Adaptive Hierarchical Density-Based Spatial Clustering Algorithm for Streaming Applications
Clustering algorithms are commonly used in the mining of static data. Some examples include data mining for relationships between variables and data segmentation into components. The use of a clustering algorithm for real-time data is much less common. This is due to a variety of factors, including...
Ausführliche Beschreibung
Autor*in: |
Darveen Vijayan [verfasserIn] Izzatdin Aziz [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Telecom - MDPI AG, 2020, 4(2022), 1, Seite 14 |
---|---|
Übergeordnetes Werk: |
volume:4 ; year:2022 ; number:1 ; pages:14 |
Links: |
---|
DOI / URN: |
10.3390/telecom4010001 |
---|
Katalog-ID: |
DOAJ087225484 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ087225484 | ||
003 | DE-627 | ||
005 | 20230503021123.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230331s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/telecom4010001 |2 doi | |
035 | |a (DE-627)DOAJ087225484 | ||
035 | |a (DE-599)DOAJ583329ee1d504d4c84ceaf92315916ea | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK7885-7895 | |
050 | 0 | |a QA75.5-76.95 | |
100 | 0 | |a Darveen Vijayan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Adaptive Hierarchical Density-Based Spatial Clustering Algorithm for Streaming Applications |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Clustering algorithms are commonly used in the mining of static data. Some examples include data mining for relationships between variables and data segmentation into components. The use of a clustering algorithm for real-time data is much less common. This is due to a variety of factors, including the algorithm’s high computation cost. In other words, the algorithm may be impractical for real-time or near-real-time implementation. Furthermore, clustering algorithms necessitate the tuning of hyperparameters in order to fit the dataset. In this paper, we approach clustering moving points using our proposed Adaptive Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) algorithm, which is an implementation of an adaptive approach to building the minimum spanning tree. We switch between the Boruvka and the Prim algorithms as a means to build the minimum spanning tree, which is one of the most expensive components of the HDBSCAN. The Adaptive HDBSCAN yields an improvement in execution time by 5.31% without depreciating the accuracy of the algorithm. The motivation for this research stems from the desire to cluster moving points on video. Cameras are used to monitor crowds and improve public safety. We can identify potential risks due to overcrowding and movements of groups of people by understanding the movements and flow of crowds. Surveillance equipment combined with deep learning algorithms can assist in addressing this issue by detecting people or objects, and the Adaptive HDBSCAN is used to cluster these items in real time to generate information about the clusters. | ||
650 | 4 | |a moving points | |
650 | 4 | |a HDBSCAN | |
650 | 4 | |a crowd clustering | |
650 | 4 | |a unsupervised learning | |
653 | 0 | |a Computer engineering. Computer hardware | |
653 | 0 | |a Electronic computers. Computer science | |
700 | 0 | |a Izzatdin Aziz |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Telecom |d MDPI AG, 2020 |g 4(2022), 1, Seite 14 |w (DE-627)1696034000 |x 26734001 |7 nnns |
773 | 1 | 8 | |g volume:4 |g year:2022 |g number:1 |g pages:14 |
856 | 4 | 0 | |u https://doi.org/10.3390/telecom4010001 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/583329ee1d504d4c84ceaf92315916ea |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2673-4001/4/1/1 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2673-4001 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 4 |j 2022 |e 1 |h 14 |
author_variant |
d v dv i a ia |
---|---|
matchkey_str |
article:26734001:2022----::dpieirrhclestbsdptacutrnagrtmo |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TK |
publishDate |
2022 |
allfields |
10.3390/telecom4010001 doi (DE-627)DOAJ087225484 (DE-599)DOAJ583329ee1d504d4c84ceaf92315916ea DE-627 ger DE-627 rakwb eng TK7885-7895 QA75.5-76.95 Darveen Vijayan verfasserin aut Adaptive Hierarchical Density-Based Spatial Clustering Algorithm for Streaming Applications 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Clustering algorithms are commonly used in the mining of static data. Some examples include data mining for relationships between variables and data segmentation into components. The use of a clustering algorithm for real-time data is much less common. This is due to a variety of factors, including the algorithm’s high computation cost. In other words, the algorithm may be impractical for real-time or near-real-time implementation. Furthermore, clustering algorithms necessitate the tuning of hyperparameters in order to fit the dataset. In this paper, we approach clustering moving points using our proposed Adaptive Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) algorithm, which is an implementation of an adaptive approach to building the minimum spanning tree. We switch between the Boruvka and the Prim algorithms as a means to build the minimum spanning tree, which is one of the most expensive components of the HDBSCAN. The Adaptive HDBSCAN yields an improvement in execution time by 5.31% without depreciating the accuracy of the algorithm. The motivation for this research stems from the desire to cluster moving points on video. Cameras are used to monitor crowds and improve public safety. We can identify potential risks due to overcrowding and movements of groups of people by understanding the movements and flow of crowds. Surveillance equipment combined with deep learning algorithms can assist in addressing this issue by detecting people or objects, and the Adaptive HDBSCAN is used to cluster these items in real time to generate information about the clusters. moving points HDBSCAN crowd clustering unsupervised learning Computer engineering. Computer hardware Electronic computers. Computer science Izzatdin Aziz verfasserin aut In Telecom MDPI AG, 2020 4(2022), 1, Seite 14 (DE-627)1696034000 26734001 nnns volume:4 year:2022 number:1 pages:14 https://doi.org/10.3390/telecom4010001 kostenfrei https://doaj.org/article/583329ee1d504d4c84ceaf92315916ea kostenfrei https://www.mdpi.com/2673-4001/4/1/1 kostenfrei https://doaj.org/toc/2673-4001 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2022 1 14 |
spelling |
10.3390/telecom4010001 doi (DE-627)DOAJ087225484 (DE-599)DOAJ583329ee1d504d4c84ceaf92315916ea DE-627 ger DE-627 rakwb eng TK7885-7895 QA75.5-76.95 Darveen Vijayan verfasserin aut Adaptive Hierarchical Density-Based Spatial Clustering Algorithm for Streaming Applications 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Clustering algorithms are commonly used in the mining of static data. Some examples include data mining for relationships between variables and data segmentation into components. The use of a clustering algorithm for real-time data is much less common. This is due to a variety of factors, including the algorithm’s high computation cost. In other words, the algorithm may be impractical for real-time or near-real-time implementation. Furthermore, clustering algorithms necessitate the tuning of hyperparameters in order to fit the dataset. In this paper, we approach clustering moving points using our proposed Adaptive Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) algorithm, which is an implementation of an adaptive approach to building the minimum spanning tree. We switch between the Boruvka and the Prim algorithms as a means to build the minimum spanning tree, which is one of the most expensive components of the HDBSCAN. The Adaptive HDBSCAN yields an improvement in execution time by 5.31% without depreciating the accuracy of the algorithm. The motivation for this research stems from the desire to cluster moving points on video. Cameras are used to monitor crowds and improve public safety. We can identify potential risks due to overcrowding and movements of groups of people by understanding the movements and flow of crowds. Surveillance equipment combined with deep learning algorithms can assist in addressing this issue by detecting people or objects, and the Adaptive HDBSCAN is used to cluster these items in real time to generate information about the clusters. moving points HDBSCAN crowd clustering unsupervised learning Computer engineering. Computer hardware Electronic computers. Computer science Izzatdin Aziz verfasserin aut In Telecom MDPI AG, 2020 4(2022), 1, Seite 14 (DE-627)1696034000 26734001 nnns volume:4 year:2022 number:1 pages:14 https://doi.org/10.3390/telecom4010001 kostenfrei https://doaj.org/article/583329ee1d504d4c84ceaf92315916ea kostenfrei https://www.mdpi.com/2673-4001/4/1/1 kostenfrei https://doaj.org/toc/2673-4001 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2022 1 14 |
allfields_unstemmed |
10.3390/telecom4010001 doi (DE-627)DOAJ087225484 (DE-599)DOAJ583329ee1d504d4c84ceaf92315916ea DE-627 ger DE-627 rakwb eng TK7885-7895 QA75.5-76.95 Darveen Vijayan verfasserin aut Adaptive Hierarchical Density-Based Spatial Clustering Algorithm for Streaming Applications 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Clustering algorithms are commonly used in the mining of static data. Some examples include data mining for relationships between variables and data segmentation into components. The use of a clustering algorithm for real-time data is much less common. This is due to a variety of factors, including the algorithm’s high computation cost. In other words, the algorithm may be impractical for real-time or near-real-time implementation. Furthermore, clustering algorithms necessitate the tuning of hyperparameters in order to fit the dataset. In this paper, we approach clustering moving points using our proposed Adaptive Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) algorithm, which is an implementation of an adaptive approach to building the minimum spanning tree. We switch between the Boruvka and the Prim algorithms as a means to build the minimum spanning tree, which is one of the most expensive components of the HDBSCAN. The Adaptive HDBSCAN yields an improvement in execution time by 5.31% without depreciating the accuracy of the algorithm. The motivation for this research stems from the desire to cluster moving points on video. Cameras are used to monitor crowds and improve public safety. We can identify potential risks due to overcrowding and movements of groups of people by understanding the movements and flow of crowds. Surveillance equipment combined with deep learning algorithms can assist in addressing this issue by detecting people or objects, and the Adaptive HDBSCAN is used to cluster these items in real time to generate information about the clusters. moving points HDBSCAN crowd clustering unsupervised learning Computer engineering. Computer hardware Electronic computers. Computer science Izzatdin Aziz verfasserin aut In Telecom MDPI AG, 2020 4(2022), 1, Seite 14 (DE-627)1696034000 26734001 nnns volume:4 year:2022 number:1 pages:14 https://doi.org/10.3390/telecom4010001 kostenfrei https://doaj.org/article/583329ee1d504d4c84ceaf92315916ea kostenfrei https://www.mdpi.com/2673-4001/4/1/1 kostenfrei https://doaj.org/toc/2673-4001 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2022 1 14 |
allfieldsGer |
10.3390/telecom4010001 doi (DE-627)DOAJ087225484 (DE-599)DOAJ583329ee1d504d4c84ceaf92315916ea DE-627 ger DE-627 rakwb eng TK7885-7895 QA75.5-76.95 Darveen Vijayan verfasserin aut Adaptive Hierarchical Density-Based Spatial Clustering Algorithm for Streaming Applications 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Clustering algorithms are commonly used in the mining of static data. Some examples include data mining for relationships between variables and data segmentation into components. The use of a clustering algorithm for real-time data is much less common. This is due to a variety of factors, including the algorithm’s high computation cost. In other words, the algorithm may be impractical for real-time or near-real-time implementation. Furthermore, clustering algorithms necessitate the tuning of hyperparameters in order to fit the dataset. In this paper, we approach clustering moving points using our proposed Adaptive Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) algorithm, which is an implementation of an adaptive approach to building the minimum spanning tree. We switch between the Boruvka and the Prim algorithms as a means to build the minimum spanning tree, which is one of the most expensive components of the HDBSCAN. The Adaptive HDBSCAN yields an improvement in execution time by 5.31% without depreciating the accuracy of the algorithm. The motivation for this research stems from the desire to cluster moving points on video. Cameras are used to monitor crowds and improve public safety. We can identify potential risks due to overcrowding and movements of groups of people by understanding the movements and flow of crowds. Surveillance equipment combined with deep learning algorithms can assist in addressing this issue by detecting people or objects, and the Adaptive HDBSCAN is used to cluster these items in real time to generate information about the clusters. moving points HDBSCAN crowd clustering unsupervised learning Computer engineering. Computer hardware Electronic computers. Computer science Izzatdin Aziz verfasserin aut In Telecom MDPI AG, 2020 4(2022), 1, Seite 14 (DE-627)1696034000 26734001 nnns volume:4 year:2022 number:1 pages:14 https://doi.org/10.3390/telecom4010001 kostenfrei https://doaj.org/article/583329ee1d504d4c84ceaf92315916ea kostenfrei https://www.mdpi.com/2673-4001/4/1/1 kostenfrei https://doaj.org/toc/2673-4001 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2022 1 14 |
allfieldsSound |
10.3390/telecom4010001 doi (DE-627)DOAJ087225484 (DE-599)DOAJ583329ee1d504d4c84ceaf92315916ea DE-627 ger DE-627 rakwb eng TK7885-7895 QA75.5-76.95 Darveen Vijayan verfasserin aut Adaptive Hierarchical Density-Based Spatial Clustering Algorithm for Streaming Applications 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Clustering algorithms are commonly used in the mining of static data. Some examples include data mining for relationships between variables and data segmentation into components. The use of a clustering algorithm for real-time data is much less common. This is due to a variety of factors, including the algorithm’s high computation cost. In other words, the algorithm may be impractical for real-time or near-real-time implementation. Furthermore, clustering algorithms necessitate the tuning of hyperparameters in order to fit the dataset. In this paper, we approach clustering moving points using our proposed Adaptive Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) algorithm, which is an implementation of an adaptive approach to building the minimum spanning tree. We switch between the Boruvka and the Prim algorithms as a means to build the minimum spanning tree, which is one of the most expensive components of the HDBSCAN. The Adaptive HDBSCAN yields an improvement in execution time by 5.31% without depreciating the accuracy of the algorithm. The motivation for this research stems from the desire to cluster moving points on video. Cameras are used to monitor crowds and improve public safety. We can identify potential risks due to overcrowding and movements of groups of people by understanding the movements and flow of crowds. Surveillance equipment combined with deep learning algorithms can assist in addressing this issue by detecting people or objects, and the Adaptive HDBSCAN is used to cluster these items in real time to generate information about the clusters. moving points HDBSCAN crowd clustering unsupervised learning Computer engineering. Computer hardware Electronic computers. Computer science Izzatdin Aziz verfasserin aut In Telecom MDPI AG, 2020 4(2022), 1, Seite 14 (DE-627)1696034000 26734001 nnns volume:4 year:2022 number:1 pages:14 https://doi.org/10.3390/telecom4010001 kostenfrei https://doaj.org/article/583329ee1d504d4c84ceaf92315916ea kostenfrei https://www.mdpi.com/2673-4001/4/1/1 kostenfrei https://doaj.org/toc/2673-4001 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2022 1 14 |
language |
English |
source |
In Telecom 4(2022), 1, Seite 14 volume:4 year:2022 number:1 pages:14 |
sourceStr |
In Telecom 4(2022), 1, Seite 14 volume:4 year:2022 number:1 pages:14 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
moving points HDBSCAN crowd clustering unsupervised learning Computer engineering. Computer hardware Electronic computers. Computer science |
isfreeaccess_bool |
true |
container_title |
Telecom |
authorswithroles_txt_mv |
Darveen Vijayan @@aut@@ Izzatdin Aziz @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
1696034000 |
id |
DOAJ087225484 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ087225484</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503021123.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230331s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/telecom4010001</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ087225484</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ583329ee1d504d4c84ceaf92315916ea</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK7885-7895</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA75.5-76.95</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Darveen Vijayan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Adaptive Hierarchical Density-Based Spatial Clustering Algorithm for Streaming Applications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Clustering algorithms are commonly used in the mining of static data. Some examples include data mining for relationships between variables and data segmentation into components. The use of a clustering algorithm for real-time data is much less common. This is due to a variety of factors, including the algorithm’s high computation cost. In other words, the algorithm may be impractical for real-time or near-real-time implementation. Furthermore, clustering algorithms necessitate the tuning of hyperparameters in order to fit the dataset. In this paper, we approach clustering moving points using our proposed Adaptive Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) algorithm, which is an implementation of an adaptive approach to building the minimum spanning tree. We switch between the Boruvka and the Prim algorithms as a means to build the minimum spanning tree, which is one of the most expensive components of the HDBSCAN. The Adaptive HDBSCAN yields an improvement in execution time by 5.31% without depreciating the accuracy of the algorithm. The motivation for this research stems from the desire to cluster moving points on video. Cameras are used to monitor crowds and improve public safety. We can identify potential risks due to overcrowding and movements of groups of people by understanding the movements and flow of crowds. Surveillance equipment combined with deep learning algorithms can assist in addressing this issue by detecting people or objects, and the Adaptive HDBSCAN is used to cluster these items in real time to generate information about the clusters.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">moving points</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">HDBSCAN</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">crowd clustering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">unsupervised learning</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Computer engineering. Computer hardware</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronic computers. Computer science</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Izzatdin Aziz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Telecom</subfield><subfield code="d">MDPI AG, 2020</subfield><subfield code="g">4(2022), 1, Seite 14</subfield><subfield code="w">(DE-627)1696034000</subfield><subfield code="x">26734001</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:4</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:14</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/telecom4010001</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/583329ee1d504d4c84ceaf92315916ea</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2673-4001/4/1/1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2673-4001</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">4</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="h">14</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Darveen Vijayan |
spellingShingle |
Darveen Vijayan misc TK7885-7895 misc QA75.5-76.95 misc moving points misc HDBSCAN misc crowd clustering misc unsupervised learning misc Computer engineering. Computer hardware misc Electronic computers. Computer science Adaptive Hierarchical Density-Based Spatial Clustering Algorithm for Streaming Applications |
authorStr |
Darveen Vijayan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1696034000 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK7885-7895 |
illustrated |
Not Illustrated |
issn |
26734001 |
topic_title |
TK7885-7895 QA75.5-76.95 Adaptive Hierarchical Density-Based Spatial Clustering Algorithm for Streaming Applications moving points HDBSCAN crowd clustering unsupervised learning |
topic |
misc TK7885-7895 misc QA75.5-76.95 misc moving points misc HDBSCAN misc crowd clustering misc unsupervised learning misc Computer engineering. Computer hardware misc Electronic computers. Computer science |
topic_unstemmed |
misc TK7885-7895 misc QA75.5-76.95 misc moving points misc HDBSCAN misc crowd clustering misc unsupervised learning misc Computer engineering. Computer hardware misc Electronic computers. Computer science |
topic_browse |
misc TK7885-7895 misc QA75.5-76.95 misc moving points misc HDBSCAN misc crowd clustering misc unsupervised learning misc Computer engineering. Computer hardware misc Electronic computers. Computer science |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Telecom |
hierarchy_parent_id |
1696034000 |
hierarchy_top_title |
Telecom |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1696034000 |
title |
Adaptive Hierarchical Density-Based Spatial Clustering Algorithm for Streaming Applications |
ctrlnum |
(DE-627)DOAJ087225484 (DE-599)DOAJ583329ee1d504d4c84ceaf92315916ea |
title_full |
Adaptive Hierarchical Density-Based Spatial Clustering Algorithm for Streaming Applications |
author_sort |
Darveen Vijayan |
journal |
Telecom |
journalStr |
Telecom |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
14 |
author_browse |
Darveen Vijayan Izzatdin Aziz |
container_volume |
4 |
class |
TK7885-7895 QA75.5-76.95 |
format_se |
Elektronische Aufsätze |
author-letter |
Darveen Vijayan |
doi_str_mv |
10.3390/telecom4010001 |
author2-role |
verfasserin |
title_sort |
adaptive hierarchical density-based spatial clustering algorithm for streaming applications |
callnumber |
TK7885-7895 |
title_auth |
Adaptive Hierarchical Density-Based Spatial Clustering Algorithm for Streaming Applications |
abstract |
Clustering algorithms are commonly used in the mining of static data. Some examples include data mining for relationships between variables and data segmentation into components. The use of a clustering algorithm for real-time data is much less common. This is due to a variety of factors, including the algorithm’s high computation cost. In other words, the algorithm may be impractical for real-time or near-real-time implementation. Furthermore, clustering algorithms necessitate the tuning of hyperparameters in order to fit the dataset. In this paper, we approach clustering moving points using our proposed Adaptive Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) algorithm, which is an implementation of an adaptive approach to building the minimum spanning tree. We switch between the Boruvka and the Prim algorithms as a means to build the minimum spanning tree, which is one of the most expensive components of the HDBSCAN. The Adaptive HDBSCAN yields an improvement in execution time by 5.31% without depreciating the accuracy of the algorithm. The motivation for this research stems from the desire to cluster moving points on video. Cameras are used to monitor crowds and improve public safety. We can identify potential risks due to overcrowding and movements of groups of people by understanding the movements and flow of crowds. Surveillance equipment combined with deep learning algorithms can assist in addressing this issue by detecting people or objects, and the Adaptive HDBSCAN is used to cluster these items in real time to generate information about the clusters. |
abstractGer |
Clustering algorithms are commonly used in the mining of static data. Some examples include data mining for relationships between variables and data segmentation into components. The use of a clustering algorithm for real-time data is much less common. This is due to a variety of factors, including the algorithm’s high computation cost. In other words, the algorithm may be impractical for real-time or near-real-time implementation. Furthermore, clustering algorithms necessitate the tuning of hyperparameters in order to fit the dataset. In this paper, we approach clustering moving points using our proposed Adaptive Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) algorithm, which is an implementation of an adaptive approach to building the minimum spanning tree. We switch between the Boruvka and the Prim algorithms as a means to build the minimum spanning tree, which is one of the most expensive components of the HDBSCAN. The Adaptive HDBSCAN yields an improvement in execution time by 5.31% without depreciating the accuracy of the algorithm. The motivation for this research stems from the desire to cluster moving points on video. Cameras are used to monitor crowds and improve public safety. We can identify potential risks due to overcrowding and movements of groups of people by understanding the movements and flow of crowds. Surveillance equipment combined with deep learning algorithms can assist in addressing this issue by detecting people or objects, and the Adaptive HDBSCAN is used to cluster these items in real time to generate information about the clusters. |
abstract_unstemmed |
Clustering algorithms are commonly used in the mining of static data. Some examples include data mining for relationships between variables and data segmentation into components. The use of a clustering algorithm for real-time data is much less common. This is due to a variety of factors, including the algorithm’s high computation cost. In other words, the algorithm may be impractical for real-time or near-real-time implementation. Furthermore, clustering algorithms necessitate the tuning of hyperparameters in order to fit the dataset. In this paper, we approach clustering moving points using our proposed Adaptive Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) algorithm, which is an implementation of an adaptive approach to building the minimum spanning tree. We switch between the Boruvka and the Prim algorithms as a means to build the minimum spanning tree, which is one of the most expensive components of the HDBSCAN. The Adaptive HDBSCAN yields an improvement in execution time by 5.31% without depreciating the accuracy of the algorithm. The motivation for this research stems from the desire to cluster moving points on video. Cameras are used to monitor crowds and improve public safety. We can identify potential risks due to overcrowding and movements of groups of people by understanding the movements and flow of crowds. Surveillance equipment combined with deep learning algorithms can assist in addressing this issue by detecting people or objects, and the Adaptive HDBSCAN is used to cluster these items in real time to generate information about the clusters. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Adaptive Hierarchical Density-Based Spatial Clustering Algorithm for Streaming Applications |
url |
https://doi.org/10.3390/telecom4010001 https://doaj.org/article/583329ee1d504d4c84ceaf92315916ea https://www.mdpi.com/2673-4001/4/1/1 https://doaj.org/toc/2673-4001 |
remote_bool |
true |
author2 |
Izzatdin Aziz |
author2Str |
Izzatdin Aziz |
ppnlink |
1696034000 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/telecom4010001 |
callnumber-a |
TK7885-7895 |
up_date |
2024-07-04T00:46:44.968Z |
_version_ |
1803607348322762752 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ087225484</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503021123.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230331s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/telecom4010001</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ087225484</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ583329ee1d504d4c84ceaf92315916ea</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK7885-7895</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA75.5-76.95</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Darveen Vijayan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Adaptive Hierarchical Density-Based Spatial Clustering Algorithm for Streaming Applications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Clustering algorithms are commonly used in the mining of static data. Some examples include data mining for relationships between variables and data segmentation into components. The use of a clustering algorithm for real-time data is much less common. This is due to a variety of factors, including the algorithm’s high computation cost. In other words, the algorithm may be impractical for real-time or near-real-time implementation. Furthermore, clustering algorithms necessitate the tuning of hyperparameters in order to fit the dataset. In this paper, we approach clustering moving points using our proposed Adaptive Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) algorithm, which is an implementation of an adaptive approach to building the minimum spanning tree. We switch between the Boruvka and the Prim algorithms as a means to build the minimum spanning tree, which is one of the most expensive components of the HDBSCAN. The Adaptive HDBSCAN yields an improvement in execution time by 5.31% without depreciating the accuracy of the algorithm. The motivation for this research stems from the desire to cluster moving points on video. Cameras are used to monitor crowds and improve public safety. We can identify potential risks due to overcrowding and movements of groups of people by understanding the movements and flow of crowds. Surveillance equipment combined with deep learning algorithms can assist in addressing this issue by detecting people or objects, and the Adaptive HDBSCAN is used to cluster these items in real time to generate information about the clusters.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">moving points</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">HDBSCAN</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">crowd clustering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">unsupervised learning</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Computer engineering. Computer hardware</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronic computers. Computer science</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Izzatdin Aziz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Telecom</subfield><subfield code="d">MDPI AG, 2020</subfield><subfield code="g">4(2022), 1, Seite 14</subfield><subfield code="w">(DE-627)1696034000</subfield><subfield code="x">26734001</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:4</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:14</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/telecom4010001</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/583329ee1d504d4c84ceaf92315916ea</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2673-4001/4/1/1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2673-4001</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">4</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="h">14</subfield></datafield></record></collection>
|
score |
7.402237 |