A BDGIM-Based Phase-Smoothed Pseudorange Algorithm for BDS-3 High-Precision Time Transfer
Single point positioning (SPP) can meet the requirements of the majority of real-time time transfer applications. Meanwhile, a single-frequency (SF) receiver is cheaper than a dual-frequency receiver. However, SPP performance can be greatly affected by large pseudorange observation noise. Phase smoo...
Ausführliche Beschreibung
Autor*in: |
Jian Tang [verfasserIn] Daqian Lyu [verfasserIn] Fangling Zeng [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Applied Sciences - MDPI AG, 2012, 12(2022), 20, p 10246 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2022 ; number:20, p 10246 |
Links: |
---|
DOI / URN: |
10.3390/app122010246 |
---|
Katalog-ID: |
DOAJ086806823 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ086806823 | ||
003 | DE-627 | ||
005 | 20240414181940.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/app122010246 |2 doi | |
035 | |a (DE-627)DOAJ086806823 | ||
035 | |a (DE-599)DOAJf7921593137f492297485bad838b646c | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA1-2040 | |
050 | 0 | |a QH301-705.5 | |
050 | 0 | |a QC1-999 | |
050 | 0 | |a QD1-999 | |
100 | 0 | |a Jian Tang |e verfasserin |4 aut | |
245 | 1 | 2 | |a A BDGIM-Based Phase-Smoothed Pseudorange Algorithm for BDS-3 High-Precision Time Transfer |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Single point positioning (SPP) can meet the requirements of the majority of real-time time transfer applications. Meanwhile, a single-frequency (SF) receiver is cheaper than a dual-frequency receiver. However, SPP performance can be greatly affected by large pseudorange observation noise. Phase smoothing the pseudorange is an effective approach to reduce pseudorange noise. Since the classical phase-smoothed pseudorange algorithm does not account for the effect of ionosphere delay, we propose a BDGIM-based phase-smoothed pseudorange algorithm to eliminate the ionospheric delay and apply it to BeiDou Navigation Satellite System (BDS-3) SPP time transfer. In this paper, we first evaluate the performance of the BeiDou global ionospheric delay correction model (BDGIM) and compare it with that of the BeiDou Klobuchar model to determine if it is practical to incorporate the BDGIM into our suggested method. The performance of the BDGIM is better than that of the Klobuchar model. The mean RMS value of the BDGIM is 2.6 Total Electron Content Unit (TECU). The average ionospheric correction rate of the BDGIM is 75.5%. Then, we investigate the performance of the improved SF SPP time transfer. The performance of the improved SPP time transfer is much better than that of the traditional SPP time transfer. Compared with the traditional time transfer, the average Type A uncertainty of the improved time transfer is 2.08 ns, which is reduced by about 11.1% from the time transfer without it. Regarding frequency stability, the modified Allan deviations of the improved time transfer are 1.43E-12 and 1.68E-13 at 960 s and 61,440 s, with improvements of 51.2% and 59.9%, respectively. | ||
650 | 4 | |a BDGIM | |
650 | 4 | |a phase-smoothed pseudorange | |
650 | 4 | |a single point positioning | |
650 | 4 | |a time transfer | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
653 | 0 | |a Engineering (General). Civil engineering (General) | |
653 | 0 | |a Biology (General) | |
653 | 0 | |a Physics | |
653 | 0 | |a Chemistry | |
700 | 0 | |a Daqian Lyu |e verfasserin |4 aut | |
700 | 0 | |a Fangling Zeng |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Applied Sciences |d MDPI AG, 2012 |g 12(2022), 20, p 10246 |w (DE-627)737287640 |w (DE-600)2704225-X |x 20763417 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2022 |g number:20, p 10246 |
856 | 4 | 0 | |u https://doi.org/10.3390/app122010246 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/f7921593137f492297485bad838b646c |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2076-3417/12/20/10246 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2076-3417 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2022 |e 20, p 10246 |
author_variant |
j t jt d l dl f z fz |
---|---|
matchkey_str |
article:20763417:2022----::bgmaepaemohdsuoagagrtmobshgp |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TA |
publishDate |
2022 |
allfields |
10.3390/app122010246 doi (DE-627)DOAJ086806823 (DE-599)DOAJf7921593137f492297485bad838b646c DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Jian Tang verfasserin aut A BDGIM-Based Phase-Smoothed Pseudorange Algorithm for BDS-3 High-Precision Time Transfer 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Single point positioning (SPP) can meet the requirements of the majority of real-time time transfer applications. Meanwhile, a single-frequency (SF) receiver is cheaper than a dual-frequency receiver. However, SPP performance can be greatly affected by large pseudorange observation noise. Phase smoothing the pseudorange is an effective approach to reduce pseudorange noise. Since the classical phase-smoothed pseudorange algorithm does not account for the effect of ionosphere delay, we propose a BDGIM-based phase-smoothed pseudorange algorithm to eliminate the ionospheric delay and apply it to BeiDou Navigation Satellite System (BDS-3) SPP time transfer. In this paper, we first evaluate the performance of the BeiDou global ionospheric delay correction model (BDGIM) and compare it with that of the BeiDou Klobuchar model to determine if it is practical to incorporate the BDGIM into our suggested method. The performance of the BDGIM is better than that of the Klobuchar model. The mean RMS value of the BDGIM is 2.6 Total Electron Content Unit (TECU). The average ionospheric correction rate of the BDGIM is 75.5%. Then, we investigate the performance of the improved SF SPP time transfer. The performance of the improved SPP time transfer is much better than that of the traditional SPP time transfer. Compared with the traditional time transfer, the average Type A uncertainty of the improved time transfer is 2.08 ns, which is reduced by about 11.1% from the time transfer without it. Regarding frequency stability, the modified Allan deviations of the improved time transfer are 1.43E-12 and 1.68E-13 at 960 s and 61,440 s, with improvements of 51.2% and 59.9%, respectively. BDGIM phase-smoothed pseudorange single point positioning time transfer Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Daqian Lyu verfasserin aut Fangling Zeng verfasserin aut In Applied Sciences MDPI AG, 2012 12(2022), 20, p 10246 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:12 year:2022 number:20, p 10246 https://doi.org/10.3390/app122010246 kostenfrei https://doaj.org/article/f7921593137f492297485bad838b646c kostenfrei https://www.mdpi.com/2076-3417/12/20/10246 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 20, p 10246 |
spelling |
10.3390/app122010246 doi (DE-627)DOAJ086806823 (DE-599)DOAJf7921593137f492297485bad838b646c DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Jian Tang verfasserin aut A BDGIM-Based Phase-Smoothed Pseudorange Algorithm for BDS-3 High-Precision Time Transfer 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Single point positioning (SPP) can meet the requirements of the majority of real-time time transfer applications. Meanwhile, a single-frequency (SF) receiver is cheaper than a dual-frequency receiver. However, SPP performance can be greatly affected by large pseudorange observation noise. Phase smoothing the pseudorange is an effective approach to reduce pseudorange noise. Since the classical phase-smoothed pseudorange algorithm does not account for the effect of ionosphere delay, we propose a BDGIM-based phase-smoothed pseudorange algorithm to eliminate the ionospheric delay and apply it to BeiDou Navigation Satellite System (BDS-3) SPP time transfer. In this paper, we first evaluate the performance of the BeiDou global ionospheric delay correction model (BDGIM) and compare it with that of the BeiDou Klobuchar model to determine if it is practical to incorporate the BDGIM into our suggested method. The performance of the BDGIM is better than that of the Klobuchar model. The mean RMS value of the BDGIM is 2.6 Total Electron Content Unit (TECU). The average ionospheric correction rate of the BDGIM is 75.5%. Then, we investigate the performance of the improved SF SPP time transfer. The performance of the improved SPP time transfer is much better than that of the traditional SPP time transfer. Compared with the traditional time transfer, the average Type A uncertainty of the improved time transfer is 2.08 ns, which is reduced by about 11.1% from the time transfer without it. Regarding frequency stability, the modified Allan deviations of the improved time transfer are 1.43E-12 and 1.68E-13 at 960 s and 61,440 s, with improvements of 51.2% and 59.9%, respectively. BDGIM phase-smoothed pseudorange single point positioning time transfer Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Daqian Lyu verfasserin aut Fangling Zeng verfasserin aut In Applied Sciences MDPI AG, 2012 12(2022), 20, p 10246 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:12 year:2022 number:20, p 10246 https://doi.org/10.3390/app122010246 kostenfrei https://doaj.org/article/f7921593137f492297485bad838b646c kostenfrei https://www.mdpi.com/2076-3417/12/20/10246 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 20, p 10246 |
allfields_unstemmed |
10.3390/app122010246 doi (DE-627)DOAJ086806823 (DE-599)DOAJf7921593137f492297485bad838b646c DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Jian Tang verfasserin aut A BDGIM-Based Phase-Smoothed Pseudorange Algorithm for BDS-3 High-Precision Time Transfer 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Single point positioning (SPP) can meet the requirements of the majority of real-time time transfer applications. Meanwhile, a single-frequency (SF) receiver is cheaper than a dual-frequency receiver. However, SPP performance can be greatly affected by large pseudorange observation noise. Phase smoothing the pseudorange is an effective approach to reduce pseudorange noise. Since the classical phase-smoothed pseudorange algorithm does not account for the effect of ionosphere delay, we propose a BDGIM-based phase-smoothed pseudorange algorithm to eliminate the ionospheric delay and apply it to BeiDou Navigation Satellite System (BDS-3) SPP time transfer. In this paper, we first evaluate the performance of the BeiDou global ionospheric delay correction model (BDGIM) and compare it with that of the BeiDou Klobuchar model to determine if it is practical to incorporate the BDGIM into our suggested method. The performance of the BDGIM is better than that of the Klobuchar model. The mean RMS value of the BDGIM is 2.6 Total Electron Content Unit (TECU). The average ionospheric correction rate of the BDGIM is 75.5%. Then, we investigate the performance of the improved SF SPP time transfer. The performance of the improved SPP time transfer is much better than that of the traditional SPP time transfer. Compared with the traditional time transfer, the average Type A uncertainty of the improved time transfer is 2.08 ns, which is reduced by about 11.1% from the time transfer without it. Regarding frequency stability, the modified Allan deviations of the improved time transfer are 1.43E-12 and 1.68E-13 at 960 s and 61,440 s, with improvements of 51.2% and 59.9%, respectively. BDGIM phase-smoothed pseudorange single point positioning time transfer Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Daqian Lyu verfasserin aut Fangling Zeng verfasserin aut In Applied Sciences MDPI AG, 2012 12(2022), 20, p 10246 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:12 year:2022 number:20, p 10246 https://doi.org/10.3390/app122010246 kostenfrei https://doaj.org/article/f7921593137f492297485bad838b646c kostenfrei https://www.mdpi.com/2076-3417/12/20/10246 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 20, p 10246 |
allfieldsGer |
10.3390/app122010246 doi (DE-627)DOAJ086806823 (DE-599)DOAJf7921593137f492297485bad838b646c DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Jian Tang verfasserin aut A BDGIM-Based Phase-Smoothed Pseudorange Algorithm for BDS-3 High-Precision Time Transfer 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Single point positioning (SPP) can meet the requirements of the majority of real-time time transfer applications. Meanwhile, a single-frequency (SF) receiver is cheaper than a dual-frequency receiver. However, SPP performance can be greatly affected by large pseudorange observation noise. Phase smoothing the pseudorange is an effective approach to reduce pseudorange noise. Since the classical phase-smoothed pseudorange algorithm does not account for the effect of ionosphere delay, we propose a BDGIM-based phase-smoothed pseudorange algorithm to eliminate the ionospheric delay and apply it to BeiDou Navigation Satellite System (BDS-3) SPP time transfer. In this paper, we first evaluate the performance of the BeiDou global ionospheric delay correction model (BDGIM) and compare it with that of the BeiDou Klobuchar model to determine if it is practical to incorporate the BDGIM into our suggested method. The performance of the BDGIM is better than that of the Klobuchar model. The mean RMS value of the BDGIM is 2.6 Total Electron Content Unit (TECU). The average ionospheric correction rate of the BDGIM is 75.5%. Then, we investigate the performance of the improved SF SPP time transfer. The performance of the improved SPP time transfer is much better than that of the traditional SPP time transfer. Compared with the traditional time transfer, the average Type A uncertainty of the improved time transfer is 2.08 ns, which is reduced by about 11.1% from the time transfer without it. Regarding frequency stability, the modified Allan deviations of the improved time transfer are 1.43E-12 and 1.68E-13 at 960 s and 61,440 s, with improvements of 51.2% and 59.9%, respectively. BDGIM phase-smoothed pseudorange single point positioning time transfer Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Daqian Lyu verfasserin aut Fangling Zeng verfasserin aut In Applied Sciences MDPI AG, 2012 12(2022), 20, p 10246 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:12 year:2022 number:20, p 10246 https://doi.org/10.3390/app122010246 kostenfrei https://doaj.org/article/f7921593137f492297485bad838b646c kostenfrei https://www.mdpi.com/2076-3417/12/20/10246 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 20, p 10246 |
allfieldsSound |
10.3390/app122010246 doi (DE-627)DOAJ086806823 (DE-599)DOAJf7921593137f492297485bad838b646c DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Jian Tang verfasserin aut A BDGIM-Based Phase-Smoothed Pseudorange Algorithm for BDS-3 High-Precision Time Transfer 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Single point positioning (SPP) can meet the requirements of the majority of real-time time transfer applications. Meanwhile, a single-frequency (SF) receiver is cheaper than a dual-frequency receiver. However, SPP performance can be greatly affected by large pseudorange observation noise. Phase smoothing the pseudorange is an effective approach to reduce pseudorange noise. Since the classical phase-smoothed pseudorange algorithm does not account for the effect of ionosphere delay, we propose a BDGIM-based phase-smoothed pseudorange algorithm to eliminate the ionospheric delay and apply it to BeiDou Navigation Satellite System (BDS-3) SPP time transfer. In this paper, we first evaluate the performance of the BeiDou global ionospheric delay correction model (BDGIM) and compare it with that of the BeiDou Klobuchar model to determine if it is practical to incorporate the BDGIM into our suggested method. The performance of the BDGIM is better than that of the Klobuchar model. The mean RMS value of the BDGIM is 2.6 Total Electron Content Unit (TECU). The average ionospheric correction rate of the BDGIM is 75.5%. Then, we investigate the performance of the improved SF SPP time transfer. The performance of the improved SPP time transfer is much better than that of the traditional SPP time transfer. Compared with the traditional time transfer, the average Type A uncertainty of the improved time transfer is 2.08 ns, which is reduced by about 11.1% from the time transfer without it. Regarding frequency stability, the modified Allan deviations of the improved time transfer are 1.43E-12 and 1.68E-13 at 960 s and 61,440 s, with improvements of 51.2% and 59.9%, respectively. BDGIM phase-smoothed pseudorange single point positioning time transfer Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Daqian Lyu verfasserin aut Fangling Zeng verfasserin aut In Applied Sciences MDPI AG, 2012 12(2022), 20, p 10246 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:12 year:2022 number:20, p 10246 https://doi.org/10.3390/app122010246 kostenfrei https://doaj.org/article/f7921593137f492297485bad838b646c kostenfrei https://www.mdpi.com/2076-3417/12/20/10246 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 20, p 10246 |
language |
English |
source |
In Applied Sciences 12(2022), 20, p 10246 volume:12 year:2022 number:20, p 10246 |
sourceStr |
In Applied Sciences 12(2022), 20, p 10246 volume:12 year:2022 number:20, p 10246 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
BDGIM phase-smoothed pseudorange single point positioning time transfer Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry |
isfreeaccess_bool |
true |
container_title |
Applied Sciences |
authorswithroles_txt_mv |
Jian Tang @@aut@@ Daqian Lyu @@aut@@ Fangling Zeng @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
737287640 |
id |
DOAJ086806823 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ086806823</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414181940.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/app122010246</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ086806823</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJf7921593137f492297485bad838b646c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jian Tang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A BDGIM-Based Phase-Smoothed Pseudorange Algorithm for BDS-3 High-Precision Time Transfer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Single point positioning (SPP) can meet the requirements of the majority of real-time time transfer applications. Meanwhile, a single-frequency (SF) receiver is cheaper than a dual-frequency receiver. However, SPP performance can be greatly affected by large pseudorange observation noise. Phase smoothing the pseudorange is an effective approach to reduce pseudorange noise. Since the classical phase-smoothed pseudorange algorithm does not account for the effect of ionosphere delay, we propose a BDGIM-based phase-smoothed pseudorange algorithm to eliminate the ionospheric delay and apply it to BeiDou Navigation Satellite System (BDS-3) SPP time transfer. In this paper, we first evaluate the performance of the BeiDou global ionospheric delay correction model (BDGIM) and compare it with that of the BeiDou Klobuchar model to determine if it is practical to incorporate the BDGIM into our suggested method. The performance of the BDGIM is better than that of the Klobuchar model. The mean RMS value of the BDGIM is 2.6 Total Electron Content Unit (TECU). The average ionospheric correction rate of the BDGIM is 75.5%. Then, we investigate the performance of the improved SF SPP time transfer. The performance of the improved SPP time transfer is much better than that of the traditional SPP time transfer. Compared with the traditional time transfer, the average Type A uncertainty of the improved time transfer is 2.08 ns, which is reduced by about 11.1% from the time transfer without it. Regarding frequency stability, the modified Allan deviations of the improved time transfer are 1.43E-12 and 1.68E-13 at 960 s and 61,440 s, with improvements of 51.2% and 59.9%, respectively.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">BDGIM</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">phase-smoothed pseudorange</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">single point positioning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">time transfer</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Daqian Lyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fangling Zeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Applied Sciences</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">12(2022), 20, p 10246</subfield><subfield code="w">(DE-627)737287640</subfield><subfield code="w">(DE-600)2704225-X</subfield><subfield code="x">20763417</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:20, p 10246</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/app122010246</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/f7921593137f492297485bad838b646c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2076-3417/12/20/10246</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-3417</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="e">20, p 10246</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Jian Tang |
spellingShingle |
Jian Tang misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc BDGIM misc phase-smoothed pseudorange misc single point positioning misc time transfer misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry A BDGIM-Based Phase-Smoothed Pseudorange Algorithm for BDS-3 High-Precision Time Transfer |
authorStr |
Jian Tang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)737287640 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA1-2040 |
illustrated |
Not Illustrated |
issn |
20763417 |
topic_title |
TA1-2040 QH301-705.5 QC1-999 QD1-999 A BDGIM-Based Phase-Smoothed Pseudorange Algorithm for BDS-3 High-Precision Time Transfer BDGIM phase-smoothed pseudorange single point positioning time transfer |
topic |
misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc BDGIM misc phase-smoothed pseudorange misc single point positioning misc time transfer misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry |
topic_unstemmed |
misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc BDGIM misc phase-smoothed pseudorange misc single point positioning misc time transfer misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry |
topic_browse |
misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc BDGIM misc phase-smoothed pseudorange misc single point positioning misc time transfer misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Applied Sciences |
hierarchy_parent_id |
737287640 |
hierarchy_top_title |
Applied Sciences |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)737287640 (DE-600)2704225-X |
title |
A BDGIM-Based Phase-Smoothed Pseudorange Algorithm for BDS-3 High-Precision Time Transfer |
ctrlnum |
(DE-627)DOAJ086806823 (DE-599)DOAJf7921593137f492297485bad838b646c |
title_full |
A BDGIM-Based Phase-Smoothed Pseudorange Algorithm for BDS-3 High-Precision Time Transfer |
author_sort |
Jian Tang |
journal |
Applied Sciences |
journalStr |
Applied Sciences |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Jian Tang Daqian Lyu Fangling Zeng |
container_volume |
12 |
class |
TA1-2040 QH301-705.5 QC1-999 QD1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Jian Tang |
doi_str_mv |
10.3390/app122010246 |
author2-role |
verfasserin |
title_sort |
bdgim-based phase-smoothed pseudorange algorithm for bds-3 high-precision time transfer |
callnumber |
TA1-2040 |
title_auth |
A BDGIM-Based Phase-Smoothed Pseudorange Algorithm for BDS-3 High-Precision Time Transfer |
abstract |
Single point positioning (SPP) can meet the requirements of the majority of real-time time transfer applications. Meanwhile, a single-frequency (SF) receiver is cheaper than a dual-frequency receiver. However, SPP performance can be greatly affected by large pseudorange observation noise. Phase smoothing the pseudorange is an effective approach to reduce pseudorange noise. Since the classical phase-smoothed pseudorange algorithm does not account for the effect of ionosphere delay, we propose a BDGIM-based phase-smoothed pseudorange algorithm to eliminate the ionospheric delay and apply it to BeiDou Navigation Satellite System (BDS-3) SPP time transfer. In this paper, we first evaluate the performance of the BeiDou global ionospheric delay correction model (BDGIM) and compare it with that of the BeiDou Klobuchar model to determine if it is practical to incorporate the BDGIM into our suggested method. The performance of the BDGIM is better than that of the Klobuchar model. The mean RMS value of the BDGIM is 2.6 Total Electron Content Unit (TECU). The average ionospheric correction rate of the BDGIM is 75.5%. Then, we investigate the performance of the improved SF SPP time transfer. The performance of the improved SPP time transfer is much better than that of the traditional SPP time transfer. Compared with the traditional time transfer, the average Type A uncertainty of the improved time transfer is 2.08 ns, which is reduced by about 11.1% from the time transfer without it. Regarding frequency stability, the modified Allan deviations of the improved time transfer are 1.43E-12 and 1.68E-13 at 960 s and 61,440 s, with improvements of 51.2% and 59.9%, respectively. |
abstractGer |
Single point positioning (SPP) can meet the requirements of the majority of real-time time transfer applications. Meanwhile, a single-frequency (SF) receiver is cheaper than a dual-frequency receiver. However, SPP performance can be greatly affected by large pseudorange observation noise. Phase smoothing the pseudorange is an effective approach to reduce pseudorange noise. Since the classical phase-smoothed pseudorange algorithm does not account for the effect of ionosphere delay, we propose a BDGIM-based phase-smoothed pseudorange algorithm to eliminate the ionospheric delay and apply it to BeiDou Navigation Satellite System (BDS-3) SPP time transfer. In this paper, we first evaluate the performance of the BeiDou global ionospheric delay correction model (BDGIM) and compare it with that of the BeiDou Klobuchar model to determine if it is practical to incorporate the BDGIM into our suggested method. The performance of the BDGIM is better than that of the Klobuchar model. The mean RMS value of the BDGIM is 2.6 Total Electron Content Unit (TECU). The average ionospheric correction rate of the BDGIM is 75.5%. Then, we investigate the performance of the improved SF SPP time transfer. The performance of the improved SPP time transfer is much better than that of the traditional SPP time transfer. Compared with the traditional time transfer, the average Type A uncertainty of the improved time transfer is 2.08 ns, which is reduced by about 11.1% from the time transfer without it. Regarding frequency stability, the modified Allan deviations of the improved time transfer are 1.43E-12 and 1.68E-13 at 960 s and 61,440 s, with improvements of 51.2% and 59.9%, respectively. |
abstract_unstemmed |
Single point positioning (SPP) can meet the requirements of the majority of real-time time transfer applications. Meanwhile, a single-frequency (SF) receiver is cheaper than a dual-frequency receiver. However, SPP performance can be greatly affected by large pseudorange observation noise. Phase smoothing the pseudorange is an effective approach to reduce pseudorange noise. Since the classical phase-smoothed pseudorange algorithm does not account for the effect of ionosphere delay, we propose a BDGIM-based phase-smoothed pseudorange algorithm to eliminate the ionospheric delay and apply it to BeiDou Navigation Satellite System (BDS-3) SPP time transfer. In this paper, we first evaluate the performance of the BeiDou global ionospheric delay correction model (BDGIM) and compare it with that of the BeiDou Klobuchar model to determine if it is practical to incorporate the BDGIM into our suggested method. The performance of the BDGIM is better than that of the Klobuchar model. The mean RMS value of the BDGIM is 2.6 Total Electron Content Unit (TECU). The average ionospheric correction rate of the BDGIM is 75.5%. Then, we investigate the performance of the improved SF SPP time transfer. The performance of the improved SPP time transfer is much better than that of the traditional SPP time transfer. Compared with the traditional time transfer, the average Type A uncertainty of the improved time transfer is 2.08 ns, which is reduced by about 11.1% from the time transfer without it. Regarding frequency stability, the modified Allan deviations of the improved time transfer are 1.43E-12 and 1.68E-13 at 960 s and 61,440 s, with improvements of 51.2% and 59.9%, respectively. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
20, p 10246 |
title_short |
A BDGIM-Based Phase-Smoothed Pseudorange Algorithm for BDS-3 High-Precision Time Transfer |
url |
https://doi.org/10.3390/app122010246 https://doaj.org/article/f7921593137f492297485bad838b646c https://www.mdpi.com/2076-3417/12/20/10246 https://doaj.org/toc/2076-3417 |
remote_bool |
true |
author2 |
Daqian Lyu Fangling Zeng |
author2Str |
Daqian Lyu Fangling Zeng |
ppnlink |
737287640 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/app122010246 |
callnumber-a |
TA1-2040 |
up_date |
2024-07-03T22:52:21.387Z |
_version_ |
1803600151330160640 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ086806823</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414181940.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/app122010246</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ086806823</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJf7921593137f492297485bad838b646c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jian Tang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A BDGIM-Based Phase-Smoothed Pseudorange Algorithm for BDS-3 High-Precision Time Transfer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Single point positioning (SPP) can meet the requirements of the majority of real-time time transfer applications. Meanwhile, a single-frequency (SF) receiver is cheaper than a dual-frequency receiver. However, SPP performance can be greatly affected by large pseudorange observation noise. Phase smoothing the pseudorange is an effective approach to reduce pseudorange noise. Since the classical phase-smoothed pseudorange algorithm does not account for the effect of ionosphere delay, we propose a BDGIM-based phase-smoothed pseudorange algorithm to eliminate the ionospheric delay and apply it to BeiDou Navigation Satellite System (BDS-3) SPP time transfer. In this paper, we first evaluate the performance of the BeiDou global ionospheric delay correction model (BDGIM) and compare it with that of the BeiDou Klobuchar model to determine if it is practical to incorporate the BDGIM into our suggested method. The performance of the BDGIM is better than that of the Klobuchar model. The mean RMS value of the BDGIM is 2.6 Total Electron Content Unit (TECU). The average ionospheric correction rate of the BDGIM is 75.5%. Then, we investigate the performance of the improved SF SPP time transfer. The performance of the improved SPP time transfer is much better than that of the traditional SPP time transfer. Compared with the traditional time transfer, the average Type A uncertainty of the improved time transfer is 2.08 ns, which is reduced by about 11.1% from the time transfer without it. Regarding frequency stability, the modified Allan deviations of the improved time transfer are 1.43E-12 and 1.68E-13 at 960 s and 61,440 s, with improvements of 51.2% and 59.9%, respectively.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">BDGIM</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">phase-smoothed pseudorange</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">single point positioning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">time transfer</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Daqian Lyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fangling Zeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Applied Sciences</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">12(2022), 20, p 10246</subfield><subfield code="w">(DE-627)737287640</subfield><subfield code="w">(DE-600)2704225-X</subfield><subfield code="x">20763417</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:20, p 10246</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/app122010246</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/f7921593137f492297485bad838b646c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2076-3417/12/20/10246</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-3417</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="e">20, p 10246</subfield></datafield></record></collection>
|
score |
7.402297 |