Green Supply Chain Management with Nash Bargaining Loss-Averse Reference Dependence
This paper investigates a two-echelon green supply chain (GSC) with a single loss-averse manufacturer and a single loss-averse retailer. Since the Nash bargaining solution exactly characterizes endogenous power and the contribution of the GSC members, it is introduced as the loss-averse reference po...
Ausführliche Beschreibung
Autor*in: |
Wentao Yi [verfasserIn] Zhongwei Feng [verfasserIn] Chunqiao Tan [verfasserIn] Yuzhong Yang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Mathematics - MDPI AG, 2013, 9(2021), 24, p 3154 |
---|---|
Übergeordnetes Werk: |
volume:9 ; year:2021 ; number:24, p 3154 |
Links: |
---|
DOI / URN: |
10.3390/math9243154 |
---|
Katalog-ID: |
DOAJ087147270 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ087147270 | ||
003 | DE-627 | ||
005 | 20240414223901.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/math9243154 |2 doi | |
035 | |a (DE-627)DOAJ087147270 | ||
035 | |a (DE-599)DOAJ468c99a393de459d8a8e4b8a6a251e32 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QA1-939 | |
100 | 0 | |a Wentao Yi |e verfasserin |4 aut | |
245 | 1 | 0 | |a Green Supply Chain Management with Nash Bargaining Loss-Averse Reference Dependence |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This paper investigates a two-echelon green supply chain (GSC) with a single loss-averse manufacturer and a single loss-averse retailer. Since the Nash bargaining solution exactly characterizes endogenous power and the contribution of the GSC members, it is introduced as the loss-averse reference point for the GSC members. Based on this, a decision model of the two-echelon GSC with loss aversion is formulated. The optimal strategies of price and product green degree are derived in four scenarios: (a) the centralized decision scenario with rational GSC members, namely the CD scenario; (b) the decentralized decision scenario with rational GSC members, namely the DD scenario; (c) the decentralized decision scenario with the GSC members loss-averse, where the manufacturer’s share is below its own loss-averse reference point, namely the DD(∆<i<<sub<m</sub<</i< ≥ <i<π<sub<m</sub<</i<) scenario; (d) the decentralized decision scenario with the GSC members loss-averse, where the retailer’s share is below its own loss-averse reference point, namely the DD(∆<i<<sub<r</sub<</i< ≥ <i<π<sub<r</sub<</i<) scenario. Then, a comparative analysis of the optimal strategies and profits in these four scenarios is conducted, and the impacts of loss aversion and green efficiency coefficient of products (GECP) on the GSC are also performed. The results show that (i) GECP has a critical influence on the retail price and the wholesale price; (ii) the GSC with loss aversion provide green products with the lowest green degree; (iii) the retail price, the wholesale price and product green degree are decreasing monotonically with the loss aversion level of the GSC member without incurring loss; (iv) furthermore, the effect of the loss aversion level of the GSC member with incurring loss on the optimal strategies is related to GECP and the gap between the GSC members’ loss aversion levels. | ||
650 | 4 | |a green supply chain | |
650 | 4 | |a loss aversion | |
650 | 4 | |a nash bargaining solution | |
650 | 4 | |a product green degree | |
650 | 4 | |a green efficiency coefficient | |
653 | 0 | |a Mathematics | |
700 | 0 | |a Zhongwei Feng |e verfasserin |4 aut | |
700 | 0 | |a Chunqiao Tan |e verfasserin |4 aut | |
700 | 0 | |a Yuzhong Yang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Mathematics |d MDPI AG, 2013 |g 9(2021), 24, p 3154 |w (DE-627)737287764 |w (DE-600)2704244-3 |x 22277390 |7 nnns |
773 | 1 | 8 | |g volume:9 |g year:2021 |g number:24, p 3154 |
856 | 4 | 0 | |u https://doi.org/10.3390/math9243154 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/468c99a393de459d8a8e4b8a6a251e32 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2227-7390/9/24/3154 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2227-7390 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 9 |j 2021 |e 24, p 3154 |
author_variant |
w y wy z f zf c t ct y y yy |
---|---|
matchkey_str |
article:22277390:2021----::resplcanaaeetihahagiigosvre |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
QA |
publishDate |
2021 |
allfields |
10.3390/math9243154 doi (DE-627)DOAJ087147270 (DE-599)DOAJ468c99a393de459d8a8e4b8a6a251e32 DE-627 ger DE-627 rakwb eng QA1-939 Wentao Yi verfasserin aut Green Supply Chain Management with Nash Bargaining Loss-Averse Reference Dependence 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper investigates a two-echelon green supply chain (GSC) with a single loss-averse manufacturer and a single loss-averse retailer. Since the Nash bargaining solution exactly characterizes endogenous power and the contribution of the GSC members, it is introduced as the loss-averse reference point for the GSC members. Based on this, a decision model of the two-echelon GSC with loss aversion is formulated. The optimal strategies of price and product green degree are derived in four scenarios: (a) the centralized decision scenario with rational GSC members, namely the CD scenario; (b) the decentralized decision scenario with rational GSC members, namely the DD scenario; (c) the decentralized decision scenario with the GSC members loss-averse, where the manufacturer’s share is below its own loss-averse reference point, namely the DD(∆<i<<sub<m</sub<</i< ≥ <i<π<sub<m</sub<</i<) scenario; (d) the decentralized decision scenario with the GSC members loss-averse, where the retailer’s share is below its own loss-averse reference point, namely the DD(∆<i<<sub<r</sub<</i< ≥ <i<π<sub<r</sub<</i<) scenario. Then, a comparative analysis of the optimal strategies and profits in these four scenarios is conducted, and the impacts of loss aversion and green efficiency coefficient of products (GECP) on the GSC are also performed. The results show that (i) GECP has a critical influence on the retail price and the wholesale price; (ii) the GSC with loss aversion provide green products with the lowest green degree; (iii) the retail price, the wholesale price and product green degree are decreasing monotonically with the loss aversion level of the GSC member without incurring loss; (iv) furthermore, the effect of the loss aversion level of the GSC member with incurring loss on the optimal strategies is related to GECP and the gap between the GSC members’ loss aversion levels. green supply chain loss aversion nash bargaining solution product green degree green efficiency coefficient Mathematics Zhongwei Feng verfasserin aut Chunqiao Tan verfasserin aut Yuzhong Yang verfasserin aut In Mathematics MDPI AG, 2013 9(2021), 24, p 3154 (DE-627)737287764 (DE-600)2704244-3 22277390 nnns volume:9 year:2021 number:24, p 3154 https://doi.org/10.3390/math9243154 kostenfrei https://doaj.org/article/468c99a393de459d8a8e4b8a6a251e32 kostenfrei https://www.mdpi.com/2227-7390/9/24/3154 kostenfrei https://doaj.org/toc/2227-7390 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 24, p 3154 |
spelling |
10.3390/math9243154 doi (DE-627)DOAJ087147270 (DE-599)DOAJ468c99a393de459d8a8e4b8a6a251e32 DE-627 ger DE-627 rakwb eng QA1-939 Wentao Yi verfasserin aut Green Supply Chain Management with Nash Bargaining Loss-Averse Reference Dependence 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper investigates a two-echelon green supply chain (GSC) with a single loss-averse manufacturer and a single loss-averse retailer. Since the Nash bargaining solution exactly characterizes endogenous power and the contribution of the GSC members, it is introduced as the loss-averse reference point for the GSC members. Based on this, a decision model of the two-echelon GSC with loss aversion is formulated. The optimal strategies of price and product green degree are derived in four scenarios: (a) the centralized decision scenario with rational GSC members, namely the CD scenario; (b) the decentralized decision scenario with rational GSC members, namely the DD scenario; (c) the decentralized decision scenario with the GSC members loss-averse, where the manufacturer’s share is below its own loss-averse reference point, namely the DD(∆<i<<sub<m</sub<</i< ≥ <i<π<sub<m</sub<</i<) scenario; (d) the decentralized decision scenario with the GSC members loss-averse, where the retailer’s share is below its own loss-averse reference point, namely the DD(∆<i<<sub<r</sub<</i< ≥ <i<π<sub<r</sub<</i<) scenario. Then, a comparative analysis of the optimal strategies and profits in these four scenarios is conducted, and the impacts of loss aversion and green efficiency coefficient of products (GECP) on the GSC are also performed. The results show that (i) GECP has a critical influence on the retail price and the wholesale price; (ii) the GSC with loss aversion provide green products with the lowest green degree; (iii) the retail price, the wholesale price and product green degree are decreasing monotonically with the loss aversion level of the GSC member without incurring loss; (iv) furthermore, the effect of the loss aversion level of the GSC member with incurring loss on the optimal strategies is related to GECP and the gap between the GSC members’ loss aversion levels. green supply chain loss aversion nash bargaining solution product green degree green efficiency coefficient Mathematics Zhongwei Feng verfasserin aut Chunqiao Tan verfasserin aut Yuzhong Yang verfasserin aut In Mathematics MDPI AG, 2013 9(2021), 24, p 3154 (DE-627)737287764 (DE-600)2704244-3 22277390 nnns volume:9 year:2021 number:24, p 3154 https://doi.org/10.3390/math9243154 kostenfrei https://doaj.org/article/468c99a393de459d8a8e4b8a6a251e32 kostenfrei https://www.mdpi.com/2227-7390/9/24/3154 kostenfrei https://doaj.org/toc/2227-7390 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 24, p 3154 |
allfields_unstemmed |
10.3390/math9243154 doi (DE-627)DOAJ087147270 (DE-599)DOAJ468c99a393de459d8a8e4b8a6a251e32 DE-627 ger DE-627 rakwb eng QA1-939 Wentao Yi verfasserin aut Green Supply Chain Management with Nash Bargaining Loss-Averse Reference Dependence 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper investigates a two-echelon green supply chain (GSC) with a single loss-averse manufacturer and a single loss-averse retailer. Since the Nash bargaining solution exactly characterizes endogenous power and the contribution of the GSC members, it is introduced as the loss-averse reference point for the GSC members. Based on this, a decision model of the two-echelon GSC with loss aversion is formulated. The optimal strategies of price and product green degree are derived in four scenarios: (a) the centralized decision scenario with rational GSC members, namely the CD scenario; (b) the decentralized decision scenario with rational GSC members, namely the DD scenario; (c) the decentralized decision scenario with the GSC members loss-averse, where the manufacturer’s share is below its own loss-averse reference point, namely the DD(∆<i<<sub<m</sub<</i< ≥ <i<π<sub<m</sub<</i<) scenario; (d) the decentralized decision scenario with the GSC members loss-averse, where the retailer’s share is below its own loss-averse reference point, namely the DD(∆<i<<sub<r</sub<</i< ≥ <i<π<sub<r</sub<</i<) scenario. Then, a comparative analysis of the optimal strategies and profits in these four scenarios is conducted, and the impacts of loss aversion and green efficiency coefficient of products (GECP) on the GSC are also performed. The results show that (i) GECP has a critical influence on the retail price and the wholesale price; (ii) the GSC with loss aversion provide green products with the lowest green degree; (iii) the retail price, the wholesale price and product green degree are decreasing monotonically with the loss aversion level of the GSC member without incurring loss; (iv) furthermore, the effect of the loss aversion level of the GSC member with incurring loss on the optimal strategies is related to GECP and the gap between the GSC members’ loss aversion levels. green supply chain loss aversion nash bargaining solution product green degree green efficiency coefficient Mathematics Zhongwei Feng verfasserin aut Chunqiao Tan verfasserin aut Yuzhong Yang verfasserin aut In Mathematics MDPI AG, 2013 9(2021), 24, p 3154 (DE-627)737287764 (DE-600)2704244-3 22277390 nnns volume:9 year:2021 number:24, p 3154 https://doi.org/10.3390/math9243154 kostenfrei https://doaj.org/article/468c99a393de459d8a8e4b8a6a251e32 kostenfrei https://www.mdpi.com/2227-7390/9/24/3154 kostenfrei https://doaj.org/toc/2227-7390 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 24, p 3154 |
allfieldsGer |
10.3390/math9243154 doi (DE-627)DOAJ087147270 (DE-599)DOAJ468c99a393de459d8a8e4b8a6a251e32 DE-627 ger DE-627 rakwb eng QA1-939 Wentao Yi verfasserin aut Green Supply Chain Management with Nash Bargaining Loss-Averse Reference Dependence 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper investigates a two-echelon green supply chain (GSC) with a single loss-averse manufacturer and a single loss-averse retailer. Since the Nash bargaining solution exactly characterizes endogenous power and the contribution of the GSC members, it is introduced as the loss-averse reference point for the GSC members. Based on this, a decision model of the two-echelon GSC with loss aversion is formulated. The optimal strategies of price and product green degree are derived in four scenarios: (a) the centralized decision scenario with rational GSC members, namely the CD scenario; (b) the decentralized decision scenario with rational GSC members, namely the DD scenario; (c) the decentralized decision scenario with the GSC members loss-averse, where the manufacturer’s share is below its own loss-averse reference point, namely the DD(∆<i<<sub<m</sub<</i< ≥ <i<π<sub<m</sub<</i<) scenario; (d) the decentralized decision scenario with the GSC members loss-averse, where the retailer’s share is below its own loss-averse reference point, namely the DD(∆<i<<sub<r</sub<</i< ≥ <i<π<sub<r</sub<</i<) scenario. Then, a comparative analysis of the optimal strategies and profits in these four scenarios is conducted, and the impacts of loss aversion and green efficiency coefficient of products (GECP) on the GSC are also performed. The results show that (i) GECP has a critical influence on the retail price and the wholesale price; (ii) the GSC with loss aversion provide green products with the lowest green degree; (iii) the retail price, the wholesale price and product green degree are decreasing monotonically with the loss aversion level of the GSC member without incurring loss; (iv) furthermore, the effect of the loss aversion level of the GSC member with incurring loss on the optimal strategies is related to GECP and the gap between the GSC members’ loss aversion levels. green supply chain loss aversion nash bargaining solution product green degree green efficiency coefficient Mathematics Zhongwei Feng verfasserin aut Chunqiao Tan verfasserin aut Yuzhong Yang verfasserin aut In Mathematics MDPI AG, 2013 9(2021), 24, p 3154 (DE-627)737287764 (DE-600)2704244-3 22277390 nnns volume:9 year:2021 number:24, p 3154 https://doi.org/10.3390/math9243154 kostenfrei https://doaj.org/article/468c99a393de459d8a8e4b8a6a251e32 kostenfrei https://www.mdpi.com/2227-7390/9/24/3154 kostenfrei https://doaj.org/toc/2227-7390 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 24, p 3154 |
allfieldsSound |
10.3390/math9243154 doi (DE-627)DOAJ087147270 (DE-599)DOAJ468c99a393de459d8a8e4b8a6a251e32 DE-627 ger DE-627 rakwb eng QA1-939 Wentao Yi verfasserin aut Green Supply Chain Management with Nash Bargaining Loss-Averse Reference Dependence 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper investigates a two-echelon green supply chain (GSC) with a single loss-averse manufacturer and a single loss-averse retailer. Since the Nash bargaining solution exactly characterizes endogenous power and the contribution of the GSC members, it is introduced as the loss-averse reference point for the GSC members. Based on this, a decision model of the two-echelon GSC with loss aversion is formulated. The optimal strategies of price and product green degree are derived in four scenarios: (a) the centralized decision scenario with rational GSC members, namely the CD scenario; (b) the decentralized decision scenario with rational GSC members, namely the DD scenario; (c) the decentralized decision scenario with the GSC members loss-averse, where the manufacturer’s share is below its own loss-averse reference point, namely the DD(∆<i<<sub<m</sub<</i< ≥ <i<π<sub<m</sub<</i<) scenario; (d) the decentralized decision scenario with the GSC members loss-averse, where the retailer’s share is below its own loss-averse reference point, namely the DD(∆<i<<sub<r</sub<</i< ≥ <i<π<sub<r</sub<</i<) scenario. Then, a comparative analysis of the optimal strategies and profits in these four scenarios is conducted, and the impacts of loss aversion and green efficiency coefficient of products (GECP) on the GSC are also performed. The results show that (i) GECP has a critical influence on the retail price and the wholesale price; (ii) the GSC with loss aversion provide green products with the lowest green degree; (iii) the retail price, the wholesale price and product green degree are decreasing monotonically with the loss aversion level of the GSC member without incurring loss; (iv) furthermore, the effect of the loss aversion level of the GSC member with incurring loss on the optimal strategies is related to GECP and the gap between the GSC members’ loss aversion levels. green supply chain loss aversion nash bargaining solution product green degree green efficiency coefficient Mathematics Zhongwei Feng verfasserin aut Chunqiao Tan verfasserin aut Yuzhong Yang verfasserin aut In Mathematics MDPI AG, 2013 9(2021), 24, p 3154 (DE-627)737287764 (DE-600)2704244-3 22277390 nnns volume:9 year:2021 number:24, p 3154 https://doi.org/10.3390/math9243154 kostenfrei https://doaj.org/article/468c99a393de459d8a8e4b8a6a251e32 kostenfrei https://www.mdpi.com/2227-7390/9/24/3154 kostenfrei https://doaj.org/toc/2227-7390 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 24, p 3154 |
language |
English |
source |
In Mathematics 9(2021), 24, p 3154 volume:9 year:2021 number:24, p 3154 |
sourceStr |
In Mathematics 9(2021), 24, p 3154 volume:9 year:2021 number:24, p 3154 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
green supply chain loss aversion nash bargaining solution product green degree green efficiency coefficient Mathematics |
isfreeaccess_bool |
true |
container_title |
Mathematics |
authorswithroles_txt_mv |
Wentao Yi @@aut@@ Zhongwei Feng @@aut@@ Chunqiao Tan @@aut@@ Yuzhong Yang @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
737287764 |
id |
DOAJ087147270 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ087147270</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414223901.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/math9243154</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ087147270</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ468c99a393de459d8a8e4b8a6a251e32</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Wentao Yi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Green Supply Chain Management with Nash Bargaining Loss-Averse Reference Dependence</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper investigates a two-echelon green supply chain (GSC) with a single loss-averse manufacturer and a single loss-averse retailer. Since the Nash bargaining solution exactly characterizes endogenous power and the contribution of the GSC members, it is introduced as the loss-averse reference point for the GSC members. Based on this, a decision model of the two-echelon GSC with loss aversion is formulated. The optimal strategies of price and product green degree are derived in four scenarios: (a) the centralized decision scenario with rational GSC members, namely the CD scenario; (b) the decentralized decision scenario with rational GSC members, namely the DD scenario; (c) the decentralized decision scenario with the GSC members loss-averse, where the manufacturer’s share is below its own loss-averse reference point, namely the DD(∆<i<<sub<m</sub<</i< ≥ <i<π<sub<m</sub<</i<) scenario; (d) the decentralized decision scenario with the GSC members loss-averse, where the retailer’s share is below its own loss-averse reference point, namely the DD(∆<i<<sub<r</sub<</i< ≥ <i<π<sub<r</sub<</i<) scenario. Then, a comparative analysis of the optimal strategies and profits in these four scenarios is conducted, and the impacts of loss aversion and green efficiency coefficient of products (GECP) on the GSC are also performed. The results show that (i) GECP has a critical influence on the retail price and the wholesale price; (ii) the GSC with loss aversion provide green products with the lowest green degree; (iii) the retail price, the wholesale price and product green degree are decreasing monotonically with the loss aversion level of the GSC member without incurring loss; (iv) furthermore, the effect of the loss aversion level of the GSC member with incurring loss on the optimal strategies is related to GECP and the gap between the GSC members’ loss aversion levels.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">green supply chain</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">loss aversion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nash bargaining solution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">product green degree</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">green efficiency coefficient</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhongwei Feng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chunqiao Tan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuzhong Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Mathematics</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">9(2021), 24, p 3154</subfield><subfield code="w">(DE-627)737287764</subfield><subfield code="w">(DE-600)2704244-3</subfield><subfield code="x">22277390</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:24, p 3154</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/math9243154</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/468c99a393de459d8a8e4b8a6a251e32</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2227-7390/9/24/3154</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2227-7390</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2021</subfield><subfield code="e">24, p 3154</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Wentao Yi |
spellingShingle |
Wentao Yi misc QA1-939 misc green supply chain misc loss aversion misc nash bargaining solution misc product green degree misc green efficiency coefficient misc Mathematics Green Supply Chain Management with Nash Bargaining Loss-Averse Reference Dependence |
authorStr |
Wentao Yi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)737287764 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QA1-939 |
illustrated |
Not Illustrated |
issn |
22277390 |
topic_title |
QA1-939 Green Supply Chain Management with Nash Bargaining Loss-Averse Reference Dependence green supply chain loss aversion nash bargaining solution product green degree green efficiency coefficient |
topic |
misc QA1-939 misc green supply chain misc loss aversion misc nash bargaining solution misc product green degree misc green efficiency coefficient misc Mathematics |
topic_unstemmed |
misc QA1-939 misc green supply chain misc loss aversion misc nash bargaining solution misc product green degree misc green efficiency coefficient misc Mathematics |
topic_browse |
misc QA1-939 misc green supply chain misc loss aversion misc nash bargaining solution misc product green degree misc green efficiency coefficient misc Mathematics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Mathematics |
hierarchy_parent_id |
737287764 |
hierarchy_top_title |
Mathematics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)737287764 (DE-600)2704244-3 |
title |
Green Supply Chain Management with Nash Bargaining Loss-Averse Reference Dependence |
ctrlnum |
(DE-627)DOAJ087147270 (DE-599)DOAJ468c99a393de459d8a8e4b8a6a251e32 |
title_full |
Green Supply Chain Management with Nash Bargaining Loss-Averse Reference Dependence |
author_sort |
Wentao Yi |
journal |
Mathematics |
journalStr |
Mathematics |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Wentao Yi Zhongwei Feng Chunqiao Tan Yuzhong Yang |
container_volume |
9 |
class |
QA1-939 |
format_se |
Elektronische Aufsätze |
author-letter |
Wentao Yi |
doi_str_mv |
10.3390/math9243154 |
author2-role |
verfasserin |
title_sort |
green supply chain management with nash bargaining loss-averse reference dependence |
callnumber |
QA1-939 |
title_auth |
Green Supply Chain Management with Nash Bargaining Loss-Averse Reference Dependence |
abstract |
This paper investigates a two-echelon green supply chain (GSC) with a single loss-averse manufacturer and a single loss-averse retailer. Since the Nash bargaining solution exactly characterizes endogenous power and the contribution of the GSC members, it is introduced as the loss-averse reference point for the GSC members. Based on this, a decision model of the two-echelon GSC with loss aversion is formulated. The optimal strategies of price and product green degree are derived in four scenarios: (a) the centralized decision scenario with rational GSC members, namely the CD scenario; (b) the decentralized decision scenario with rational GSC members, namely the DD scenario; (c) the decentralized decision scenario with the GSC members loss-averse, where the manufacturer’s share is below its own loss-averse reference point, namely the DD(∆<i<<sub<m</sub<</i< ≥ <i<π<sub<m</sub<</i<) scenario; (d) the decentralized decision scenario with the GSC members loss-averse, where the retailer’s share is below its own loss-averse reference point, namely the DD(∆<i<<sub<r</sub<</i< ≥ <i<π<sub<r</sub<</i<) scenario. Then, a comparative analysis of the optimal strategies and profits in these four scenarios is conducted, and the impacts of loss aversion and green efficiency coefficient of products (GECP) on the GSC are also performed. The results show that (i) GECP has a critical influence on the retail price and the wholesale price; (ii) the GSC with loss aversion provide green products with the lowest green degree; (iii) the retail price, the wholesale price and product green degree are decreasing monotonically with the loss aversion level of the GSC member without incurring loss; (iv) furthermore, the effect of the loss aversion level of the GSC member with incurring loss on the optimal strategies is related to GECP and the gap between the GSC members’ loss aversion levels. |
abstractGer |
This paper investigates a two-echelon green supply chain (GSC) with a single loss-averse manufacturer and a single loss-averse retailer. Since the Nash bargaining solution exactly characterizes endogenous power and the contribution of the GSC members, it is introduced as the loss-averse reference point for the GSC members. Based on this, a decision model of the two-echelon GSC with loss aversion is formulated. The optimal strategies of price and product green degree are derived in four scenarios: (a) the centralized decision scenario with rational GSC members, namely the CD scenario; (b) the decentralized decision scenario with rational GSC members, namely the DD scenario; (c) the decentralized decision scenario with the GSC members loss-averse, where the manufacturer’s share is below its own loss-averse reference point, namely the DD(∆<i<<sub<m</sub<</i< ≥ <i<π<sub<m</sub<</i<) scenario; (d) the decentralized decision scenario with the GSC members loss-averse, where the retailer’s share is below its own loss-averse reference point, namely the DD(∆<i<<sub<r</sub<</i< ≥ <i<π<sub<r</sub<</i<) scenario. Then, a comparative analysis of the optimal strategies and profits in these four scenarios is conducted, and the impacts of loss aversion and green efficiency coefficient of products (GECP) on the GSC are also performed. The results show that (i) GECP has a critical influence on the retail price and the wholesale price; (ii) the GSC with loss aversion provide green products with the lowest green degree; (iii) the retail price, the wholesale price and product green degree are decreasing monotonically with the loss aversion level of the GSC member without incurring loss; (iv) furthermore, the effect of the loss aversion level of the GSC member with incurring loss on the optimal strategies is related to GECP and the gap between the GSC members’ loss aversion levels. |
abstract_unstemmed |
This paper investigates a two-echelon green supply chain (GSC) with a single loss-averse manufacturer and a single loss-averse retailer. Since the Nash bargaining solution exactly characterizes endogenous power and the contribution of the GSC members, it is introduced as the loss-averse reference point for the GSC members. Based on this, a decision model of the two-echelon GSC with loss aversion is formulated. The optimal strategies of price and product green degree are derived in four scenarios: (a) the centralized decision scenario with rational GSC members, namely the CD scenario; (b) the decentralized decision scenario with rational GSC members, namely the DD scenario; (c) the decentralized decision scenario with the GSC members loss-averse, where the manufacturer’s share is below its own loss-averse reference point, namely the DD(∆<i<<sub<m</sub<</i< ≥ <i<π<sub<m</sub<</i<) scenario; (d) the decentralized decision scenario with the GSC members loss-averse, where the retailer’s share is below its own loss-averse reference point, namely the DD(∆<i<<sub<r</sub<</i< ≥ <i<π<sub<r</sub<</i<) scenario. Then, a comparative analysis of the optimal strategies and profits in these four scenarios is conducted, and the impacts of loss aversion and green efficiency coefficient of products (GECP) on the GSC are also performed. The results show that (i) GECP has a critical influence on the retail price and the wholesale price; (ii) the GSC with loss aversion provide green products with the lowest green degree; (iii) the retail price, the wholesale price and product green degree are decreasing monotonically with the loss aversion level of the GSC member without incurring loss; (iv) furthermore, the effect of the loss aversion level of the GSC member with incurring loss on the optimal strategies is related to GECP and the gap between the GSC members’ loss aversion levels. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
24, p 3154 |
title_short |
Green Supply Chain Management with Nash Bargaining Loss-Averse Reference Dependence |
url |
https://doi.org/10.3390/math9243154 https://doaj.org/article/468c99a393de459d8a8e4b8a6a251e32 https://www.mdpi.com/2227-7390/9/24/3154 https://doaj.org/toc/2227-7390 |
remote_bool |
true |
author2 |
Zhongwei Feng Chunqiao Tan Yuzhong Yang |
author2Str |
Zhongwei Feng Chunqiao Tan Yuzhong Yang |
ppnlink |
737287764 |
callnumber-subject |
QA - Mathematics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/math9243154 |
callnumber-a |
QA1-939 |
up_date |
2024-07-04T00:28:05.846Z |
_version_ |
1803606174830952448 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ087147270</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414223901.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/math9243154</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ087147270</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ468c99a393de459d8a8e4b8a6a251e32</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Wentao Yi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Green Supply Chain Management with Nash Bargaining Loss-Averse Reference Dependence</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper investigates a two-echelon green supply chain (GSC) with a single loss-averse manufacturer and a single loss-averse retailer. Since the Nash bargaining solution exactly characterizes endogenous power and the contribution of the GSC members, it is introduced as the loss-averse reference point for the GSC members. Based on this, a decision model of the two-echelon GSC with loss aversion is formulated. The optimal strategies of price and product green degree are derived in four scenarios: (a) the centralized decision scenario with rational GSC members, namely the CD scenario; (b) the decentralized decision scenario with rational GSC members, namely the DD scenario; (c) the decentralized decision scenario with the GSC members loss-averse, where the manufacturer’s share is below its own loss-averse reference point, namely the DD(∆<i<<sub<m</sub<</i< ≥ <i<π<sub<m</sub<</i<) scenario; (d) the decentralized decision scenario with the GSC members loss-averse, where the retailer’s share is below its own loss-averse reference point, namely the DD(∆<i<<sub<r</sub<</i< ≥ <i<π<sub<r</sub<</i<) scenario. Then, a comparative analysis of the optimal strategies and profits in these four scenarios is conducted, and the impacts of loss aversion and green efficiency coefficient of products (GECP) on the GSC are also performed. The results show that (i) GECP has a critical influence on the retail price and the wholesale price; (ii) the GSC with loss aversion provide green products with the lowest green degree; (iii) the retail price, the wholesale price and product green degree are decreasing monotonically with the loss aversion level of the GSC member without incurring loss; (iv) furthermore, the effect of the loss aversion level of the GSC member with incurring loss on the optimal strategies is related to GECP and the gap between the GSC members’ loss aversion levels.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">green supply chain</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">loss aversion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nash bargaining solution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">product green degree</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">green efficiency coefficient</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhongwei Feng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chunqiao Tan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuzhong Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Mathematics</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">9(2021), 24, p 3154</subfield><subfield code="w">(DE-627)737287764</subfield><subfield code="w">(DE-600)2704244-3</subfield><subfield code="x">22277390</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:24, p 3154</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/math9243154</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/468c99a393de459d8a8e4b8a6a251e32</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2227-7390/9/24/3154</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2227-7390</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2021</subfield><subfield code="e">24, p 3154</subfield></datafield></record></collection>
|
score |
7.4015427 |