Automatic Recognition of Faults in Mining Areas Based on Convolutional Neural Network
Tectonic interpretation is critical to a coal mine’s safe production, and fault interpretation is an essential component of seismic tectonic interpretation. With the increasing necessity for accuracy in fault interpretation in coal mines, it is increasingly challenging to achieve greater accuracy on...
Ausführliche Beschreibung
Autor*in: |
Guangui Zou [verfasserIn] Hui Liu [verfasserIn] Ke Ren [verfasserIn] Bowen Deng [verfasserIn] Jingwen Xue [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Energies - MDPI AG, 2008, 15(2022), 10, p 3758 |
---|---|
Übergeordnetes Werk: |
volume:15 ; year:2022 ; number:10, p 3758 |
Links: |
---|
DOI / URN: |
10.3390/en15103758 |
---|
Katalog-ID: |
DOAJ087165376 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ087165376 | ||
003 | DE-627 | ||
005 | 20240414221844.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/en15103758 |2 doi | |
035 | |a (DE-627)DOAJ087165376 | ||
035 | |a (DE-599)DOAJ6aa1fe464612421c8c90642abd6feaa5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Guangui Zou |e verfasserin |4 aut | |
245 | 1 | 0 | |a Automatic Recognition of Faults in Mining Areas Based on Convolutional Neural Network |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Tectonic interpretation is critical to a coal mine’s safe production, and fault interpretation is an essential component of seismic tectonic interpretation. With the increasing necessity for accuracy in fault interpretation in coal mines, it is increasingly challenging to achieve greater accuracy only through traditional fault interpretation. The convolutional neural network (CNN) is a machine learning method established in recent years and it has been widely applied in coal mine fault interpretation because of its powerful feature-learning and classification capabilities. To improve the accuracy and efficiency of fault interpretation in coal mines, an automatic seismic fault identification method based on the convolutional neural network has been developed. Taking a mining area in eastern Yunnan province as an example, the CNN model realized automatic identification of faults with eight seismic attributes as feature inputs, and the model-training parameters were optimized and compared. Ten faults in the area were selected to analyze the prediction effect, and a comparative experiment was done with model structure parameters and training sets. The experimental results indicate that the training parameters have a significant influence on the training time and testing accuracy of the model, while structural parameters and training sets affect the actual prediction effect of the model. By comparison, the fault results predicted by the convolutional neural network are in good agreement with the manual interpretation, and the accuracy of the model is more than 85%, which proves that this method has certain feasibility and provides a new way to shorten the fault interpretation period and improve the interpretation accuracy. | ||
650 | 4 | |a convolutional neural network | |
650 | 4 | |a fault interpretation | |
650 | 4 | |a model parameters | |
650 | 4 | |a training set | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
700 | 0 | |a Hui Liu |e verfasserin |4 aut | |
700 | 0 | |a Ke Ren |e verfasserin |4 aut | |
700 | 0 | |a Bowen Deng |e verfasserin |4 aut | |
700 | 0 | |a Jingwen Xue |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Energies |d MDPI AG, 2008 |g 15(2022), 10, p 3758 |w (DE-627)572083742 |w (DE-600)2437446-5 |x 19961073 |7 nnns |
773 | 1 | 8 | |g volume:15 |g year:2022 |g number:10, p 3758 |
856 | 4 | 0 | |u https://doi.org/10.3390/en15103758 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/6aa1fe464612421c8c90642abd6feaa5 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1996-1073/15/10/3758 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1996-1073 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 15 |j 2022 |e 10, p 3758 |
author_variant |
g z gz h l hl k r kr b d bd j x jx |
---|---|
matchkey_str |
article:19961073:2022----::uoaircgiinfalsniigrabsdnovl |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.3390/en15103758 doi (DE-627)DOAJ087165376 (DE-599)DOAJ6aa1fe464612421c8c90642abd6feaa5 DE-627 ger DE-627 rakwb eng Guangui Zou verfasserin aut Automatic Recognition of Faults in Mining Areas Based on Convolutional Neural Network 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Tectonic interpretation is critical to a coal mine’s safe production, and fault interpretation is an essential component of seismic tectonic interpretation. With the increasing necessity for accuracy in fault interpretation in coal mines, it is increasingly challenging to achieve greater accuracy only through traditional fault interpretation. The convolutional neural network (CNN) is a machine learning method established in recent years and it has been widely applied in coal mine fault interpretation because of its powerful feature-learning and classification capabilities. To improve the accuracy and efficiency of fault interpretation in coal mines, an automatic seismic fault identification method based on the convolutional neural network has been developed. Taking a mining area in eastern Yunnan province as an example, the CNN model realized automatic identification of faults with eight seismic attributes as feature inputs, and the model-training parameters were optimized and compared. Ten faults in the area were selected to analyze the prediction effect, and a comparative experiment was done with model structure parameters and training sets. The experimental results indicate that the training parameters have a significant influence on the training time and testing accuracy of the model, while structural parameters and training sets affect the actual prediction effect of the model. By comparison, the fault results predicted by the convolutional neural network are in good agreement with the manual interpretation, and the accuracy of the model is more than 85%, which proves that this method has certain feasibility and provides a new way to shorten the fault interpretation period and improve the interpretation accuracy. convolutional neural network fault interpretation model parameters training set Technology T Hui Liu verfasserin aut Ke Ren verfasserin aut Bowen Deng verfasserin aut Jingwen Xue verfasserin aut In Energies MDPI AG, 2008 15(2022), 10, p 3758 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:15 year:2022 number:10, p 3758 https://doi.org/10.3390/en15103758 kostenfrei https://doaj.org/article/6aa1fe464612421c8c90642abd6feaa5 kostenfrei https://www.mdpi.com/1996-1073/15/10/3758 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 10, p 3758 |
spelling |
10.3390/en15103758 doi (DE-627)DOAJ087165376 (DE-599)DOAJ6aa1fe464612421c8c90642abd6feaa5 DE-627 ger DE-627 rakwb eng Guangui Zou verfasserin aut Automatic Recognition of Faults in Mining Areas Based on Convolutional Neural Network 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Tectonic interpretation is critical to a coal mine’s safe production, and fault interpretation is an essential component of seismic tectonic interpretation. With the increasing necessity for accuracy in fault interpretation in coal mines, it is increasingly challenging to achieve greater accuracy only through traditional fault interpretation. The convolutional neural network (CNN) is a machine learning method established in recent years and it has been widely applied in coal mine fault interpretation because of its powerful feature-learning and classification capabilities. To improve the accuracy and efficiency of fault interpretation in coal mines, an automatic seismic fault identification method based on the convolutional neural network has been developed. Taking a mining area in eastern Yunnan province as an example, the CNN model realized automatic identification of faults with eight seismic attributes as feature inputs, and the model-training parameters were optimized and compared. Ten faults in the area were selected to analyze the prediction effect, and a comparative experiment was done with model structure parameters and training sets. The experimental results indicate that the training parameters have a significant influence on the training time and testing accuracy of the model, while structural parameters and training sets affect the actual prediction effect of the model. By comparison, the fault results predicted by the convolutional neural network are in good agreement with the manual interpretation, and the accuracy of the model is more than 85%, which proves that this method has certain feasibility and provides a new way to shorten the fault interpretation period and improve the interpretation accuracy. convolutional neural network fault interpretation model parameters training set Technology T Hui Liu verfasserin aut Ke Ren verfasserin aut Bowen Deng verfasserin aut Jingwen Xue verfasserin aut In Energies MDPI AG, 2008 15(2022), 10, p 3758 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:15 year:2022 number:10, p 3758 https://doi.org/10.3390/en15103758 kostenfrei https://doaj.org/article/6aa1fe464612421c8c90642abd6feaa5 kostenfrei https://www.mdpi.com/1996-1073/15/10/3758 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 10, p 3758 |
allfields_unstemmed |
10.3390/en15103758 doi (DE-627)DOAJ087165376 (DE-599)DOAJ6aa1fe464612421c8c90642abd6feaa5 DE-627 ger DE-627 rakwb eng Guangui Zou verfasserin aut Automatic Recognition of Faults in Mining Areas Based on Convolutional Neural Network 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Tectonic interpretation is critical to a coal mine’s safe production, and fault interpretation is an essential component of seismic tectonic interpretation. With the increasing necessity for accuracy in fault interpretation in coal mines, it is increasingly challenging to achieve greater accuracy only through traditional fault interpretation. The convolutional neural network (CNN) is a machine learning method established in recent years and it has been widely applied in coal mine fault interpretation because of its powerful feature-learning and classification capabilities. To improve the accuracy and efficiency of fault interpretation in coal mines, an automatic seismic fault identification method based on the convolutional neural network has been developed. Taking a mining area in eastern Yunnan province as an example, the CNN model realized automatic identification of faults with eight seismic attributes as feature inputs, and the model-training parameters were optimized and compared. Ten faults in the area were selected to analyze the prediction effect, and a comparative experiment was done with model structure parameters and training sets. The experimental results indicate that the training parameters have a significant influence on the training time and testing accuracy of the model, while structural parameters and training sets affect the actual prediction effect of the model. By comparison, the fault results predicted by the convolutional neural network are in good agreement with the manual interpretation, and the accuracy of the model is more than 85%, which proves that this method has certain feasibility and provides a new way to shorten the fault interpretation period and improve the interpretation accuracy. convolutional neural network fault interpretation model parameters training set Technology T Hui Liu verfasserin aut Ke Ren verfasserin aut Bowen Deng verfasserin aut Jingwen Xue verfasserin aut In Energies MDPI AG, 2008 15(2022), 10, p 3758 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:15 year:2022 number:10, p 3758 https://doi.org/10.3390/en15103758 kostenfrei https://doaj.org/article/6aa1fe464612421c8c90642abd6feaa5 kostenfrei https://www.mdpi.com/1996-1073/15/10/3758 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 10, p 3758 |
allfieldsGer |
10.3390/en15103758 doi (DE-627)DOAJ087165376 (DE-599)DOAJ6aa1fe464612421c8c90642abd6feaa5 DE-627 ger DE-627 rakwb eng Guangui Zou verfasserin aut Automatic Recognition of Faults in Mining Areas Based on Convolutional Neural Network 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Tectonic interpretation is critical to a coal mine’s safe production, and fault interpretation is an essential component of seismic tectonic interpretation. With the increasing necessity for accuracy in fault interpretation in coal mines, it is increasingly challenging to achieve greater accuracy only through traditional fault interpretation. The convolutional neural network (CNN) is a machine learning method established in recent years and it has been widely applied in coal mine fault interpretation because of its powerful feature-learning and classification capabilities. To improve the accuracy and efficiency of fault interpretation in coal mines, an automatic seismic fault identification method based on the convolutional neural network has been developed. Taking a mining area in eastern Yunnan province as an example, the CNN model realized automatic identification of faults with eight seismic attributes as feature inputs, and the model-training parameters were optimized and compared. Ten faults in the area were selected to analyze the prediction effect, and a comparative experiment was done with model structure parameters and training sets. The experimental results indicate that the training parameters have a significant influence on the training time and testing accuracy of the model, while structural parameters and training sets affect the actual prediction effect of the model. By comparison, the fault results predicted by the convolutional neural network are in good agreement with the manual interpretation, and the accuracy of the model is more than 85%, which proves that this method has certain feasibility and provides a new way to shorten the fault interpretation period and improve the interpretation accuracy. convolutional neural network fault interpretation model parameters training set Technology T Hui Liu verfasserin aut Ke Ren verfasserin aut Bowen Deng verfasserin aut Jingwen Xue verfasserin aut In Energies MDPI AG, 2008 15(2022), 10, p 3758 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:15 year:2022 number:10, p 3758 https://doi.org/10.3390/en15103758 kostenfrei https://doaj.org/article/6aa1fe464612421c8c90642abd6feaa5 kostenfrei https://www.mdpi.com/1996-1073/15/10/3758 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 10, p 3758 |
allfieldsSound |
10.3390/en15103758 doi (DE-627)DOAJ087165376 (DE-599)DOAJ6aa1fe464612421c8c90642abd6feaa5 DE-627 ger DE-627 rakwb eng Guangui Zou verfasserin aut Automatic Recognition of Faults in Mining Areas Based on Convolutional Neural Network 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Tectonic interpretation is critical to a coal mine’s safe production, and fault interpretation is an essential component of seismic tectonic interpretation. With the increasing necessity for accuracy in fault interpretation in coal mines, it is increasingly challenging to achieve greater accuracy only through traditional fault interpretation. The convolutional neural network (CNN) is a machine learning method established in recent years and it has been widely applied in coal mine fault interpretation because of its powerful feature-learning and classification capabilities. To improve the accuracy and efficiency of fault interpretation in coal mines, an automatic seismic fault identification method based on the convolutional neural network has been developed. Taking a mining area in eastern Yunnan province as an example, the CNN model realized automatic identification of faults with eight seismic attributes as feature inputs, and the model-training parameters were optimized and compared. Ten faults in the area were selected to analyze the prediction effect, and a comparative experiment was done with model structure parameters and training sets. The experimental results indicate that the training parameters have a significant influence on the training time and testing accuracy of the model, while structural parameters and training sets affect the actual prediction effect of the model. By comparison, the fault results predicted by the convolutional neural network are in good agreement with the manual interpretation, and the accuracy of the model is more than 85%, which proves that this method has certain feasibility and provides a new way to shorten the fault interpretation period and improve the interpretation accuracy. convolutional neural network fault interpretation model parameters training set Technology T Hui Liu verfasserin aut Ke Ren verfasserin aut Bowen Deng verfasserin aut Jingwen Xue verfasserin aut In Energies MDPI AG, 2008 15(2022), 10, p 3758 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:15 year:2022 number:10, p 3758 https://doi.org/10.3390/en15103758 kostenfrei https://doaj.org/article/6aa1fe464612421c8c90642abd6feaa5 kostenfrei https://www.mdpi.com/1996-1073/15/10/3758 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 10, p 3758 |
language |
English |
source |
In Energies 15(2022), 10, p 3758 volume:15 year:2022 number:10, p 3758 |
sourceStr |
In Energies 15(2022), 10, p 3758 volume:15 year:2022 number:10, p 3758 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
convolutional neural network fault interpretation model parameters training set Technology T |
isfreeaccess_bool |
true |
container_title |
Energies |
authorswithroles_txt_mv |
Guangui Zou @@aut@@ Hui Liu @@aut@@ Ke Ren @@aut@@ Bowen Deng @@aut@@ Jingwen Xue @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
572083742 |
id |
DOAJ087165376 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ087165376</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414221844.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/en15103758</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ087165376</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6aa1fe464612421c8c90642abd6feaa5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Guangui Zou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Automatic Recognition of Faults in Mining Areas Based on Convolutional Neural Network</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Tectonic interpretation is critical to a coal mine’s safe production, and fault interpretation is an essential component of seismic tectonic interpretation. With the increasing necessity for accuracy in fault interpretation in coal mines, it is increasingly challenging to achieve greater accuracy only through traditional fault interpretation. The convolutional neural network (CNN) is a machine learning method established in recent years and it has been widely applied in coal mine fault interpretation because of its powerful feature-learning and classification capabilities. To improve the accuracy and efficiency of fault interpretation in coal mines, an automatic seismic fault identification method based on the convolutional neural network has been developed. Taking a mining area in eastern Yunnan province as an example, the CNN model realized automatic identification of faults with eight seismic attributes as feature inputs, and the model-training parameters were optimized and compared. Ten faults in the area were selected to analyze the prediction effect, and a comparative experiment was done with model structure parameters and training sets. The experimental results indicate that the training parameters have a significant influence on the training time and testing accuracy of the model, while structural parameters and training sets affect the actual prediction effect of the model. By comparison, the fault results predicted by the convolutional neural network are in good agreement with the manual interpretation, and the accuracy of the model is more than 85%, which proves that this method has certain feasibility and provides a new way to shorten the fault interpretation period and improve the interpretation accuracy.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">convolutional neural network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fault interpretation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">model parameters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">training set</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hui Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ke Ren</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bowen Deng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jingwen Xue</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Energies</subfield><subfield code="d">MDPI AG, 2008</subfield><subfield code="g">15(2022), 10, p 3758</subfield><subfield code="w">(DE-627)572083742</subfield><subfield code="w">(DE-600)2437446-5</subfield><subfield code="x">19961073</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:10, p 3758</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/en15103758</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6aa1fe464612421c8c90642abd6feaa5</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1996-1073/15/10/3758</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1996-1073</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2022</subfield><subfield code="e">10, p 3758</subfield></datafield></record></collection>
|
author |
Guangui Zou |
spellingShingle |
Guangui Zou misc convolutional neural network misc fault interpretation misc model parameters misc training set misc Technology misc T Automatic Recognition of Faults in Mining Areas Based on Convolutional Neural Network |
authorStr |
Guangui Zou |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)572083742 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
19961073 |
topic_title |
Automatic Recognition of Faults in Mining Areas Based on Convolutional Neural Network convolutional neural network fault interpretation model parameters training set |
topic |
misc convolutional neural network misc fault interpretation misc model parameters misc training set misc Technology misc T |
topic_unstemmed |
misc convolutional neural network misc fault interpretation misc model parameters misc training set misc Technology misc T |
topic_browse |
misc convolutional neural network misc fault interpretation misc model parameters misc training set misc Technology misc T |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Energies |
hierarchy_parent_id |
572083742 |
hierarchy_top_title |
Energies |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)572083742 (DE-600)2437446-5 |
title |
Automatic Recognition of Faults in Mining Areas Based on Convolutional Neural Network |
ctrlnum |
(DE-627)DOAJ087165376 (DE-599)DOAJ6aa1fe464612421c8c90642abd6feaa5 |
title_full |
Automatic Recognition of Faults in Mining Areas Based on Convolutional Neural Network |
author_sort |
Guangui Zou |
journal |
Energies |
journalStr |
Energies |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Guangui Zou Hui Liu Ke Ren Bowen Deng Jingwen Xue |
container_volume |
15 |
format_se |
Elektronische Aufsätze |
author-letter |
Guangui Zou |
doi_str_mv |
10.3390/en15103758 |
author2-role |
verfasserin |
title_sort |
automatic recognition of faults in mining areas based on convolutional neural network |
title_auth |
Automatic Recognition of Faults in Mining Areas Based on Convolutional Neural Network |
abstract |
Tectonic interpretation is critical to a coal mine’s safe production, and fault interpretation is an essential component of seismic tectonic interpretation. With the increasing necessity for accuracy in fault interpretation in coal mines, it is increasingly challenging to achieve greater accuracy only through traditional fault interpretation. The convolutional neural network (CNN) is a machine learning method established in recent years and it has been widely applied in coal mine fault interpretation because of its powerful feature-learning and classification capabilities. To improve the accuracy and efficiency of fault interpretation in coal mines, an automatic seismic fault identification method based on the convolutional neural network has been developed. Taking a mining area in eastern Yunnan province as an example, the CNN model realized automatic identification of faults with eight seismic attributes as feature inputs, and the model-training parameters were optimized and compared. Ten faults in the area were selected to analyze the prediction effect, and a comparative experiment was done with model structure parameters and training sets. The experimental results indicate that the training parameters have a significant influence on the training time and testing accuracy of the model, while structural parameters and training sets affect the actual prediction effect of the model. By comparison, the fault results predicted by the convolutional neural network are in good agreement with the manual interpretation, and the accuracy of the model is more than 85%, which proves that this method has certain feasibility and provides a new way to shorten the fault interpretation period and improve the interpretation accuracy. |
abstractGer |
Tectonic interpretation is critical to a coal mine’s safe production, and fault interpretation is an essential component of seismic tectonic interpretation. With the increasing necessity for accuracy in fault interpretation in coal mines, it is increasingly challenging to achieve greater accuracy only through traditional fault interpretation. The convolutional neural network (CNN) is a machine learning method established in recent years and it has been widely applied in coal mine fault interpretation because of its powerful feature-learning and classification capabilities. To improve the accuracy and efficiency of fault interpretation in coal mines, an automatic seismic fault identification method based on the convolutional neural network has been developed. Taking a mining area in eastern Yunnan province as an example, the CNN model realized automatic identification of faults with eight seismic attributes as feature inputs, and the model-training parameters were optimized and compared. Ten faults in the area were selected to analyze the prediction effect, and a comparative experiment was done with model structure parameters and training sets. The experimental results indicate that the training parameters have a significant influence on the training time and testing accuracy of the model, while structural parameters and training sets affect the actual prediction effect of the model. By comparison, the fault results predicted by the convolutional neural network are in good agreement with the manual interpretation, and the accuracy of the model is more than 85%, which proves that this method has certain feasibility and provides a new way to shorten the fault interpretation period and improve the interpretation accuracy. |
abstract_unstemmed |
Tectonic interpretation is critical to a coal mine’s safe production, and fault interpretation is an essential component of seismic tectonic interpretation. With the increasing necessity for accuracy in fault interpretation in coal mines, it is increasingly challenging to achieve greater accuracy only through traditional fault interpretation. The convolutional neural network (CNN) is a machine learning method established in recent years and it has been widely applied in coal mine fault interpretation because of its powerful feature-learning and classification capabilities. To improve the accuracy and efficiency of fault interpretation in coal mines, an automatic seismic fault identification method based on the convolutional neural network has been developed. Taking a mining area in eastern Yunnan province as an example, the CNN model realized automatic identification of faults with eight seismic attributes as feature inputs, and the model-training parameters were optimized and compared. Ten faults in the area were selected to analyze the prediction effect, and a comparative experiment was done with model structure parameters and training sets. The experimental results indicate that the training parameters have a significant influence on the training time and testing accuracy of the model, while structural parameters and training sets affect the actual prediction effect of the model. By comparison, the fault results predicted by the convolutional neural network are in good agreement with the manual interpretation, and the accuracy of the model is more than 85%, which proves that this method has certain feasibility and provides a new way to shorten the fault interpretation period and improve the interpretation accuracy. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
10, p 3758 |
title_short |
Automatic Recognition of Faults in Mining Areas Based on Convolutional Neural Network |
url |
https://doi.org/10.3390/en15103758 https://doaj.org/article/6aa1fe464612421c8c90642abd6feaa5 https://www.mdpi.com/1996-1073/15/10/3758 https://doaj.org/toc/1996-1073 |
remote_bool |
true |
author2 |
Hui Liu Ke Ren Bowen Deng Jingwen Xue |
author2Str |
Hui Liu Ke Ren Bowen Deng Jingwen Xue |
ppnlink |
572083742 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/en15103758 |
up_date |
2024-07-04T00:32:58.089Z |
_version_ |
1803606481270996992 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ087165376</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414221844.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/en15103758</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ087165376</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6aa1fe464612421c8c90642abd6feaa5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Guangui Zou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Automatic Recognition of Faults in Mining Areas Based on Convolutional Neural Network</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Tectonic interpretation is critical to a coal mine’s safe production, and fault interpretation is an essential component of seismic tectonic interpretation. With the increasing necessity for accuracy in fault interpretation in coal mines, it is increasingly challenging to achieve greater accuracy only through traditional fault interpretation. The convolutional neural network (CNN) is a machine learning method established in recent years and it has been widely applied in coal mine fault interpretation because of its powerful feature-learning and classification capabilities. To improve the accuracy and efficiency of fault interpretation in coal mines, an automatic seismic fault identification method based on the convolutional neural network has been developed. Taking a mining area in eastern Yunnan province as an example, the CNN model realized automatic identification of faults with eight seismic attributes as feature inputs, and the model-training parameters were optimized and compared. Ten faults in the area were selected to analyze the prediction effect, and a comparative experiment was done with model structure parameters and training sets. The experimental results indicate that the training parameters have a significant influence on the training time and testing accuracy of the model, while structural parameters and training sets affect the actual prediction effect of the model. By comparison, the fault results predicted by the convolutional neural network are in good agreement with the manual interpretation, and the accuracy of the model is more than 85%, which proves that this method has certain feasibility and provides a new way to shorten the fault interpretation period and improve the interpretation accuracy.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">convolutional neural network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fault interpretation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">model parameters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">training set</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hui Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ke Ren</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bowen Deng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jingwen Xue</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Energies</subfield><subfield code="d">MDPI AG, 2008</subfield><subfield code="g">15(2022), 10, p 3758</subfield><subfield code="w">(DE-627)572083742</subfield><subfield code="w">(DE-600)2437446-5</subfield><subfield code="x">19961073</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:10, p 3758</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/en15103758</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6aa1fe464612421c8c90642abd6feaa5</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1996-1073/15/10/3758</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1996-1073</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2022</subfield><subfield code="e">10, p 3758</subfield></datafield></record></collection>
|
score |
7.400132 |