Demographic and clinical profile of black patients with chronic kidney disease attending a tertiary hospital in Johannesburg, South Africa
<h4<Background</h4< The prevalence of chronic kidney disease (CKD) is increasing worldwide; black patients have an increased risk of developing CKD and end stage kidney disease (ESKD) at significantly higher rates than other races. <h4<Methods</h4< A cross sectional study was...
Ausführliche Beschreibung
Autor*in: |
Alfred Meremo [verfasserIn] Graham Paget [verfasserIn] Raquel Duarte [verfasserIn] Caroline Dickens [verfasserIn] Therese Dix-Peek [verfasserIn] Deogratius Bintabara [verfasserIn] Saraladevi Naicker [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Übergeordnetes Werk: |
In: PLoS ONE - Public Library of Science (PLoS), 2007, 17(2022), 9 |
---|---|
Übergeordnetes Werk: |
volume:17 ; year:2022 ; number:9 |
Links: |
---|
Katalog-ID: |
DOAJ087060183 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ087060183 | ||
003 | DE-627 | ||
005 | 20230311055633.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2022 xx |||||o 00| ||eng c | ||
035 | |a (DE-627)DOAJ087060183 | ||
035 | |a (DE-599)DOAJ72a9c8b1ee274a3db45ef4653ae21c71 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Alfred Meremo |e verfasserin |4 aut | |
245 | 1 | 0 | |a Demographic and clinical profile of black patients with chronic kidney disease attending a tertiary hospital in Johannesburg, South Africa |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a <h4<Background</h4< The prevalence of chronic kidney disease (CKD) is increasing worldwide; black patients have an increased risk of developing CKD and end stage kidney disease (ESKD) at significantly higher rates than other races. <h4<Methods</h4< A cross sectional study was carried out on black patients with CKD attending the kidney outpatient clinic at Charlotte Maxeke Johannesburg Academic Hospital (CMJAH) in South Africa, between September 2019 to March 2020. Demographic and clinical data were extracted from the ongoing kidney outpatient clinic records and interviews, and were filled in a questionnaire. Patients provided blood and urine for laboratory investigations as standard of care, and data were descriptively and inferentially entered into REDcap and analysed using STATA version 17. Multivariable logistic regression analysis was used to identify demographic and clinical variables associated with advanced CKD. <h4<Results</h4< A total of 312 black patients with CKD were enrolled in the study with a median age of 58 (IQR 46–67) years; 58% patients had advanced CKD, 31.5% of whom had grossly increased proteinuria, 96.7% had hypertension, 38.7% had diabetes mellitus and 38.1% had both hypertension and diabetes mellitus. In patients with advanced CKD, the median age was 61 (IQR 51–69) years, eGFR 33 (30–39) mL/min/1.73 m2, serum bicarbonate 22 (IQR 20–24), haemoglobin 12.9 (IQR 11.5–14.0) g/dl and serum uric acid 0.43 (IQR 0.37–0.53). The prevalence of metabolic acidosis was 62.4%, anemia 46.4% and gout 30.9% among those with advanced CKD, while the prevalence of metabolic acidosis and anaemia was 46.6% and 25.9% respectively in those with early CKD. Variables with higher odds for advanced CKD after multivariable logistic regression analysis were hypertension (OR 3.3, 95% CI 1.2–9.2, P = 0.020), diabetes mellitus (OR 1.8, 95% CI 1.1–3.3, P = 0.024), severe proteinuria (OR 3.5, 95% CI 1.9–6.5, P = 0.001), angina (OR 2.5, 95% CI 1.2–5.1, P = 0.008), anaemia (OR 2.9, 95% CI 1.7–4.9, P = 0.001), hyperuricemia (OR 2.4, 95% CI 1.4–4.1, P = 0.001), and metabolic acidosis (OR 2.0, 95% CI 1.2–3.1, P = 0.005). Other associations with advanced CKD were loss of spouse (widow/widower) (OR 3.2, 95% CI 1.4–7.4, P = 0.006), low transferrin (OR 2.4, 95% CI 1.1–5.1, P = 0.028), hyperkalemia (OR 5.4, 95% CI 1.2–24.1, P = 0.029), use of allopurinol (OR 2.4, 95% CI 1.4–4.3, P = 0.005) and doxazosin (OR 1.9, 95% CI 1.2–3.1, P = 0.006). <h4<Conclusion</h4< Hypertension and diabetes mellitus were strongly associated with advanced CKD, suggesting a need for primary and secondary population-based prevention measures. Metabolic acidosis, anemia with low transferrin levels, hyperuricemia and hyperkalemia were highly prevalent in our patients, including those with early CKD, and they were strongly associated with advanced CKD, requiring clinicians and dietitians to be proactive in supporting the needs of CKD patients in meeting their daily dietary requirements towards preventing and slowing the progression of CKD. | ||
653 | 0 | |a Medicine | |
653 | 0 | |a R | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Graham Paget |e verfasserin |4 aut | |
700 | 0 | |a Raquel Duarte |e verfasserin |4 aut | |
700 | 0 | |a Caroline Dickens |e verfasserin |4 aut | |
700 | 0 | |a Therese Dix-Peek |e verfasserin |4 aut | |
700 | 0 | |a Deogratius Bintabara |e verfasserin |4 aut | |
700 | 0 | |a Saraladevi Naicker |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t PLoS ONE |d Public Library of Science (PLoS), 2007 |g 17(2022), 9 |w (DE-627)523574592 |w (DE-600)2267670-3 |x 19326203 |7 nnns |
773 | 1 | 8 | |g volume:17 |g year:2022 |g number:9 |
856 | 4 | 0 | |u https://doaj.org/article/72a9c8b1ee274a3db45ef4653ae21c71 |z kostenfrei |
856 | 4 | 0 | |u https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9484689/?tool=EBI |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1932-6203 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_34 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_235 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 17 |j 2022 |e 9 |
author_variant |
a m am g p gp r d rd c d cd t d p tdp d b db s n sn |
---|---|
matchkey_str |
article:19326203:2022----::eorpiadlnclrflobakainsihhoikdedsaetednaetay |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
(DE-627)DOAJ087060183 (DE-599)DOAJ72a9c8b1ee274a3db45ef4653ae21c71 DE-627 ger DE-627 rakwb eng Alfred Meremo verfasserin aut Demographic and clinical profile of black patients with chronic kidney disease attending a tertiary hospital in Johannesburg, South Africa 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier <h4<Background</h4< The prevalence of chronic kidney disease (CKD) is increasing worldwide; black patients have an increased risk of developing CKD and end stage kidney disease (ESKD) at significantly higher rates than other races. <h4<Methods</h4< A cross sectional study was carried out on black patients with CKD attending the kidney outpatient clinic at Charlotte Maxeke Johannesburg Academic Hospital (CMJAH) in South Africa, between September 2019 to March 2020. Demographic and clinical data were extracted from the ongoing kidney outpatient clinic records and interviews, and were filled in a questionnaire. Patients provided blood and urine for laboratory investigations as standard of care, and data were descriptively and inferentially entered into REDcap and analysed using STATA version 17. Multivariable logistic regression analysis was used to identify demographic and clinical variables associated with advanced CKD. <h4<Results</h4< A total of 312 black patients with CKD were enrolled in the study with a median age of 58 (IQR 46–67) years; 58% patients had advanced CKD, 31.5% of whom had grossly increased proteinuria, 96.7% had hypertension, 38.7% had diabetes mellitus and 38.1% had both hypertension and diabetes mellitus. In patients with advanced CKD, the median age was 61 (IQR 51–69) years, eGFR 33 (30–39) mL/min/1.73 m2, serum bicarbonate 22 (IQR 20–24), haemoglobin 12.9 (IQR 11.5–14.0) g/dl and serum uric acid 0.43 (IQR 0.37–0.53). The prevalence of metabolic acidosis was 62.4%, anemia 46.4% and gout 30.9% among those with advanced CKD, while the prevalence of metabolic acidosis and anaemia was 46.6% and 25.9% respectively in those with early CKD. Variables with higher odds for advanced CKD after multivariable logistic regression analysis were hypertension (OR 3.3, 95% CI 1.2–9.2, P = 0.020), diabetes mellitus (OR 1.8, 95% CI 1.1–3.3, P = 0.024), severe proteinuria (OR 3.5, 95% CI 1.9–6.5, P = 0.001), angina (OR 2.5, 95% CI 1.2–5.1, P = 0.008), anaemia (OR 2.9, 95% CI 1.7–4.9, P = 0.001), hyperuricemia (OR 2.4, 95% CI 1.4–4.1, P = 0.001), and metabolic acidosis (OR 2.0, 95% CI 1.2–3.1, P = 0.005). Other associations with advanced CKD were loss of spouse (widow/widower) (OR 3.2, 95% CI 1.4–7.4, P = 0.006), low transferrin (OR 2.4, 95% CI 1.1–5.1, P = 0.028), hyperkalemia (OR 5.4, 95% CI 1.2–24.1, P = 0.029), use of allopurinol (OR 2.4, 95% CI 1.4–4.3, P = 0.005) and doxazosin (OR 1.9, 95% CI 1.2–3.1, P = 0.006). <h4<Conclusion</h4< Hypertension and diabetes mellitus were strongly associated with advanced CKD, suggesting a need for primary and secondary population-based prevention measures. Metabolic acidosis, anemia with low transferrin levels, hyperuricemia and hyperkalemia were highly prevalent in our patients, including those with early CKD, and they were strongly associated with advanced CKD, requiring clinicians and dietitians to be proactive in supporting the needs of CKD patients in meeting their daily dietary requirements towards preventing and slowing the progression of CKD. Medicine R Science Q Graham Paget verfasserin aut Raquel Duarte verfasserin aut Caroline Dickens verfasserin aut Therese Dix-Peek verfasserin aut Deogratius Bintabara verfasserin aut Saraladevi Naicker verfasserin aut In PLoS ONE Public Library of Science (PLoS), 2007 17(2022), 9 (DE-627)523574592 (DE-600)2267670-3 19326203 nnns volume:17 year:2022 number:9 https://doaj.org/article/72a9c8b1ee274a3db45ef4653ae21c71 kostenfrei https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9484689/?tool=EBI kostenfrei https://doaj.org/toc/1932-6203 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_34 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_235 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2022 9 |
spelling |
(DE-627)DOAJ087060183 (DE-599)DOAJ72a9c8b1ee274a3db45ef4653ae21c71 DE-627 ger DE-627 rakwb eng Alfred Meremo verfasserin aut Demographic and clinical profile of black patients with chronic kidney disease attending a tertiary hospital in Johannesburg, South Africa 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier <h4<Background</h4< The prevalence of chronic kidney disease (CKD) is increasing worldwide; black patients have an increased risk of developing CKD and end stage kidney disease (ESKD) at significantly higher rates than other races. <h4<Methods</h4< A cross sectional study was carried out on black patients with CKD attending the kidney outpatient clinic at Charlotte Maxeke Johannesburg Academic Hospital (CMJAH) in South Africa, between September 2019 to March 2020. Demographic and clinical data were extracted from the ongoing kidney outpatient clinic records and interviews, and were filled in a questionnaire. Patients provided blood and urine for laboratory investigations as standard of care, and data were descriptively and inferentially entered into REDcap and analysed using STATA version 17. Multivariable logistic regression analysis was used to identify demographic and clinical variables associated with advanced CKD. <h4<Results</h4< A total of 312 black patients with CKD were enrolled in the study with a median age of 58 (IQR 46–67) years; 58% patients had advanced CKD, 31.5% of whom had grossly increased proteinuria, 96.7% had hypertension, 38.7% had diabetes mellitus and 38.1% had both hypertension and diabetes mellitus. In patients with advanced CKD, the median age was 61 (IQR 51–69) years, eGFR 33 (30–39) mL/min/1.73 m2, serum bicarbonate 22 (IQR 20–24), haemoglobin 12.9 (IQR 11.5–14.0) g/dl and serum uric acid 0.43 (IQR 0.37–0.53). The prevalence of metabolic acidosis was 62.4%, anemia 46.4% and gout 30.9% among those with advanced CKD, while the prevalence of metabolic acidosis and anaemia was 46.6% and 25.9% respectively in those with early CKD. Variables with higher odds for advanced CKD after multivariable logistic regression analysis were hypertension (OR 3.3, 95% CI 1.2–9.2, P = 0.020), diabetes mellitus (OR 1.8, 95% CI 1.1–3.3, P = 0.024), severe proteinuria (OR 3.5, 95% CI 1.9–6.5, P = 0.001), angina (OR 2.5, 95% CI 1.2–5.1, P = 0.008), anaemia (OR 2.9, 95% CI 1.7–4.9, P = 0.001), hyperuricemia (OR 2.4, 95% CI 1.4–4.1, P = 0.001), and metabolic acidosis (OR 2.0, 95% CI 1.2–3.1, P = 0.005). Other associations with advanced CKD were loss of spouse (widow/widower) (OR 3.2, 95% CI 1.4–7.4, P = 0.006), low transferrin (OR 2.4, 95% CI 1.1–5.1, P = 0.028), hyperkalemia (OR 5.4, 95% CI 1.2–24.1, P = 0.029), use of allopurinol (OR 2.4, 95% CI 1.4–4.3, P = 0.005) and doxazosin (OR 1.9, 95% CI 1.2–3.1, P = 0.006). <h4<Conclusion</h4< Hypertension and diabetes mellitus were strongly associated with advanced CKD, suggesting a need for primary and secondary population-based prevention measures. Metabolic acidosis, anemia with low transferrin levels, hyperuricemia and hyperkalemia were highly prevalent in our patients, including those with early CKD, and they were strongly associated with advanced CKD, requiring clinicians and dietitians to be proactive in supporting the needs of CKD patients in meeting their daily dietary requirements towards preventing and slowing the progression of CKD. Medicine R Science Q Graham Paget verfasserin aut Raquel Duarte verfasserin aut Caroline Dickens verfasserin aut Therese Dix-Peek verfasserin aut Deogratius Bintabara verfasserin aut Saraladevi Naicker verfasserin aut In PLoS ONE Public Library of Science (PLoS), 2007 17(2022), 9 (DE-627)523574592 (DE-600)2267670-3 19326203 nnns volume:17 year:2022 number:9 https://doaj.org/article/72a9c8b1ee274a3db45ef4653ae21c71 kostenfrei https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9484689/?tool=EBI kostenfrei https://doaj.org/toc/1932-6203 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_34 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_235 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2022 9 |
allfields_unstemmed |
(DE-627)DOAJ087060183 (DE-599)DOAJ72a9c8b1ee274a3db45ef4653ae21c71 DE-627 ger DE-627 rakwb eng Alfred Meremo verfasserin aut Demographic and clinical profile of black patients with chronic kidney disease attending a tertiary hospital in Johannesburg, South Africa 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier <h4<Background</h4< The prevalence of chronic kidney disease (CKD) is increasing worldwide; black patients have an increased risk of developing CKD and end stage kidney disease (ESKD) at significantly higher rates than other races. <h4<Methods</h4< A cross sectional study was carried out on black patients with CKD attending the kidney outpatient clinic at Charlotte Maxeke Johannesburg Academic Hospital (CMJAH) in South Africa, between September 2019 to March 2020. Demographic and clinical data were extracted from the ongoing kidney outpatient clinic records and interviews, and were filled in a questionnaire. Patients provided blood and urine for laboratory investigations as standard of care, and data were descriptively and inferentially entered into REDcap and analysed using STATA version 17. Multivariable logistic regression analysis was used to identify demographic and clinical variables associated with advanced CKD. <h4<Results</h4< A total of 312 black patients with CKD were enrolled in the study with a median age of 58 (IQR 46–67) years; 58% patients had advanced CKD, 31.5% of whom had grossly increased proteinuria, 96.7% had hypertension, 38.7% had diabetes mellitus and 38.1% had both hypertension and diabetes mellitus. In patients with advanced CKD, the median age was 61 (IQR 51–69) years, eGFR 33 (30–39) mL/min/1.73 m2, serum bicarbonate 22 (IQR 20–24), haemoglobin 12.9 (IQR 11.5–14.0) g/dl and serum uric acid 0.43 (IQR 0.37–0.53). The prevalence of metabolic acidosis was 62.4%, anemia 46.4% and gout 30.9% among those with advanced CKD, while the prevalence of metabolic acidosis and anaemia was 46.6% and 25.9% respectively in those with early CKD. Variables with higher odds for advanced CKD after multivariable logistic regression analysis were hypertension (OR 3.3, 95% CI 1.2–9.2, P = 0.020), diabetes mellitus (OR 1.8, 95% CI 1.1–3.3, P = 0.024), severe proteinuria (OR 3.5, 95% CI 1.9–6.5, P = 0.001), angina (OR 2.5, 95% CI 1.2–5.1, P = 0.008), anaemia (OR 2.9, 95% CI 1.7–4.9, P = 0.001), hyperuricemia (OR 2.4, 95% CI 1.4–4.1, P = 0.001), and metabolic acidosis (OR 2.0, 95% CI 1.2–3.1, P = 0.005). Other associations with advanced CKD were loss of spouse (widow/widower) (OR 3.2, 95% CI 1.4–7.4, P = 0.006), low transferrin (OR 2.4, 95% CI 1.1–5.1, P = 0.028), hyperkalemia (OR 5.4, 95% CI 1.2–24.1, P = 0.029), use of allopurinol (OR 2.4, 95% CI 1.4–4.3, P = 0.005) and doxazosin (OR 1.9, 95% CI 1.2–3.1, P = 0.006). <h4<Conclusion</h4< Hypertension and diabetes mellitus were strongly associated with advanced CKD, suggesting a need for primary and secondary population-based prevention measures. Metabolic acidosis, anemia with low transferrin levels, hyperuricemia and hyperkalemia were highly prevalent in our patients, including those with early CKD, and they were strongly associated with advanced CKD, requiring clinicians and dietitians to be proactive in supporting the needs of CKD patients in meeting their daily dietary requirements towards preventing and slowing the progression of CKD. Medicine R Science Q Graham Paget verfasserin aut Raquel Duarte verfasserin aut Caroline Dickens verfasserin aut Therese Dix-Peek verfasserin aut Deogratius Bintabara verfasserin aut Saraladevi Naicker verfasserin aut In PLoS ONE Public Library of Science (PLoS), 2007 17(2022), 9 (DE-627)523574592 (DE-600)2267670-3 19326203 nnns volume:17 year:2022 number:9 https://doaj.org/article/72a9c8b1ee274a3db45ef4653ae21c71 kostenfrei https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9484689/?tool=EBI kostenfrei https://doaj.org/toc/1932-6203 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_34 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_235 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2022 9 |
allfieldsGer |
(DE-627)DOAJ087060183 (DE-599)DOAJ72a9c8b1ee274a3db45ef4653ae21c71 DE-627 ger DE-627 rakwb eng Alfred Meremo verfasserin aut Demographic and clinical profile of black patients with chronic kidney disease attending a tertiary hospital in Johannesburg, South Africa 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier <h4<Background</h4< The prevalence of chronic kidney disease (CKD) is increasing worldwide; black patients have an increased risk of developing CKD and end stage kidney disease (ESKD) at significantly higher rates than other races. <h4<Methods</h4< A cross sectional study was carried out on black patients with CKD attending the kidney outpatient clinic at Charlotte Maxeke Johannesburg Academic Hospital (CMJAH) in South Africa, between September 2019 to March 2020. Demographic and clinical data were extracted from the ongoing kidney outpatient clinic records and interviews, and were filled in a questionnaire. Patients provided blood and urine for laboratory investigations as standard of care, and data were descriptively and inferentially entered into REDcap and analysed using STATA version 17. Multivariable logistic regression analysis was used to identify demographic and clinical variables associated with advanced CKD. <h4<Results</h4< A total of 312 black patients with CKD were enrolled in the study with a median age of 58 (IQR 46–67) years; 58% patients had advanced CKD, 31.5% of whom had grossly increased proteinuria, 96.7% had hypertension, 38.7% had diabetes mellitus and 38.1% had both hypertension and diabetes mellitus. In patients with advanced CKD, the median age was 61 (IQR 51–69) years, eGFR 33 (30–39) mL/min/1.73 m2, serum bicarbonate 22 (IQR 20–24), haemoglobin 12.9 (IQR 11.5–14.0) g/dl and serum uric acid 0.43 (IQR 0.37–0.53). The prevalence of metabolic acidosis was 62.4%, anemia 46.4% and gout 30.9% among those with advanced CKD, while the prevalence of metabolic acidosis and anaemia was 46.6% and 25.9% respectively in those with early CKD. Variables with higher odds for advanced CKD after multivariable logistic regression analysis were hypertension (OR 3.3, 95% CI 1.2–9.2, P = 0.020), diabetes mellitus (OR 1.8, 95% CI 1.1–3.3, P = 0.024), severe proteinuria (OR 3.5, 95% CI 1.9–6.5, P = 0.001), angina (OR 2.5, 95% CI 1.2–5.1, P = 0.008), anaemia (OR 2.9, 95% CI 1.7–4.9, P = 0.001), hyperuricemia (OR 2.4, 95% CI 1.4–4.1, P = 0.001), and metabolic acidosis (OR 2.0, 95% CI 1.2–3.1, P = 0.005). Other associations with advanced CKD were loss of spouse (widow/widower) (OR 3.2, 95% CI 1.4–7.4, P = 0.006), low transferrin (OR 2.4, 95% CI 1.1–5.1, P = 0.028), hyperkalemia (OR 5.4, 95% CI 1.2–24.1, P = 0.029), use of allopurinol (OR 2.4, 95% CI 1.4–4.3, P = 0.005) and doxazosin (OR 1.9, 95% CI 1.2–3.1, P = 0.006). <h4<Conclusion</h4< Hypertension and diabetes mellitus were strongly associated with advanced CKD, suggesting a need for primary and secondary population-based prevention measures. Metabolic acidosis, anemia with low transferrin levels, hyperuricemia and hyperkalemia were highly prevalent in our patients, including those with early CKD, and they were strongly associated with advanced CKD, requiring clinicians and dietitians to be proactive in supporting the needs of CKD patients in meeting their daily dietary requirements towards preventing and slowing the progression of CKD. Medicine R Science Q Graham Paget verfasserin aut Raquel Duarte verfasserin aut Caroline Dickens verfasserin aut Therese Dix-Peek verfasserin aut Deogratius Bintabara verfasserin aut Saraladevi Naicker verfasserin aut In PLoS ONE Public Library of Science (PLoS), 2007 17(2022), 9 (DE-627)523574592 (DE-600)2267670-3 19326203 nnns volume:17 year:2022 number:9 https://doaj.org/article/72a9c8b1ee274a3db45ef4653ae21c71 kostenfrei https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9484689/?tool=EBI kostenfrei https://doaj.org/toc/1932-6203 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_34 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_235 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2022 9 |
allfieldsSound |
(DE-627)DOAJ087060183 (DE-599)DOAJ72a9c8b1ee274a3db45ef4653ae21c71 DE-627 ger DE-627 rakwb eng Alfred Meremo verfasserin aut Demographic and clinical profile of black patients with chronic kidney disease attending a tertiary hospital in Johannesburg, South Africa 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier <h4<Background</h4< The prevalence of chronic kidney disease (CKD) is increasing worldwide; black patients have an increased risk of developing CKD and end stage kidney disease (ESKD) at significantly higher rates than other races. <h4<Methods</h4< A cross sectional study was carried out on black patients with CKD attending the kidney outpatient clinic at Charlotte Maxeke Johannesburg Academic Hospital (CMJAH) in South Africa, between September 2019 to March 2020. Demographic and clinical data were extracted from the ongoing kidney outpatient clinic records and interviews, and were filled in a questionnaire. Patients provided blood and urine for laboratory investigations as standard of care, and data were descriptively and inferentially entered into REDcap and analysed using STATA version 17. Multivariable logistic regression analysis was used to identify demographic and clinical variables associated with advanced CKD. <h4<Results</h4< A total of 312 black patients with CKD were enrolled in the study with a median age of 58 (IQR 46–67) years; 58% patients had advanced CKD, 31.5% of whom had grossly increased proteinuria, 96.7% had hypertension, 38.7% had diabetes mellitus and 38.1% had both hypertension and diabetes mellitus. In patients with advanced CKD, the median age was 61 (IQR 51–69) years, eGFR 33 (30–39) mL/min/1.73 m2, serum bicarbonate 22 (IQR 20–24), haemoglobin 12.9 (IQR 11.5–14.0) g/dl and serum uric acid 0.43 (IQR 0.37–0.53). The prevalence of metabolic acidosis was 62.4%, anemia 46.4% and gout 30.9% among those with advanced CKD, while the prevalence of metabolic acidosis and anaemia was 46.6% and 25.9% respectively in those with early CKD. Variables with higher odds for advanced CKD after multivariable logistic regression analysis were hypertension (OR 3.3, 95% CI 1.2–9.2, P = 0.020), diabetes mellitus (OR 1.8, 95% CI 1.1–3.3, P = 0.024), severe proteinuria (OR 3.5, 95% CI 1.9–6.5, P = 0.001), angina (OR 2.5, 95% CI 1.2–5.1, P = 0.008), anaemia (OR 2.9, 95% CI 1.7–4.9, P = 0.001), hyperuricemia (OR 2.4, 95% CI 1.4–4.1, P = 0.001), and metabolic acidosis (OR 2.0, 95% CI 1.2–3.1, P = 0.005). Other associations with advanced CKD were loss of spouse (widow/widower) (OR 3.2, 95% CI 1.4–7.4, P = 0.006), low transferrin (OR 2.4, 95% CI 1.1–5.1, P = 0.028), hyperkalemia (OR 5.4, 95% CI 1.2–24.1, P = 0.029), use of allopurinol (OR 2.4, 95% CI 1.4–4.3, P = 0.005) and doxazosin (OR 1.9, 95% CI 1.2–3.1, P = 0.006). <h4<Conclusion</h4< Hypertension and diabetes mellitus were strongly associated with advanced CKD, suggesting a need for primary and secondary population-based prevention measures. Metabolic acidosis, anemia with low transferrin levels, hyperuricemia and hyperkalemia were highly prevalent in our patients, including those with early CKD, and they were strongly associated with advanced CKD, requiring clinicians and dietitians to be proactive in supporting the needs of CKD patients in meeting their daily dietary requirements towards preventing and slowing the progression of CKD. Medicine R Science Q Graham Paget verfasserin aut Raquel Duarte verfasserin aut Caroline Dickens verfasserin aut Therese Dix-Peek verfasserin aut Deogratius Bintabara verfasserin aut Saraladevi Naicker verfasserin aut In PLoS ONE Public Library of Science (PLoS), 2007 17(2022), 9 (DE-627)523574592 (DE-600)2267670-3 19326203 nnns volume:17 year:2022 number:9 https://doaj.org/article/72a9c8b1ee274a3db45ef4653ae21c71 kostenfrei https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9484689/?tool=EBI kostenfrei https://doaj.org/toc/1932-6203 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_34 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_235 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2022 9 |
language |
English |
source |
In PLoS ONE 17(2022), 9 volume:17 year:2022 number:9 |
sourceStr |
In PLoS ONE 17(2022), 9 volume:17 year:2022 number:9 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Medicine R Science Q |
isfreeaccess_bool |
true |
container_title |
PLoS ONE |
authorswithroles_txt_mv |
Alfred Meremo @@aut@@ Graham Paget @@aut@@ Raquel Duarte @@aut@@ Caroline Dickens @@aut@@ Therese Dix-Peek @@aut@@ Deogratius Bintabara @@aut@@ Saraladevi Naicker @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
523574592 |
id |
DOAJ087060183 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ087060183</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230311055633.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ087060183</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ72a9c8b1ee274a3db45ef4653ae21c71</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Alfred Meremo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Demographic and clinical profile of black patients with chronic kidney disease attending a tertiary hospital in Johannesburg, South Africa</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a"><h4<Background</h4< The prevalence of chronic kidney disease (CKD) is increasing worldwide; black patients have an increased risk of developing CKD and end stage kidney disease (ESKD) at significantly higher rates than other races. <h4<Methods</h4< A cross sectional study was carried out on black patients with CKD attending the kidney outpatient clinic at Charlotte Maxeke Johannesburg Academic Hospital (CMJAH) in South Africa, between September 2019 to March 2020. Demographic and clinical data were extracted from the ongoing kidney outpatient clinic records and interviews, and were filled in a questionnaire. Patients provided blood and urine for laboratory investigations as standard of care, and data were descriptively and inferentially entered into REDcap and analysed using STATA version 17. Multivariable logistic regression analysis was used to identify demographic and clinical variables associated with advanced CKD. <h4<Results</h4< A total of 312 black patients with CKD were enrolled in the study with a median age of 58 (IQR 46–67) years; 58% patients had advanced CKD, 31.5% of whom had grossly increased proteinuria, 96.7% had hypertension, 38.7% had diabetes mellitus and 38.1% had both hypertension and diabetes mellitus. In patients with advanced CKD, the median age was 61 (IQR 51–69) years, eGFR 33 (30–39) mL/min/1.73 m2, serum bicarbonate 22 (IQR 20–24), haemoglobin 12.9 (IQR 11.5–14.0) g/dl and serum uric acid 0.43 (IQR 0.37–0.53). The prevalence of metabolic acidosis was 62.4%, anemia 46.4% and gout 30.9% among those with advanced CKD, while the prevalence of metabolic acidosis and anaemia was 46.6% and 25.9% respectively in those with early CKD. Variables with higher odds for advanced CKD after multivariable logistic regression analysis were hypertension (OR 3.3, 95% CI 1.2–9.2, P = 0.020), diabetes mellitus (OR 1.8, 95% CI 1.1–3.3, P = 0.024), severe proteinuria (OR 3.5, 95% CI 1.9–6.5, P = 0.001), angina (OR 2.5, 95% CI 1.2–5.1, P = 0.008), anaemia (OR 2.9, 95% CI 1.7–4.9, P = 0.001), hyperuricemia (OR 2.4, 95% CI 1.4–4.1, P = 0.001), and metabolic acidosis (OR 2.0, 95% CI 1.2–3.1, P = 0.005). Other associations with advanced CKD were loss of spouse (widow/widower) (OR 3.2, 95% CI 1.4–7.4, P = 0.006), low transferrin (OR 2.4, 95% CI 1.1–5.1, P = 0.028), hyperkalemia (OR 5.4, 95% CI 1.2–24.1, P = 0.029), use of allopurinol (OR 2.4, 95% CI 1.4–4.3, P = 0.005) and doxazosin (OR 1.9, 95% CI 1.2–3.1, P = 0.006). <h4<Conclusion</h4< Hypertension and diabetes mellitus were strongly associated with advanced CKD, suggesting a need for primary and secondary population-based prevention measures. Metabolic acidosis, anemia with low transferrin levels, hyperuricemia and hyperkalemia were highly prevalent in our patients, including those with early CKD, and they were strongly associated with advanced CKD, requiring clinicians and dietitians to be proactive in supporting the needs of CKD patients in meeting their daily dietary requirements towards preventing and slowing the progression of CKD.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Graham Paget</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Raquel Duarte</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Caroline Dickens</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Therese Dix-Peek</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Deogratius Bintabara</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Saraladevi Naicker</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">PLoS ONE</subfield><subfield code="d">Public Library of Science (PLoS), 2007</subfield><subfield code="g">17(2022), 9</subfield><subfield code="w">(DE-627)523574592</subfield><subfield code="w">(DE-600)2267670-3</subfield><subfield code="x">19326203</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:17</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/72a9c8b1ee274a3db45ef4653ae21c71</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9484689/?tool=EBI</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1932-6203</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_34</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_235</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">17</subfield><subfield code="j">2022</subfield><subfield code="e">9</subfield></datafield></record></collection>
|
author |
Alfred Meremo |
spellingShingle |
Alfred Meremo misc Medicine misc R misc Science misc Q Demographic and clinical profile of black patients with chronic kidney disease attending a tertiary hospital in Johannesburg, South Africa |
authorStr |
Alfred Meremo |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)523574592 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
19326203 |
topic_title |
Demographic and clinical profile of black patients with chronic kidney disease attending a tertiary hospital in Johannesburg, South Africa |
topic |
misc Medicine misc R misc Science misc Q |
topic_unstemmed |
misc Medicine misc R misc Science misc Q |
topic_browse |
misc Medicine misc R misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
PLoS ONE |
hierarchy_parent_id |
523574592 |
hierarchy_top_title |
PLoS ONE |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)523574592 (DE-600)2267670-3 |
title |
Demographic and clinical profile of black patients with chronic kidney disease attending a tertiary hospital in Johannesburg, South Africa |
ctrlnum |
(DE-627)DOAJ087060183 (DE-599)DOAJ72a9c8b1ee274a3db45ef4653ae21c71 |
title_full |
Demographic and clinical profile of black patients with chronic kidney disease attending a tertiary hospital in Johannesburg, South Africa |
author_sort |
Alfred Meremo |
journal |
PLoS ONE |
journalStr |
PLoS ONE |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Alfred Meremo Graham Paget Raquel Duarte Caroline Dickens Therese Dix-Peek Deogratius Bintabara Saraladevi Naicker |
container_volume |
17 |
format_se |
Elektronische Aufsätze |
author-letter |
Alfred Meremo |
author2-role |
verfasserin |
title_sort |
demographic and clinical profile of black patients with chronic kidney disease attending a tertiary hospital in johannesburg, south africa |
title_auth |
Demographic and clinical profile of black patients with chronic kidney disease attending a tertiary hospital in Johannesburg, South Africa |
abstract |
<h4<Background</h4< The prevalence of chronic kidney disease (CKD) is increasing worldwide; black patients have an increased risk of developing CKD and end stage kidney disease (ESKD) at significantly higher rates than other races. <h4<Methods</h4< A cross sectional study was carried out on black patients with CKD attending the kidney outpatient clinic at Charlotte Maxeke Johannesburg Academic Hospital (CMJAH) in South Africa, between September 2019 to March 2020. Demographic and clinical data were extracted from the ongoing kidney outpatient clinic records and interviews, and were filled in a questionnaire. Patients provided blood and urine for laboratory investigations as standard of care, and data were descriptively and inferentially entered into REDcap and analysed using STATA version 17. Multivariable logistic regression analysis was used to identify demographic and clinical variables associated with advanced CKD. <h4<Results</h4< A total of 312 black patients with CKD were enrolled in the study with a median age of 58 (IQR 46–67) years; 58% patients had advanced CKD, 31.5% of whom had grossly increased proteinuria, 96.7% had hypertension, 38.7% had diabetes mellitus and 38.1% had both hypertension and diabetes mellitus. In patients with advanced CKD, the median age was 61 (IQR 51–69) years, eGFR 33 (30–39) mL/min/1.73 m2, serum bicarbonate 22 (IQR 20–24), haemoglobin 12.9 (IQR 11.5–14.0) g/dl and serum uric acid 0.43 (IQR 0.37–0.53). The prevalence of metabolic acidosis was 62.4%, anemia 46.4% and gout 30.9% among those with advanced CKD, while the prevalence of metabolic acidosis and anaemia was 46.6% and 25.9% respectively in those with early CKD. Variables with higher odds for advanced CKD after multivariable logistic regression analysis were hypertension (OR 3.3, 95% CI 1.2–9.2, P = 0.020), diabetes mellitus (OR 1.8, 95% CI 1.1–3.3, P = 0.024), severe proteinuria (OR 3.5, 95% CI 1.9–6.5, P = 0.001), angina (OR 2.5, 95% CI 1.2–5.1, P = 0.008), anaemia (OR 2.9, 95% CI 1.7–4.9, P = 0.001), hyperuricemia (OR 2.4, 95% CI 1.4–4.1, P = 0.001), and metabolic acidosis (OR 2.0, 95% CI 1.2–3.1, P = 0.005). Other associations with advanced CKD were loss of spouse (widow/widower) (OR 3.2, 95% CI 1.4–7.4, P = 0.006), low transferrin (OR 2.4, 95% CI 1.1–5.1, P = 0.028), hyperkalemia (OR 5.4, 95% CI 1.2–24.1, P = 0.029), use of allopurinol (OR 2.4, 95% CI 1.4–4.3, P = 0.005) and doxazosin (OR 1.9, 95% CI 1.2–3.1, P = 0.006). <h4<Conclusion</h4< Hypertension and diabetes mellitus were strongly associated with advanced CKD, suggesting a need for primary and secondary population-based prevention measures. Metabolic acidosis, anemia with low transferrin levels, hyperuricemia and hyperkalemia were highly prevalent in our patients, including those with early CKD, and they were strongly associated with advanced CKD, requiring clinicians and dietitians to be proactive in supporting the needs of CKD patients in meeting their daily dietary requirements towards preventing and slowing the progression of CKD. |
abstractGer |
<h4<Background</h4< The prevalence of chronic kidney disease (CKD) is increasing worldwide; black patients have an increased risk of developing CKD and end stage kidney disease (ESKD) at significantly higher rates than other races. <h4<Methods</h4< A cross sectional study was carried out on black patients with CKD attending the kidney outpatient clinic at Charlotte Maxeke Johannesburg Academic Hospital (CMJAH) in South Africa, between September 2019 to March 2020. Demographic and clinical data were extracted from the ongoing kidney outpatient clinic records and interviews, and were filled in a questionnaire. Patients provided blood and urine for laboratory investigations as standard of care, and data were descriptively and inferentially entered into REDcap and analysed using STATA version 17. Multivariable logistic regression analysis was used to identify demographic and clinical variables associated with advanced CKD. <h4<Results</h4< A total of 312 black patients with CKD were enrolled in the study with a median age of 58 (IQR 46–67) years; 58% patients had advanced CKD, 31.5% of whom had grossly increased proteinuria, 96.7% had hypertension, 38.7% had diabetes mellitus and 38.1% had both hypertension and diabetes mellitus. In patients with advanced CKD, the median age was 61 (IQR 51–69) years, eGFR 33 (30–39) mL/min/1.73 m2, serum bicarbonate 22 (IQR 20–24), haemoglobin 12.9 (IQR 11.5–14.0) g/dl and serum uric acid 0.43 (IQR 0.37–0.53). The prevalence of metabolic acidosis was 62.4%, anemia 46.4% and gout 30.9% among those with advanced CKD, while the prevalence of metabolic acidosis and anaemia was 46.6% and 25.9% respectively in those with early CKD. Variables with higher odds for advanced CKD after multivariable logistic regression analysis were hypertension (OR 3.3, 95% CI 1.2–9.2, P = 0.020), diabetes mellitus (OR 1.8, 95% CI 1.1–3.3, P = 0.024), severe proteinuria (OR 3.5, 95% CI 1.9–6.5, P = 0.001), angina (OR 2.5, 95% CI 1.2–5.1, P = 0.008), anaemia (OR 2.9, 95% CI 1.7–4.9, P = 0.001), hyperuricemia (OR 2.4, 95% CI 1.4–4.1, P = 0.001), and metabolic acidosis (OR 2.0, 95% CI 1.2–3.1, P = 0.005). Other associations with advanced CKD were loss of spouse (widow/widower) (OR 3.2, 95% CI 1.4–7.4, P = 0.006), low transferrin (OR 2.4, 95% CI 1.1–5.1, P = 0.028), hyperkalemia (OR 5.4, 95% CI 1.2–24.1, P = 0.029), use of allopurinol (OR 2.4, 95% CI 1.4–4.3, P = 0.005) and doxazosin (OR 1.9, 95% CI 1.2–3.1, P = 0.006). <h4<Conclusion</h4< Hypertension and diabetes mellitus were strongly associated with advanced CKD, suggesting a need for primary and secondary population-based prevention measures. Metabolic acidosis, anemia with low transferrin levels, hyperuricemia and hyperkalemia were highly prevalent in our patients, including those with early CKD, and they were strongly associated with advanced CKD, requiring clinicians and dietitians to be proactive in supporting the needs of CKD patients in meeting their daily dietary requirements towards preventing and slowing the progression of CKD. |
abstract_unstemmed |
<h4<Background</h4< The prevalence of chronic kidney disease (CKD) is increasing worldwide; black patients have an increased risk of developing CKD and end stage kidney disease (ESKD) at significantly higher rates than other races. <h4<Methods</h4< A cross sectional study was carried out on black patients with CKD attending the kidney outpatient clinic at Charlotte Maxeke Johannesburg Academic Hospital (CMJAH) in South Africa, between September 2019 to March 2020. Demographic and clinical data were extracted from the ongoing kidney outpatient clinic records and interviews, and were filled in a questionnaire. Patients provided blood and urine for laboratory investigations as standard of care, and data were descriptively and inferentially entered into REDcap and analysed using STATA version 17. Multivariable logistic regression analysis was used to identify demographic and clinical variables associated with advanced CKD. <h4<Results</h4< A total of 312 black patients with CKD were enrolled in the study with a median age of 58 (IQR 46–67) years; 58% patients had advanced CKD, 31.5% of whom had grossly increased proteinuria, 96.7% had hypertension, 38.7% had diabetes mellitus and 38.1% had both hypertension and diabetes mellitus. In patients with advanced CKD, the median age was 61 (IQR 51–69) years, eGFR 33 (30–39) mL/min/1.73 m2, serum bicarbonate 22 (IQR 20–24), haemoglobin 12.9 (IQR 11.5–14.0) g/dl and serum uric acid 0.43 (IQR 0.37–0.53). The prevalence of metabolic acidosis was 62.4%, anemia 46.4% and gout 30.9% among those with advanced CKD, while the prevalence of metabolic acidosis and anaemia was 46.6% and 25.9% respectively in those with early CKD. Variables with higher odds for advanced CKD after multivariable logistic regression analysis were hypertension (OR 3.3, 95% CI 1.2–9.2, P = 0.020), diabetes mellitus (OR 1.8, 95% CI 1.1–3.3, P = 0.024), severe proteinuria (OR 3.5, 95% CI 1.9–6.5, P = 0.001), angina (OR 2.5, 95% CI 1.2–5.1, P = 0.008), anaemia (OR 2.9, 95% CI 1.7–4.9, P = 0.001), hyperuricemia (OR 2.4, 95% CI 1.4–4.1, P = 0.001), and metabolic acidosis (OR 2.0, 95% CI 1.2–3.1, P = 0.005). Other associations with advanced CKD were loss of spouse (widow/widower) (OR 3.2, 95% CI 1.4–7.4, P = 0.006), low transferrin (OR 2.4, 95% CI 1.1–5.1, P = 0.028), hyperkalemia (OR 5.4, 95% CI 1.2–24.1, P = 0.029), use of allopurinol (OR 2.4, 95% CI 1.4–4.3, P = 0.005) and doxazosin (OR 1.9, 95% CI 1.2–3.1, P = 0.006). <h4<Conclusion</h4< Hypertension and diabetes mellitus were strongly associated with advanced CKD, suggesting a need for primary and secondary population-based prevention measures. Metabolic acidosis, anemia with low transferrin levels, hyperuricemia and hyperkalemia were highly prevalent in our patients, including those with early CKD, and they were strongly associated with advanced CKD, requiring clinicians and dietitians to be proactive in supporting the needs of CKD patients in meeting their daily dietary requirements towards preventing and slowing the progression of CKD. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_34 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_235 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
9 |
title_short |
Demographic and clinical profile of black patients with chronic kidney disease attending a tertiary hospital in Johannesburg, South Africa |
url |
https://doaj.org/article/72a9c8b1ee274a3db45ef4653ae21c71 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9484689/?tool=EBI https://doaj.org/toc/1932-6203 |
remote_bool |
true |
author2 |
Graham Paget Raquel Duarte Caroline Dickens Therese Dix-Peek Deogratius Bintabara Saraladevi Naicker |
author2Str |
Graham Paget Raquel Duarte Caroline Dickens Therese Dix-Peek Deogratius Bintabara Saraladevi Naicker |
ppnlink |
523574592 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
up_date |
2024-07-04T00:04:36.344Z |
_version_ |
1803604696858886144 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ087060183</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230311055633.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ087060183</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ72a9c8b1ee274a3db45ef4653ae21c71</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Alfred Meremo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Demographic and clinical profile of black patients with chronic kidney disease attending a tertiary hospital in Johannesburg, South Africa</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a"><h4<Background</h4< The prevalence of chronic kidney disease (CKD) is increasing worldwide; black patients have an increased risk of developing CKD and end stage kidney disease (ESKD) at significantly higher rates than other races. <h4<Methods</h4< A cross sectional study was carried out on black patients with CKD attending the kidney outpatient clinic at Charlotte Maxeke Johannesburg Academic Hospital (CMJAH) in South Africa, between September 2019 to March 2020. Demographic and clinical data were extracted from the ongoing kidney outpatient clinic records and interviews, and were filled in a questionnaire. Patients provided blood and urine for laboratory investigations as standard of care, and data were descriptively and inferentially entered into REDcap and analysed using STATA version 17. Multivariable logistic regression analysis was used to identify demographic and clinical variables associated with advanced CKD. <h4<Results</h4< A total of 312 black patients with CKD were enrolled in the study with a median age of 58 (IQR 46–67) years; 58% patients had advanced CKD, 31.5% of whom had grossly increased proteinuria, 96.7% had hypertension, 38.7% had diabetes mellitus and 38.1% had both hypertension and diabetes mellitus. In patients with advanced CKD, the median age was 61 (IQR 51–69) years, eGFR 33 (30–39) mL/min/1.73 m2, serum bicarbonate 22 (IQR 20–24), haemoglobin 12.9 (IQR 11.5–14.0) g/dl and serum uric acid 0.43 (IQR 0.37–0.53). The prevalence of metabolic acidosis was 62.4%, anemia 46.4% and gout 30.9% among those with advanced CKD, while the prevalence of metabolic acidosis and anaemia was 46.6% and 25.9% respectively in those with early CKD. Variables with higher odds for advanced CKD after multivariable logistic regression analysis were hypertension (OR 3.3, 95% CI 1.2–9.2, P = 0.020), diabetes mellitus (OR 1.8, 95% CI 1.1–3.3, P = 0.024), severe proteinuria (OR 3.5, 95% CI 1.9–6.5, P = 0.001), angina (OR 2.5, 95% CI 1.2–5.1, P = 0.008), anaemia (OR 2.9, 95% CI 1.7–4.9, P = 0.001), hyperuricemia (OR 2.4, 95% CI 1.4–4.1, P = 0.001), and metabolic acidosis (OR 2.0, 95% CI 1.2–3.1, P = 0.005). Other associations with advanced CKD were loss of spouse (widow/widower) (OR 3.2, 95% CI 1.4–7.4, P = 0.006), low transferrin (OR 2.4, 95% CI 1.1–5.1, P = 0.028), hyperkalemia (OR 5.4, 95% CI 1.2–24.1, P = 0.029), use of allopurinol (OR 2.4, 95% CI 1.4–4.3, P = 0.005) and doxazosin (OR 1.9, 95% CI 1.2–3.1, P = 0.006). <h4<Conclusion</h4< Hypertension and diabetes mellitus were strongly associated with advanced CKD, suggesting a need for primary and secondary population-based prevention measures. Metabolic acidosis, anemia with low transferrin levels, hyperuricemia and hyperkalemia were highly prevalent in our patients, including those with early CKD, and they were strongly associated with advanced CKD, requiring clinicians and dietitians to be proactive in supporting the needs of CKD patients in meeting their daily dietary requirements towards preventing and slowing the progression of CKD.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Graham Paget</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Raquel Duarte</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Caroline Dickens</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Therese Dix-Peek</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Deogratius Bintabara</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Saraladevi Naicker</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">PLoS ONE</subfield><subfield code="d">Public Library of Science (PLoS), 2007</subfield><subfield code="g">17(2022), 9</subfield><subfield code="w">(DE-627)523574592</subfield><subfield code="w">(DE-600)2267670-3</subfield><subfield code="x">19326203</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:17</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/72a9c8b1ee274a3db45ef4653ae21c71</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9484689/?tool=EBI</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1932-6203</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_34</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_235</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">17</subfield><subfield code="j">2022</subfield><subfield code="e">9</subfield></datafield></record></collection>
|
score |
7.400546 |