tungjai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chatchanok Udomtanakunchai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Thanaporn Petcharoen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nattacha Chamta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Supak Kosicharoen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kiattisak Chukua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Christopher Lai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Suchart Kothan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Life</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">11(2021), 10, p 1035</subfield><subfield code="w">(DE-627)718627156</subfield><subfield code="w">(DE-600)2662250-6</subfield><subfield code="x">20751729</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:10, p 1035</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/life11101035</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/1c42bdaf707a40699fef86c3a1362e7c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2075-1729/11/10/1035</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2075-1729</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2021</subfield><subfield code="e">10, p 1035</subfield></datafield></record></collection>
|
score |
7.40226 |