Thermal Imaging for Plant Stress Detection and Phenotyping
In the last few years, large efforts have been made to develop new methods to optimize stress detection in crop fields. Thus, plant phenotyping based on imaging techniques has become an essential tool in agriculture. In particular, leaf temperature is a valuable indicator of the physiological status...
Ausführliche Beschreibung
Autor*in: |
Mónica Pineda [verfasserIn] Matilde Barón [verfasserIn] María-Luisa Pérez-Bueno [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Remote Sensing - MDPI AG, 2009, 13(2020), 1, p 68 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2020 ; number:1, p 68 |
Links: |
---|
DOI / URN: |
10.3390/rs13010068 |
---|
Katalog-ID: |
DOAJ087109425 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ087109425 | ||
003 | DE-627 | ||
005 | 20240412192424.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/rs13010068 |2 doi | |
035 | |a (DE-627)DOAJ087109425 | ||
035 | |a (DE-599)DOAJ211f4bbcdd994ed58ce0d44939702d64 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Mónica Pineda |e verfasserin |4 aut | |
245 | 1 | 0 | |a Thermal Imaging for Plant Stress Detection and Phenotyping |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In the last few years, large efforts have been made to develop new methods to optimize stress detection in crop fields. Thus, plant phenotyping based on imaging techniques has become an essential tool in agriculture. In particular, leaf temperature is a valuable indicator of the physiological status of plants, responding to both biotic and abiotic stressors. Often combined with other imaging sensors and data-mining techniques, thermography is crucial in the implementation of a more automatized, precise and sustainable agriculture. However, thermal data need some corrections related to the environmental and measuring conditions in order to achieve a correct interpretation of the data. This review focuses on the state of the art of thermography applied to the detection of biotic stress. The work will also revise the most important abiotic stress factors affecting the measurements as well as practical issues that need to be considered in order to implement this technique, particularly at the field scale. | ||
650 | 4 | |a Remote sensing | |
650 | 4 | |a proximal sensing | |
650 | 4 | |a thermography | |
650 | 4 | |a plant phenotyping | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Matilde Barón |e verfasserin |4 aut | |
700 | 0 | |a María-Luisa Pérez-Bueno |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Remote Sensing |d MDPI AG, 2009 |g 13(2020), 1, p 68 |w (DE-627)608937916 |w (DE-600)2513863-7 |x 20724292 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2020 |g number:1, p 68 |
856 | 4 | 0 | |u https://doi.org/10.3390/rs13010068 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/211f4bbcdd994ed58ce0d44939702d64 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2072-4292/13/1/68 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2072-4292 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4392 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2020 |e 1, p 68 |
author_variant |
m p mp m b mb m l p b mlpb |
---|---|
matchkey_str |
article:20724292:2020----::hraiaigopatteseeto |
hierarchy_sort_str |
2020 |
publishDate |
2020 |
allfields |
10.3390/rs13010068 doi (DE-627)DOAJ087109425 (DE-599)DOAJ211f4bbcdd994ed58ce0d44939702d64 DE-627 ger DE-627 rakwb eng Mónica Pineda verfasserin aut Thermal Imaging for Plant Stress Detection and Phenotyping 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the last few years, large efforts have been made to develop new methods to optimize stress detection in crop fields. Thus, plant phenotyping based on imaging techniques has become an essential tool in agriculture. In particular, leaf temperature is a valuable indicator of the physiological status of plants, responding to both biotic and abiotic stressors. Often combined with other imaging sensors and data-mining techniques, thermography is crucial in the implementation of a more automatized, precise and sustainable agriculture. However, thermal data need some corrections related to the environmental and measuring conditions in order to achieve a correct interpretation of the data. This review focuses on the state of the art of thermography applied to the detection of biotic stress. The work will also revise the most important abiotic stress factors affecting the measurements as well as practical issues that need to be considered in order to implement this technique, particularly at the field scale. Remote sensing proximal sensing thermography plant phenotyping Science Q Matilde Barón verfasserin aut María-Luisa Pérez-Bueno verfasserin aut In Remote Sensing MDPI AG, 2009 13(2020), 1, p 68 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:13 year:2020 number:1, p 68 https://doi.org/10.3390/rs13010068 kostenfrei https://doaj.org/article/211f4bbcdd994ed58ce0d44939702d64 kostenfrei https://www.mdpi.com/2072-4292/13/1/68 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 13 2020 1, p 68 |
spelling |
10.3390/rs13010068 doi (DE-627)DOAJ087109425 (DE-599)DOAJ211f4bbcdd994ed58ce0d44939702d64 DE-627 ger DE-627 rakwb eng Mónica Pineda verfasserin aut Thermal Imaging for Plant Stress Detection and Phenotyping 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the last few years, large efforts have been made to develop new methods to optimize stress detection in crop fields. Thus, plant phenotyping based on imaging techniques has become an essential tool in agriculture. In particular, leaf temperature is a valuable indicator of the physiological status of plants, responding to both biotic and abiotic stressors. Often combined with other imaging sensors and data-mining techniques, thermography is crucial in the implementation of a more automatized, precise and sustainable agriculture. However, thermal data need some corrections related to the environmental and measuring conditions in order to achieve a correct interpretation of the data. This review focuses on the state of the art of thermography applied to the detection of biotic stress. The work will also revise the most important abiotic stress factors affecting the measurements as well as practical issues that need to be considered in order to implement this technique, particularly at the field scale. Remote sensing proximal sensing thermography plant phenotyping Science Q Matilde Barón verfasserin aut María-Luisa Pérez-Bueno verfasserin aut In Remote Sensing MDPI AG, 2009 13(2020), 1, p 68 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:13 year:2020 number:1, p 68 https://doi.org/10.3390/rs13010068 kostenfrei https://doaj.org/article/211f4bbcdd994ed58ce0d44939702d64 kostenfrei https://www.mdpi.com/2072-4292/13/1/68 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 13 2020 1, p 68 |
allfields_unstemmed |
10.3390/rs13010068 doi (DE-627)DOAJ087109425 (DE-599)DOAJ211f4bbcdd994ed58ce0d44939702d64 DE-627 ger DE-627 rakwb eng Mónica Pineda verfasserin aut Thermal Imaging for Plant Stress Detection and Phenotyping 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the last few years, large efforts have been made to develop new methods to optimize stress detection in crop fields. Thus, plant phenotyping based on imaging techniques has become an essential tool in agriculture. In particular, leaf temperature is a valuable indicator of the physiological status of plants, responding to both biotic and abiotic stressors. Often combined with other imaging sensors and data-mining techniques, thermography is crucial in the implementation of a more automatized, precise and sustainable agriculture. However, thermal data need some corrections related to the environmental and measuring conditions in order to achieve a correct interpretation of the data. This review focuses on the state of the art of thermography applied to the detection of biotic stress. The work will also revise the most important abiotic stress factors affecting the measurements as well as practical issues that need to be considered in order to implement this technique, particularly at the field scale. Remote sensing proximal sensing thermography plant phenotyping Science Q Matilde Barón verfasserin aut María-Luisa Pérez-Bueno verfasserin aut In Remote Sensing MDPI AG, 2009 13(2020), 1, p 68 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:13 year:2020 number:1, p 68 https://doi.org/10.3390/rs13010068 kostenfrei https://doaj.org/article/211f4bbcdd994ed58ce0d44939702d64 kostenfrei https://www.mdpi.com/2072-4292/13/1/68 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 13 2020 1, p 68 |
allfieldsGer |
10.3390/rs13010068 doi (DE-627)DOAJ087109425 (DE-599)DOAJ211f4bbcdd994ed58ce0d44939702d64 DE-627 ger DE-627 rakwb eng Mónica Pineda verfasserin aut Thermal Imaging for Plant Stress Detection and Phenotyping 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the last few years, large efforts have been made to develop new methods to optimize stress detection in crop fields. Thus, plant phenotyping based on imaging techniques has become an essential tool in agriculture. In particular, leaf temperature is a valuable indicator of the physiological status of plants, responding to both biotic and abiotic stressors. Often combined with other imaging sensors and data-mining techniques, thermography is crucial in the implementation of a more automatized, precise and sustainable agriculture. However, thermal data need some corrections related to the environmental and measuring conditions in order to achieve a correct interpretation of the data. This review focuses on the state of the art of thermography applied to the detection of biotic stress. The work will also revise the most important abiotic stress factors affecting the measurements as well as practical issues that need to be considered in order to implement this technique, particularly at the field scale. Remote sensing proximal sensing thermography plant phenotyping Science Q Matilde Barón verfasserin aut María-Luisa Pérez-Bueno verfasserin aut In Remote Sensing MDPI AG, 2009 13(2020), 1, p 68 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:13 year:2020 number:1, p 68 https://doi.org/10.3390/rs13010068 kostenfrei https://doaj.org/article/211f4bbcdd994ed58ce0d44939702d64 kostenfrei https://www.mdpi.com/2072-4292/13/1/68 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 13 2020 1, p 68 |
allfieldsSound |
10.3390/rs13010068 doi (DE-627)DOAJ087109425 (DE-599)DOAJ211f4bbcdd994ed58ce0d44939702d64 DE-627 ger DE-627 rakwb eng Mónica Pineda verfasserin aut Thermal Imaging for Plant Stress Detection and Phenotyping 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the last few years, large efforts have been made to develop new methods to optimize stress detection in crop fields. Thus, plant phenotyping based on imaging techniques has become an essential tool in agriculture. In particular, leaf temperature is a valuable indicator of the physiological status of plants, responding to both biotic and abiotic stressors. Often combined with other imaging sensors and data-mining techniques, thermography is crucial in the implementation of a more automatized, precise and sustainable agriculture. However, thermal data need some corrections related to the environmental and measuring conditions in order to achieve a correct interpretation of the data. This review focuses on the state of the art of thermography applied to the detection of biotic stress. The work will also revise the most important abiotic stress factors affecting the measurements as well as practical issues that need to be considered in order to implement this technique, particularly at the field scale. Remote sensing proximal sensing thermography plant phenotyping Science Q Matilde Barón verfasserin aut María-Luisa Pérez-Bueno verfasserin aut In Remote Sensing MDPI AG, 2009 13(2020), 1, p 68 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:13 year:2020 number:1, p 68 https://doi.org/10.3390/rs13010068 kostenfrei https://doaj.org/article/211f4bbcdd994ed58ce0d44939702d64 kostenfrei https://www.mdpi.com/2072-4292/13/1/68 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 13 2020 1, p 68 |
language |
English |
source |
In Remote Sensing 13(2020), 1, p 68 volume:13 year:2020 number:1, p 68 |
sourceStr |
In Remote Sensing 13(2020), 1, p 68 volume:13 year:2020 number:1, p 68 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Remote sensing proximal sensing thermography plant phenotyping Science Q |
isfreeaccess_bool |
true |
container_title |
Remote Sensing |
authorswithroles_txt_mv |
Mónica Pineda @@aut@@ Matilde Barón @@aut@@ María-Luisa Pérez-Bueno @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
608937916 |
id |
DOAJ087109425 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ087109425</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412192424.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/rs13010068</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ087109425</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ211f4bbcdd994ed58ce0d44939702d64</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mónica Pineda</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Thermal Imaging for Plant Stress Detection and Phenotyping</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In the last few years, large efforts have been made to develop new methods to optimize stress detection in crop fields. Thus, plant phenotyping based on imaging techniques has become an essential tool in agriculture. In particular, leaf temperature is a valuable indicator of the physiological status of plants, responding to both biotic and abiotic stressors. Often combined with other imaging sensors and data-mining techniques, thermography is crucial in the implementation of a more automatized, precise and sustainable agriculture. However, thermal data need some corrections related to the environmental and measuring conditions in order to achieve a correct interpretation of the data. This review focuses on the state of the art of thermography applied to the detection of biotic stress. The work will also revise the most important abiotic stress factors affecting the measurements as well as practical issues that need to be considered in order to implement this technique, particularly at the field scale.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Remote sensing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">proximal sensing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">thermography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">plant phenotyping</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Matilde Barón</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">María-Luisa Pérez-Bueno</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Remote Sensing</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">13(2020), 1, p 68</subfield><subfield code="w">(DE-627)608937916</subfield><subfield code="w">(DE-600)2513863-7</subfield><subfield code="x">20724292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:1, p 68</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/rs13010068</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/211f4bbcdd994ed58ce0d44939702d64</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2072-4292/13/1/68</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-4292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2020</subfield><subfield code="e">1, p 68</subfield></datafield></record></collection>
|
author |
Mónica Pineda |
spellingShingle |
Mónica Pineda misc Remote sensing misc proximal sensing misc thermography misc plant phenotyping misc Science misc Q Thermal Imaging for Plant Stress Detection and Phenotyping |
authorStr |
Mónica Pineda |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)608937916 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
20724292 |
topic_title |
Thermal Imaging for Plant Stress Detection and Phenotyping Remote sensing proximal sensing thermography plant phenotyping |
topic |
misc Remote sensing misc proximal sensing misc thermography misc plant phenotyping misc Science misc Q |
topic_unstemmed |
misc Remote sensing misc proximal sensing misc thermography misc plant phenotyping misc Science misc Q |
topic_browse |
misc Remote sensing misc proximal sensing misc thermography misc plant phenotyping misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Remote Sensing |
hierarchy_parent_id |
608937916 |
hierarchy_top_title |
Remote Sensing |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)608937916 (DE-600)2513863-7 |
title |
Thermal Imaging for Plant Stress Detection and Phenotyping |
ctrlnum |
(DE-627)DOAJ087109425 (DE-599)DOAJ211f4bbcdd994ed58ce0d44939702d64 |
title_full |
Thermal Imaging for Plant Stress Detection and Phenotyping |
author_sort |
Mónica Pineda |
journal |
Remote Sensing |
journalStr |
Remote Sensing |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Mónica Pineda Matilde Barón María-Luisa Pérez-Bueno |
container_volume |
13 |
format_se |
Elektronische Aufsätze |
author-letter |
Mónica Pineda |
doi_str_mv |
10.3390/rs13010068 |
author2-role |
verfasserin |
title_sort |
thermal imaging for plant stress detection and phenotyping |
title_auth |
Thermal Imaging for Plant Stress Detection and Phenotyping |
abstract |
In the last few years, large efforts have been made to develop new methods to optimize stress detection in crop fields. Thus, plant phenotyping based on imaging techniques has become an essential tool in agriculture. In particular, leaf temperature is a valuable indicator of the physiological status of plants, responding to both biotic and abiotic stressors. Often combined with other imaging sensors and data-mining techniques, thermography is crucial in the implementation of a more automatized, precise and sustainable agriculture. However, thermal data need some corrections related to the environmental and measuring conditions in order to achieve a correct interpretation of the data. This review focuses on the state of the art of thermography applied to the detection of biotic stress. The work will also revise the most important abiotic stress factors affecting the measurements as well as practical issues that need to be considered in order to implement this technique, particularly at the field scale. |
abstractGer |
In the last few years, large efforts have been made to develop new methods to optimize stress detection in crop fields. Thus, plant phenotyping based on imaging techniques has become an essential tool in agriculture. In particular, leaf temperature is a valuable indicator of the physiological status of plants, responding to both biotic and abiotic stressors. Often combined with other imaging sensors and data-mining techniques, thermography is crucial in the implementation of a more automatized, precise and sustainable agriculture. However, thermal data need some corrections related to the environmental and measuring conditions in order to achieve a correct interpretation of the data. This review focuses on the state of the art of thermography applied to the detection of biotic stress. The work will also revise the most important abiotic stress factors affecting the measurements as well as practical issues that need to be considered in order to implement this technique, particularly at the field scale. |
abstract_unstemmed |
In the last few years, large efforts have been made to develop new methods to optimize stress detection in crop fields. Thus, plant phenotyping based on imaging techniques has become an essential tool in agriculture. In particular, leaf temperature is a valuable indicator of the physiological status of plants, responding to both biotic and abiotic stressors. Often combined with other imaging sensors and data-mining techniques, thermography is crucial in the implementation of a more automatized, precise and sustainable agriculture. However, thermal data need some corrections related to the environmental and measuring conditions in order to achieve a correct interpretation of the data. This review focuses on the state of the art of thermography applied to the detection of biotic stress. The work will also revise the most important abiotic stress factors affecting the measurements as well as practical issues that need to be considered in order to implement this technique, particularly at the field scale. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 |
container_issue |
1, p 68 |
title_short |
Thermal Imaging for Plant Stress Detection and Phenotyping |
url |
https://doi.org/10.3390/rs13010068 https://doaj.org/article/211f4bbcdd994ed58ce0d44939702d64 https://www.mdpi.com/2072-4292/13/1/68 https://doaj.org/toc/2072-4292 |
remote_bool |
true |
author2 |
Matilde Barón María-Luisa Pérez-Bueno |
author2Str |
Matilde Barón María-Luisa Pérez-Bueno |
ppnlink |
608937916 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/rs13010068 |
up_date |
2024-07-04T00:17:46.888Z |
_version_ |
1803605525807497216 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ087109425</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412192424.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/rs13010068</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ087109425</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ211f4bbcdd994ed58ce0d44939702d64</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mónica Pineda</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Thermal Imaging for Plant Stress Detection and Phenotyping</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In the last few years, large efforts have been made to develop new methods to optimize stress detection in crop fields. Thus, plant phenotyping based on imaging techniques has become an essential tool in agriculture. In particular, leaf temperature is a valuable indicator of the physiological status of plants, responding to both biotic and abiotic stressors. Often combined with other imaging sensors and data-mining techniques, thermography is crucial in the implementation of a more automatized, precise and sustainable agriculture. However, thermal data need some corrections related to the environmental and measuring conditions in order to achieve a correct interpretation of the data. This review focuses on the state of the art of thermography applied to the detection of biotic stress. The work will also revise the most important abiotic stress factors affecting the measurements as well as practical issues that need to be considered in order to implement this technique, particularly at the field scale.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Remote sensing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">proximal sensing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">thermography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">plant phenotyping</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Matilde Barón</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">María-Luisa Pérez-Bueno</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Remote Sensing</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">13(2020), 1, p 68</subfield><subfield code="w">(DE-627)608937916</subfield><subfield code="w">(DE-600)2513863-7</subfield><subfield code="x">20724292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:1, p 68</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/rs13010068</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/211f4bbcdd994ed58ce0d44939702d64</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2072-4292/13/1/68</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-4292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2020</subfield><subfield code="e">1, p 68</subfield></datafield></record></collection>
|
score |
7.400505 |