Color Dependence Analysis in a CNN-Based Computer-Aided Diagnosis System for Middle and External Ear Diseases
Artificial intelligence-assisted otologic diagnosis has been of growing interest in the scientific community, where middle and external ear disorders are the most frequent diseases in daily ENT practice. There are some efforts focused on reducing medical errors and enhancing physician capabilities u...
Ausführliche Beschreibung
Autor*in: |
Michelle Viscaino [verfasserIn] Matias Talamilla [verfasserIn] Juan Cristóbal Maass [verfasserIn] Pablo Henríquez [verfasserIn] Paul H. Délano [verfasserIn] Cecilia Auat Cheein [verfasserIn] Fernando Auat Cheein [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Diagnostics - MDPI AG, 2012, 12(2022), 4, p 917 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2022 ; number:4, p 917 |
Links: |
---|
DOI / URN: |
10.3390/diagnostics12040917 |
---|
Katalog-ID: |
DOAJ087162555 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ087162555 | ||
003 | DE-627 | ||
005 | 20240414114921.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/diagnostics12040917 |2 doi | |
035 | |a (DE-627)DOAJ087162555 | ||
035 | |a (DE-599)DOAJae13ada94a18427594f6b57ff96b0e71 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a R5-920 | |
100 | 0 | |a Michelle Viscaino |e verfasserin |4 aut | |
245 | 1 | 0 | |a Color Dependence Analysis in a CNN-Based Computer-Aided Diagnosis System for Middle and External Ear Diseases |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Artificial intelligence-assisted otologic diagnosis has been of growing interest in the scientific community, where middle and external ear disorders are the most frequent diseases in daily ENT practice. There are some efforts focused on reducing medical errors and enhancing physician capabilities using conventional artificial vision systems. However, approaches with multispectral analysis have not yet been addressed. Tissues of the tympanic membrane possess optical properties that define their characteristics in specific light spectra. This work explores color wavelengths dependence in a model that classifies four middle and external ear conditions: normal, chronic otitis media, otitis media with effusion, and earwax plug. The model is constructed under a computer-aided diagnosis system that uses a convolutional neural network architecture. We trained several models using different single-channel images by taking each color wavelength separately. The results showed that a single green channel model achieves the best overall performance in terms of accuracy (92%), sensitivity (85%), specificity (95%), precision (86%), and F1-score (85%). Our findings can be a suitable alternative for artificial intelligence diagnosis systems compared to the 50% of overall misdiagnosis of a non-specialist physician. | ||
650 | 4 | |a otology | |
650 | 4 | |a artificial intelligence | |
650 | 4 | |a middle and external ear | |
650 | 4 | |a deep learning | |
650 | 4 | |a convolutional neural network | |
653 | 0 | |a Medicine (General) | |
700 | 0 | |a Matias Talamilla |e verfasserin |4 aut | |
700 | 0 | |a Juan Cristóbal Maass |e verfasserin |4 aut | |
700 | 0 | |a Pablo Henríquez |e verfasserin |4 aut | |
700 | 0 | |a Paul H. Délano |e verfasserin |4 aut | |
700 | 0 | |a Cecilia Auat Cheein |e verfasserin |4 aut | |
700 | 0 | |a Fernando Auat Cheein |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Diagnostics |d MDPI AG, 2012 |g 12(2022), 4, p 917 |w (DE-627)718627814 |w (DE-600)2662336-5 |x 20754418 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2022 |g number:4, p 917 |
856 | 4 | 0 | |u https://doi.org/10.3390/diagnostics12040917 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/ae13ada94a18427594f6b57ff96b0e71 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2075-4418/12/4/917 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2075-4418 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2022 |e 4, p 917 |
author_variant |
m v mv m t mt j c m jcm p h ph p h d phd c a c cac f a c fac |
---|---|
matchkey_str |
article:20754418:2022----::oodpnecaayiianbsdoptriedanssytmomd |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
R |
publishDate |
2022 |
allfields |
10.3390/diagnostics12040917 doi (DE-627)DOAJ087162555 (DE-599)DOAJae13ada94a18427594f6b57ff96b0e71 DE-627 ger DE-627 rakwb eng R5-920 Michelle Viscaino verfasserin aut Color Dependence Analysis in a CNN-Based Computer-Aided Diagnosis System for Middle and External Ear Diseases 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Artificial intelligence-assisted otologic diagnosis has been of growing interest in the scientific community, where middle and external ear disorders are the most frequent diseases in daily ENT practice. There are some efforts focused on reducing medical errors and enhancing physician capabilities using conventional artificial vision systems. However, approaches with multispectral analysis have not yet been addressed. Tissues of the tympanic membrane possess optical properties that define their characteristics in specific light spectra. This work explores color wavelengths dependence in a model that classifies four middle and external ear conditions: normal, chronic otitis media, otitis media with effusion, and earwax plug. The model is constructed under a computer-aided diagnosis system that uses a convolutional neural network architecture. We trained several models using different single-channel images by taking each color wavelength separately. The results showed that a single green channel model achieves the best overall performance in terms of accuracy (92%), sensitivity (85%), specificity (95%), precision (86%), and F1-score (85%). Our findings can be a suitable alternative for artificial intelligence diagnosis systems compared to the 50% of overall misdiagnosis of a non-specialist physician. otology artificial intelligence middle and external ear deep learning convolutional neural network Medicine (General) Matias Talamilla verfasserin aut Juan Cristóbal Maass verfasserin aut Pablo Henríquez verfasserin aut Paul H. Délano verfasserin aut Cecilia Auat Cheein verfasserin aut Fernando Auat Cheein verfasserin aut In Diagnostics MDPI AG, 2012 12(2022), 4, p 917 (DE-627)718627814 (DE-600)2662336-5 20754418 nnns volume:12 year:2022 number:4, p 917 https://doi.org/10.3390/diagnostics12040917 kostenfrei https://doaj.org/article/ae13ada94a18427594f6b57ff96b0e71 kostenfrei https://www.mdpi.com/2075-4418/12/4/917 kostenfrei https://doaj.org/toc/2075-4418 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 4, p 917 |
spelling |
10.3390/diagnostics12040917 doi (DE-627)DOAJ087162555 (DE-599)DOAJae13ada94a18427594f6b57ff96b0e71 DE-627 ger DE-627 rakwb eng R5-920 Michelle Viscaino verfasserin aut Color Dependence Analysis in a CNN-Based Computer-Aided Diagnosis System for Middle and External Ear Diseases 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Artificial intelligence-assisted otologic diagnosis has been of growing interest in the scientific community, where middle and external ear disorders are the most frequent diseases in daily ENT practice. There are some efforts focused on reducing medical errors and enhancing physician capabilities using conventional artificial vision systems. However, approaches with multispectral analysis have not yet been addressed. Tissues of the tympanic membrane possess optical properties that define their characteristics in specific light spectra. This work explores color wavelengths dependence in a model that classifies four middle and external ear conditions: normal, chronic otitis media, otitis media with effusion, and earwax plug. The model is constructed under a computer-aided diagnosis system that uses a convolutional neural network architecture. We trained several models using different single-channel images by taking each color wavelength separately. The results showed that a single green channel model achieves the best overall performance in terms of accuracy (92%), sensitivity (85%), specificity (95%), precision (86%), and F1-score (85%). Our findings can be a suitable alternative for artificial intelligence diagnosis systems compared to the 50% of overall misdiagnosis of a non-specialist physician. otology artificial intelligence middle and external ear deep learning convolutional neural network Medicine (General) Matias Talamilla verfasserin aut Juan Cristóbal Maass verfasserin aut Pablo Henríquez verfasserin aut Paul H. Délano verfasserin aut Cecilia Auat Cheein verfasserin aut Fernando Auat Cheein verfasserin aut In Diagnostics MDPI AG, 2012 12(2022), 4, p 917 (DE-627)718627814 (DE-600)2662336-5 20754418 nnns volume:12 year:2022 number:4, p 917 https://doi.org/10.3390/diagnostics12040917 kostenfrei https://doaj.org/article/ae13ada94a18427594f6b57ff96b0e71 kostenfrei https://www.mdpi.com/2075-4418/12/4/917 kostenfrei https://doaj.org/toc/2075-4418 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 4, p 917 |
allfields_unstemmed |
10.3390/diagnostics12040917 doi (DE-627)DOAJ087162555 (DE-599)DOAJae13ada94a18427594f6b57ff96b0e71 DE-627 ger DE-627 rakwb eng R5-920 Michelle Viscaino verfasserin aut Color Dependence Analysis in a CNN-Based Computer-Aided Diagnosis System for Middle and External Ear Diseases 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Artificial intelligence-assisted otologic diagnosis has been of growing interest in the scientific community, where middle and external ear disorders are the most frequent diseases in daily ENT practice. There are some efforts focused on reducing medical errors and enhancing physician capabilities using conventional artificial vision systems. However, approaches with multispectral analysis have not yet been addressed. Tissues of the tympanic membrane possess optical properties that define their characteristics in specific light spectra. This work explores color wavelengths dependence in a model that classifies four middle and external ear conditions: normal, chronic otitis media, otitis media with effusion, and earwax plug. The model is constructed under a computer-aided diagnosis system that uses a convolutional neural network architecture. We trained several models using different single-channel images by taking each color wavelength separately. The results showed that a single green channel model achieves the best overall performance in terms of accuracy (92%), sensitivity (85%), specificity (95%), precision (86%), and F1-score (85%). Our findings can be a suitable alternative for artificial intelligence diagnosis systems compared to the 50% of overall misdiagnosis of a non-specialist physician. otology artificial intelligence middle and external ear deep learning convolutional neural network Medicine (General) Matias Talamilla verfasserin aut Juan Cristóbal Maass verfasserin aut Pablo Henríquez verfasserin aut Paul H. Délano verfasserin aut Cecilia Auat Cheein verfasserin aut Fernando Auat Cheein verfasserin aut In Diagnostics MDPI AG, 2012 12(2022), 4, p 917 (DE-627)718627814 (DE-600)2662336-5 20754418 nnns volume:12 year:2022 number:4, p 917 https://doi.org/10.3390/diagnostics12040917 kostenfrei https://doaj.org/article/ae13ada94a18427594f6b57ff96b0e71 kostenfrei https://www.mdpi.com/2075-4418/12/4/917 kostenfrei https://doaj.org/toc/2075-4418 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 4, p 917 |
allfieldsGer |
10.3390/diagnostics12040917 doi (DE-627)DOAJ087162555 (DE-599)DOAJae13ada94a18427594f6b57ff96b0e71 DE-627 ger DE-627 rakwb eng R5-920 Michelle Viscaino verfasserin aut Color Dependence Analysis in a CNN-Based Computer-Aided Diagnosis System for Middle and External Ear Diseases 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Artificial intelligence-assisted otologic diagnosis has been of growing interest in the scientific community, where middle and external ear disorders are the most frequent diseases in daily ENT practice. There are some efforts focused on reducing medical errors and enhancing physician capabilities using conventional artificial vision systems. However, approaches with multispectral analysis have not yet been addressed. Tissues of the tympanic membrane possess optical properties that define their characteristics in specific light spectra. This work explores color wavelengths dependence in a model that classifies four middle and external ear conditions: normal, chronic otitis media, otitis media with effusion, and earwax plug. The model is constructed under a computer-aided diagnosis system that uses a convolutional neural network architecture. We trained several models using different single-channel images by taking each color wavelength separately. The results showed that a single green channel model achieves the best overall performance in terms of accuracy (92%), sensitivity (85%), specificity (95%), precision (86%), and F1-score (85%). Our findings can be a suitable alternative for artificial intelligence diagnosis systems compared to the 50% of overall misdiagnosis of a non-specialist physician. otology artificial intelligence middle and external ear deep learning convolutional neural network Medicine (General) Matias Talamilla verfasserin aut Juan Cristóbal Maass verfasserin aut Pablo Henríquez verfasserin aut Paul H. Délano verfasserin aut Cecilia Auat Cheein verfasserin aut Fernando Auat Cheein verfasserin aut In Diagnostics MDPI AG, 2012 12(2022), 4, p 917 (DE-627)718627814 (DE-600)2662336-5 20754418 nnns volume:12 year:2022 number:4, p 917 https://doi.org/10.3390/diagnostics12040917 kostenfrei https://doaj.org/article/ae13ada94a18427594f6b57ff96b0e71 kostenfrei https://www.mdpi.com/2075-4418/12/4/917 kostenfrei https://doaj.org/toc/2075-4418 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 4, p 917 |
allfieldsSound |
10.3390/diagnostics12040917 doi (DE-627)DOAJ087162555 (DE-599)DOAJae13ada94a18427594f6b57ff96b0e71 DE-627 ger DE-627 rakwb eng R5-920 Michelle Viscaino verfasserin aut Color Dependence Analysis in a CNN-Based Computer-Aided Diagnosis System for Middle and External Ear Diseases 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Artificial intelligence-assisted otologic diagnosis has been of growing interest in the scientific community, where middle and external ear disorders are the most frequent diseases in daily ENT practice. There are some efforts focused on reducing medical errors and enhancing physician capabilities using conventional artificial vision systems. However, approaches with multispectral analysis have not yet been addressed. Tissues of the tympanic membrane possess optical properties that define their characteristics in specific light spectra. This work explores color wavelengths dependence in a model that classifies four middle and external ear conditions: normal, chronic otitis media, otitis media with effusion, and earwax plug. The model is constructed under a computer-aided diagnosis system that uses a convolutional neural network architecture. We trained several models using different single-channel images by taking each color wavelength separately. The results showed that a single green channel model achieves the best overall performance in terms of accuracy (92%), sensitivity (85%), specificity (95%), precision (86%), and F1-score (85%). Our findings can be a suitable alternative for artificial intelligence diagnosis systems compared to the 50% of overall misdiagnosis of a non-specialist physician. otology artificial intelligence middle and external ear deep learning convolutional neural network Medicine (General) Matias Talamilla verfasserin aut Juan Cristóbal Maass verfasserin aut Pablo Henríquez verfasserin aut Paul H. Délano verfasserin aut Cecilia Auat Cheein verfasserin aut Fernando Auat Cheein verfasserin aut In Diagnostics MDPI AG, 2012 12(2022), 4, p 917 (DE-627)718627814 (DE-600)2662336-5 20754418 nnns volume:12 year:2022 number:4, p 917 https://doi.org/10.3390/diagnostics12040917 kostenfrei https://doaj.org/article/ae13ada94a18427594f6b57ff96b0e71 kostenfrei https://www.mdpi.com/2075-4418/12/4/917 kostenfrei https://doaj.org/toc/2075-4418 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 4, p 917 |
language |
English |
source |
In Diagnostics 12(2022), 4, p 917 volume:12 year:2022 number:4, p 917 |
sourceStr |
In Diagnostics 12(2022), 4, p 917 volume:12 year:2022 number:4, p 917 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
otology artificial intelligence middle and external ear deep learning convolutional neural network Medicine (General) |
isfreeaccess_bool |
true |
container_title |
Diagnostics |
authorswithroles_txt_mv |
Michelle Viscaino @@aut@@ Matias Talamilla @@aut@@ Juan Cristóbal Maass @@aut@@ Pablo Henríquez @@aut@@ Paul H. Délano @@aut@@ Cecilia Auat Cheein @@aut@@ Fernando Auat Cheein @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
718627814 |
id |
DOAJ087162555 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ087162555</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414114921.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/diagnostics12040917</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ087162555</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJae13ada94a18427594f6b57ff96b0e71</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">R5-920</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Michelle Viscaino</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Color Dependence Analysis in a CNN-Based Computer-Aided Diagnosis System for Middle and External Ear Diseases</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Artificial intelligence-assisted otologic diagnosis has been of growing interest in the scientific community, where middle and external ear disorders are the most frequent diseases in daily ENT practice. There are some efforts focused on reducing medical errors and enhancing physician capabilities using conventional artificial vision systems. However, approaches with multispectral analysis have not yet been addressed. Tissues of the tympanic membrane possess optical properties that define their characteristics in specific light spectra. This work explores color wavelengths dependence in a model that classifies four middle and external ear conditions: normal, chronic otitis media, otitis media with effusion, and earwax plug. The model is constructed under a computer-aided diagnosis system that uses a convolutional neural network architecture. We trained several models using different single-channel images by taking each color wavelength separately. The results showed that a single green channel model achieves the best overall performance in terms of accuracy (92%), sensitivity (85%), specificity (95%), precision (86%), and F1-score (85%). Our findings can be a suitable alternative for artificial intelligence diagnosis systems compared to the 50% of overall misdiagnosis of a non-specialist physician.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">otology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">middle and external ear</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deep learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">convolutional neural network</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Matias Talamilla</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Juan Cristóbal Maass</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pablo Henríquez</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Paul H. Délano</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cecilia Auat Cheein</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fernando Auat Cheein</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Diagnostics</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">12(2022), 4, p 917</subfield><subfield code="w">(DE-627)718627814</subfield><subfield code="w">(DE-600)2662336-5</subfield><subfield code="x">20754418</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:4, p 917</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/diagnostics12040917</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ae13ada94a18427594f6b57ff96b0e71</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2075-4418/12/4/917</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2075-4418</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="e">4, p 917</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Michelle Viscaino |
spellingShingle |
Michelle Viscaino misc R5-920 misc otology misc artificial intelligence misc middle and external ear misc deep learning misc convolutional neural network misc Medicine (General) Color Dependence Analysis in a CNN-Based Computer-Aided Diagnosis System for Middle and External Ear Diseases |
authorStr |
Michelle Viscaino |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)718627814 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
R5-920 |
illustrated |
Not Illustrated |
issn |
20754418 |
topic_title |
R5-920 Color Dependence Analysis in a CNN-Based Computer-Aided Diagnosis System for Middle and External Ear Diseases otology artificial intelligence middle and external ear deep learning convolutional neural network |
topic |
misc R5-920 misc otology misc artificial intelligence misc middle and external ear misc deep learning misc convolutional neural network misc Medicine (General) |
topic_unstemmed |
misc R5-920 misc otology misc artificial intelligence misc middle and external ear misc deep learning misc convolutional neural network misc Medicine (General) |
topic_browse |
misc R5-920 misc otology misc artificial intelligence misc middle and external ear misc deep learning misc convolutional neural network misc Medicine (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Diagnostics |
hierarchy_parent_id |
718627814 |
hierarchy_top_title |
Diagnostics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)718627814 (DE-600)2662336-5 |
title |
Color Dependence Analysis in a CNN-Based Computer-Aided Diagnosis System for Middle and External Ear Diseases |
ctrlnum |
(DE-627)DOAJ087162555 (DE-599)DOAJae13ada94a18427594f6b57ff96b0e71 |
title_full |
Color Dependence Analysis in a CNN-Based Computer-Aided Diagnosis System for Middle and External Ear Diseases |
author_sort |
Michelle Viscaino |
journal |
Diagnostics |
journalStr |
Diagnostics |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Michelle Viscaino Matias Talamilla Juan Cristóbal Maass Pablo Henríquez Paul H. Délano Cecilia Auat Cheein Fernando Auat Cheein |
container_volume |
12 |
class |
R5-920 |
format_se |
Elektronische Aufsätze |
author-letter |
Michelle Viscaino |
doi_str_mv |
10.3390/diagnostics12040917 |
author2-role |
verfasserin |
title_sort |
color dependence analysis in a cnn-based computer-aided diagnosis system for middle and external ear diseases |
callnumber |
R5-920 |
title_auth |
Color Dependence Analysis in a CNN-Based Computer-Aided Diagnosis System for Middle and External Ear Diseases |
abstract |
Artificial intelligence-assisted otologic diagnosis has been of growing interest in the scientific community, where middle and external ear disorders are the most frequent diseases in daily ENT practice. There are some efforts focused on reducing medical errors and enhancing physician capabilities using conventional artificial vision systems. However, approaches with multispectral analysis have not yet been addressed. Tissues of the tympanic membrane possess optical properties that define their characteristics in specific light spectra. This work explores color wavelengths dependence in a model that classifies four middle and external ear conditions: normal, chronic otitis media, otitis media with effusion, and earwax plug. The model is constructed under a computer-aided diagnosis system that uses a convolutional neural network architecture. We trained several models using different single-channel images by taking each color wavelength separately. The results showed that a single green channel model achieves the best overall performance in terms of accuracy (92%), sensitivity (85%), specificity (95%), precision (86%), and F1-score (85%). Our findings can be a suitable alternative for artificial intelligence diagnosis systems compared to the 50% of overall misdiagnosis of a non-specialist physician. |
abstractGer |
Artificial intelligence-assisted otologic diagnosis has been of growing interest in the scientific community, where middle and external ear disorders are the most frequent diseases in daily ENT practice. There are some efforts focused on reducing medical errors and enhancing physician capabilities using conventional artificial vision systems. However, approaches with multispectral analysis have not yet been addressed. Tissues of the tympanic membrane possess optical properties that define their characteristics in specific light spectra. This work explores color wavelengths dependence in a model that classifies four middle and external ear conditions: normal, chronic otitis media, otitis media with effusion, and earwax plug. The model is constructed under a computer-aided diagnosis system that uses a convolutional neural network architecture. We trained several models using different single-channel images by taking each color wavelength separately. The results showed that a single green channel model achieves the best overall performance in terms of accuracy (92%), sensitivity (85%), specificity (95%), precision (86%), and F1-score (85%). Our findings can be a suitable alternative for artificial intelligence diagnosis systems compared to the 50% of overall misdiagnosis of a non-specialist physician. |
abstract_unstemmed |
Artificial intelligence-assisted otologic diagnosis has been of growing interest in the scientific community, where middle and external ear disorders are the most frequent diseases in daily ENT practice. There are some efforts focused on reducing medical errors and enhancing physician capabilities using conventional artificial vision systems. However, approaches with multispectral analysis have not yet been addressed. Tissues of the tympanic membrane possess optical properties that define their characteristics in specific light spectra. This work explores color wavelengths dependence in a model that classifies four middle and external ear conditions: normal, chronic otitis media, otitis media with effusion, and earwax plug. The model is constructed under a computer-aided diagnosis system that uses a convolutional neural network architecture. We trained several models using different single-channel images by taking each color wavelength separately. The results showed that a single green channel model achieves the best overall performance in terms of accuracy (92%), sensitivity (85%), specificity (95%), precision (86%), and F1-score (85%). Our findings can be a suitable alternative for artificial intelligence diagnosis systems compared to the 50% of overall misdiagnosis of a non-specialist physician. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
4, p 917 |
title_short |
Color Dependence Analysis in a CNN-Based Computer-Aided Diagnosis System for Middle and External Ear Diseases |
url |
https://doi.org/10.3390/diagnostics12040917 https://doaj.org/article/ae13ada94a18427594f6b57ff96b0e71 https://www.mdpi.com/2075-4418/12/4/917 https://doaj.org/toc/2075-4418 |
remote_bool |
true |
author2 |
Matias Talamilla Juan Cristóbal Maass Pablo Henríquez Paul H. Délano Cecilia Auat Cheein Fernando Auat Cheein |
author2Str |
Matias Talamilla Juan Cristóbal Maass Pablo Henríquez Paul H. Délano Cecilia Auat Cheein Fernando Auat Cheein |
ppnlink |
718627814 |
callnumber-subject |
R - General Medicine |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/diagnostics12040917 |
callnumber-a |
R5-920 |
up_date |
2024-07-04T00:32:18.432Z |
_version_ |
1803606439686569984 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ087162555</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414114921.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/diagnostics12040917</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ087162555</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJae13ada94a18427594f6b57ff96b0e71</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">R5-920</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Michelle Viscaino</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Color Dependence Analysis in a CNN-Based Computer-Aided Diagnosis System for Middle and External Ear Diseases</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Artificial intelligence-assisted otologic diagnosis has been of growing interest in the scientific community, where middle and external ear disorders are the most frequent diseases in daily ENT practice. There are some efforts focused on reducing medical errors and enhancing physician capabilities using conventional artificial vision systems. However, approaches with multispectral analysis have not yet been addressed. Tissues of the tympanic membrane possess optical properties that define their characteristics in specific light spectra. This work explores color wavelengths dependence in a model that classifies four middle and external ear conditions: normal, chronic otitis media, otitis media with effusion, and earwax plug. The model is constructed under a computer-aided diagnosis system that uses a convolutional neural network architecture. We trained several models using different single-channel images by taking each color wavelength separately. The results showed that a single green channel model achieves the best overall performance in terms of accuracy (92%), sensitivity (85%), specificity (95%), precision (86%), and F1-score (85%). Our findings can be a suitable alternative for artificial intelligence diagnosis systems compared to the 50% of overall misdiagnosis of a non-specialist physician.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">otology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">middle and external ear</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deep learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">convolutional neural network</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Matias Talamilla</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Juan Cristóbal Maass</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pablo Henríquez</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Paul H. Délano</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cecilia Auat Cheein</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fernando Auat Cheein</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Diagnostics</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">12(2022), 4, p 917</subfield><subfield code="w">(DE-627)718627814</subfield><subfield code="w">(DE-600)2662336-5</subfield><subfield code="x">20754418</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:4, p 917</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/diagnostics12040917</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ae13ada94a18427594f6b57ff96b0e71</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2075-4418/12/4/917</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2075-4418</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="e">4, p 917</subfield></datafield></record></collection>
|
score |
7.402135 |