Assimilation of Nanoparticles of SiC, ZrC, and WC with Polyaryletherketone for Performance Augmentation of Adhesives
The present paper reports the analyses of results obtained from experiments carried out to explore the challenge of homogeneous, uniform, and deagglomerated dispersion of ultra-heavy nanoparticles (NPs) in the high-performance polyaryletherketone (PAEK) matrix. An equal and fixed amount of (0.5 vol....
Ausführliche Beschreibung
Autor*in: |
Umesh Marathe [verfasserIn] Jayashree Bijwe [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Nanomaterials - MDPI AG, 2012, 13(2023), 6, p 1028 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2023 ; number:6, p 1028 |
Links: |
---|
DOI / URN: |
10.3390/nano13061028 |
---|
Katalog-ID: |
DOAJ087277123 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ087277123 | ||
003 | DE-627 | ||
005 | 20240413050049.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230331s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/nano13061028 |2 doi | |
035 | |a (DE-627)DOAJ087277123 | ||
035 | |a (DE-599)DOAJa0505fd1aa944a258555d91a948be154 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QD1-999 | |
100 | 0 | |a Umesh Marathe |e verfasserin |4 aut | |
245 | 1 | 0 | |a Assimilation of Nanoparticles of SiC, ZrC, and WC with Polyaryletherketone for Performance Augmentation of Adhesives |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The present paper reports the analyses of results obtained from experiments carried out to explore the challenge of homogeneous, uniform, and deagglomerated dispersion of ultra-heavy nanoparticles (NPs) in the high-performance polyaryletherketone (PAEK) matrix. An equal and fixed amount of (0.5 vol. %) NPs of silicon carbide (SiC), zirconium carbide (ZrC), and tungsten carbide (WC) were dispersed in a PAEK matrix and compression molded to develop three different nanocomposites. Simultaneously, nano-adhesives of the same composition were also developed to join the stainless steel adherends. The composites and adhesives were characterized for their physical, thermal, thermo-mechanical, thermal conductivity (TC), and lap shear strength (LSS) behavior. It was observed that SiC NPs performed significantly better than ZrC and WC NCs in all performance properties (LSS: 154%, TC: 263%, tensile strength: 21%). Thermal conductivity (TC) and tensile properties were validated using various predictive models, such as the rule of mixture parallel model, the Chiew and Glandt model, and the Lewis model. Scanning electron micrographs were used for the morphological analysis of LSS samples to detect macro- and micro-failure. Micrographs showed evidence of micro-striation and plastic deformation as a micromodel, as well as mixed failure, i.e., adhesive–cohesive as a macro-failure mode. | ||
650 | 4 | |a adhesives | |
650 | 4 | |a polyaryletherketone | |
650 | 4 | |a thermal conductivity | |
650 | 4 | |a lap shear strength | |
650 | 4 | |a nanocomposites | |
653 | 0 | |a Chemistry | |
700 | 0 | |a Jayashree Bijwe |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Nanomaterials |d MDPI AG, 2012 |g 13(2023), 6, p 1028 |w (DE-627)718627199 |w (DE-600)2662255-5 |x 20794991 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2023 |g number:6, p 1028 |
856 | 4 | 0 | |u https://doi.org/10.3390/nano13061028 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/a0505fd1aa944a258555d91a948be154 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2079-4991/13/6/1028 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2079-4991 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2023 |e 6, p 1028 |
author_variant |
u m um j b jb |
---|---|
matchkey_str |
article:20794991:2023----::siiainfaoatceoscradcihoyrltektnfrefra |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
QD |
publishDate |
2023 |
allfields |
10.3390/nano13061028 doi (DE-627)DOAJ087277123 (DE-599)DOAJa0505fd1aa944a258555d91a948be154 DE-627 ger DE-627 rakwb eng QD1-999 Umesh Marathe verfasserin aut Assimilation of Nanoparticles of SiC, ZrC, and WC with Polyaryletherketone for Performance Augmentation of Adhesives 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The present paper reports the analyses of results obtained from experiments carried out to explore the challenge of homogeneous, uniform, and deagglomerated dispersion of ultra-heavy nanoparticles (NPs) in the high-performance polyaryletherketone (PAEK) matrix. An equal and fixed amount of (0.5 vol. %) NPs of silicon carbide (SiC), zirconium carbide (ZrC), and tungsten carbide (WC) were dispersed in a PAEK matrix and compression molded to develop three different nanocomposites. Simultaneously, nano-adhesives of the same composition were also developed to join the stainless steel adherends. The composites and adhesives were characterized for their physical, thermal, thermo-mechanical, thermal conductivity (TC), and lap shear strength (LSS) behavior. It was observed that SiC NPs performed significantly better than ZrC and WC NCs in all performance properties (LSS: 154%, TC: 263%, tensile strength: 21%). Thermal conductivity (TC) and tensile properties were validated using various predictive models, such as the rule of mixture parallel model, the Chiew and Glandt model, and the Lewis model. Scanning electron micrographs were used for the morphological analysis of LSS samples to detect macro- and micro-failure. Micrographs showed evidence of micro-striation and plastic deformation as a micromodel, as well as mixed failure, i.e., adhesive–cohesive as a macro-failure mode. adhesives polyaryletherketone thermal conductivity lap shear strength nanocomposites Chemistry Jayashree Bijwe verfasserin aut In Nanomaterials MDPI AG, 2012 13(2023), 6, p 1028 (DE-627)718627199 (DE-600)2662255-5 20794991 nnns volume:13 year:2023 number:6, p 1028 https://doi.org/10.3390/nano13061028 kostenfrei https://doaj.org/article/a0505fd1aa944a258555d91a948be154 kostenfrei https://www.mdpi.com/2079-4991/13/6/1028 kostenfrei https://doaj.org/toc/2079-4991 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 6, p 1028 |
spelling |
10.3390/nano13061028 doi (DE-627)DOAJ087277123 (DE-599)DOAJa0505fd1aa944a258555d91a948be154 DE-627 ger DE-627 rakwb eng QD1-999 Umesh Marathe verfasserin aut Assimilation of Nanoparticles of SiC, ZrC, and WC with Polyaryletherketone for Performance Augmentation of Adhesives 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The present paper reports the analyses of results obtained from experiments carried out to explore the challenge of homogeneous, uniform, and deagglomerated dispersion of ultra-heavy nanoparticles (NPs) in the high-performance polyaryletherketone (PAEK) matrix. An equal and fixed amount of (0.5 vol. %) NPs of silicon carbide (SiC), zirconium carbide (ZrC), and tungsten carbide (WC) were dispersed in a PAEK matrix and compression molded to develop three different nanocomposites. Simultaneously, nano-adhesives of the same composition were also developed to join the stainless steel adherends. The composites and adhesives were characterized for their physical, thermal, thermo-mechanical, thermal conductivity (TC), and lap shear strength (LSS) behavior. It was observed that SiC NPs performed significantly better than ZrC and WC NCs in all performance properties (LSS: 154%, TC: 263%, tensile strength: 21%). Thermal conductivity (TC) and tensile properties were validated using various predictive models, such as the rule of mixture parallel model, the Chiew and Glandt model, and the Lewis model. Scanning electron micrographs were used for the morphological analysis of LSS samples to detect macro- and micro-failure. Micrographs showed evidence of micro-striation and plastic deformation as a micromodel, as well as mixed failure, i.e., adhesive–cohesive as a macro-failure mode. adhesives polyaryletherketone thermal conductivity lap shear strength nanocomposites Chemistry Jayashree Bijwe verfasserin aut In Nanomaterials MDPI AG, 2012 13(2023), 6, p 1028 (DE-627)718627199 (DE-600)2662255-5 20794991 nnns volume:13 year:2023 number:6, p 1028 https://doi.org/10.3390/nano13061028 kostenfrei https://doaj.org/article/a0505fd1aa944a258555d91a948be154 kostenfrei https://www.mdpi.com/2079-4991/13/6/1028 kostenfrei https://doaj.org/toc/2079-4991 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 6, p 1028 |
allfields_unstemmed |
10.3390/nano13061028 doi (DE-627)DOAJ087277123 (DE-599)DOAJa0505fd1aa944a258555d91a948be154 DE-627 ger DE-627 rakwb eng QD1-999 Umesh Marathe verfasserin aut Assimilation of Nanoparticles of SiC, ZrC, and WC with Polyaryletherketone for Performance Augmentation of Adhesives 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The present paper reports the analyses of results obtained from experiments carried out to explore the challenge of homogeneous, uniform, and deagglomerated dispersion of ultra-heavy nanoparticles (NPs) in the high-performance polyaryletherketone (PAEK) matrix. An equal and fixed amount of (0.5 vol. %) NPs of silicon carbide (SiC), zirconium carbide (ZrC), and tungsten carbide (WC) were dispersed in a PAEK matrix and compression molded to develop three different nanocomposites. Simultaneously, nano-adhesives of the same composition were also developed to join the stainless steel adherends. The composites and adhesives were characterized for their physical, thermal, thermo-mechanical, thermal conductivity (TC), and lap shear strength (LSS) behavior. It was observed that SiC NPs performed significantly better than ZrC and WC NCs in all performance properties (LSS: 154%, TC: 263%, tensile strength: 21%). Thermal conductivity (TC) and tensile properties were validated using various predictive models, such as the rule of mixture parallel model, the Chiew and Glandt model, and the Lewis model. Scanning electron micrographs were used for the morphological analysis of LSS samples to detect macro- and micro-failure. Micrographs showed evidence of micro-striation and plastic deformation as a micromodel, as well as mixed failure, i.e., adhesive–cohesive as a macro-failure mode. adhesives polyaryletherketone thermal conductivity lap shear strength nanocomposites Chemistry Jayashree Bijwe verfasserin aut In Nanomaterials MDPI AG, 2012 13(2023), 6, p 1028 (DE-627)718627199 (DE-600)2662255-5 20794991 nnns volume:13 year:2023 number:6, p 1028 https://doi.org/10.3390/nano13061028 kostenfrei https://doaj.org/article/a0505fd1aa944a258555d91a948be154 kostenfrei https://www.mdpi.com/2079-4991/13/6/1028 kostenfrei https://doaj.org/toc/2079-4991 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 6, p 1028 |
allfieldsGer |
10.3390/nano13061028 doi (DE-627)DOAJ087277123 (DE-599)DOAJa0505fd1aa944a258555d91a948be154 DE-627 ger DE-627 rakwb eng QD1-999 Umesh Marathe verfasserin aut Assimilation of Nanoparticles of SiC, ZrC, and WC with Polyaryletherketone for Performance Augmentation of Adhesives 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The present paper reports the analyses of results obtained from experiments carried out to explore the challenge of homogeneous, uniform, and deagglomerated dispersion of ultra-heavy nanoparticles (NPs) in the high-performance polyaryletherketone (PAEK) matrix. An equal and fixed amount of (0.5 vol. %) NPs of silicon carbide (SiC), zirconium carbide (ZrC), and tungsten carbide (WC) were dispersed in a PAEK matrix and compression molded to develop three different nanocomposites. Simultaneously, nano-adhesives of the same composition were also developed to join the stainless steel adherends. The composites and adhesives were characterized for their physical, thermal, thermo-mechanical, thermal conductivity (TC), and lap shear strength (LSS) behavior. It was observed that SiC NPs performed significantly better than ZrC and WC NCs in all performance properties (LSS: 154%, TC: 263%, tensile strength: 21%). Thermal conductivity (TC) and tensile properties were validated using various predictive models, such as the rule of mixture parallel model, the Chiew and Glandt model, and the Lewis model. Scanning electron micrographs were used for the morphological analysis of LSS samples to detect macro- and micro-failure. Micrographs showed evidence of micro-striation and plastic deformation as a micromodel, as well as mixed failure, i.e., adhesive–cohesive as a macro-failure mode. adhesives polyaryletherketone thermal conductivity lap shear strength nanocomposites Chemistry Jayashree Bijwe verfasserin aut In Nanomaterials MDPI AG, 2012 13(2023), 6, p 1028 (DE-627)718627199 (DE-600)2662255-5 20794991 nnns volume:13 year:2023 number:6, p 1028 https://doi.org/10.3390/nano13061028 kostenfrei https://doaj.org/article/a0505fd1aa944a258555d91a948be154 kostenfrei https://www.mdpi.com/2079-4991/13/6/1028 kostenfrei https://doaj.org/toc/2079-4991 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 6, p 1028 |
allfieldsSound |
10.3390/nano13061028 doi (DE-627)DOAJ087277123 (DE-599)DOAJa0505fd1aa944a258555d91a948be154 DE-627 ger DE-627 rakwb eng QD1-999 Umesh Marathe verfasserin aut Assimilation of Nanoparticles of SiC, ZrC, and WC with Polyaryletherketone for Performance Augmentation of Adhesives 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The present paper reports the analyses of results obtained from experiments carried out to explore the challenge of homogeneous, uniform, and deagglomerated dispersion of ultra-heavy nanoparticles (NPs) in the high-performance polyaryletherketone (PAEK) matrix. An equal and fixed amount of (0.5 vol. %) NPs of silicon carbide (SiC), zirconium carbide (ZrC), and tungsten carbide (WC) were dispersed in a PAEK matrix and compression molded to develop three different nanocomposites. Simultaneously, nano-adhesives of the same composition were also developed to join the stainless steel adherends. The composites and adhesives were characterized for their physical, thermal, thermo-mechanical, thermal conductivity (TC), and lap shear strength (LSS) behavior. It was observed that SiC NPs performed significantly better than ZrC and WC NCs in all performance properties (LSS: 154%, TC: 263%, tensile strength: 21%). Thermal conductivity (TC) and tensile properties were validated using various predictive models, such as the rule of mixture parallel model, the Chiew and Glandt model, and the Lewis model. Scanning electron micrographs were used for the morphological analysis of LSS samples to detect macro- and micro-failure. Micrographs showed evidence of micro-striation and plastic deformation as a micromodel, as well as mixed failure, i.e., adhesive–cohesive as a macro-failure mode. adhesives polyaryletherketone thermal conductivity lap shear strength nanocomposites Chemistry Jayashree Bijwe verfasserin aut In Nanomaterials MDPI AG, 2012 13(2023), 6, p 1028 (DE-627)718627199 (DE-600)2662255-5 20794991 nnns volume:13 year:2023 number:6, p 1028 https://doi.org/10.3390/nano13061028 kostenfrei https://doaj.org/article/a0505fd1aa944a258555d91a948be154 kostenfrei https://www.mdpi.com/2079-4991/13/6/1028 kostenfrei https://doaj.org/toc/2079-4991 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 6, p 1028 |
language |
English |
source |
In Nanomaterials 13(2023), 6, p 1028 volume:13 year:2023 number:6, p 1028 |
sourceStr |
In Nanomaterials 13(2023), 6, p 1028 volume:13 year:2023 number:6, p 1028 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
adhesives polyaryletherketone thermal conductivity lap shear strength nanocomposites Chemistry |
isfreeaccess_bool |
true |
container_title |
Nanomaterials |
authorswithroles_txt_mv |
Umesh Marathe @@aut@@ Jayashree Bijwe @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
718627199 |
id |
DOAJ087277123 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ087277123</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413050049.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230331s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/nano13061028</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ087277123</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa0505fd1aa944a258555d91a948be154</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Umesh Marathe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Assimilation of Nanoparticles of SiC, ZrC, and WC with Polyaryletherketone for Performance Augmentation of Adhesives</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The present paper reports the analyses of results obtained from experiments carried out to explore the challenge of homogeneous, uniform, and deagglomerated dispersion of ultra-heavy nanoparticles (NPs) in the high-performance polyaryletherketone (PAEK) matrix. An equal and fixed amount of (0.5 vol. %) NPs of silicon carbide (SiC), zirconium carbide (ZrC), and tungsten carbide (WC) were dispersed in a PAEK matrix and compression molded to develop three different nanocomposites. Simultaneously, nano-adhesives of the same composition were also developed to join the stainless steel adherends. The composites and adhesives were characterized for their physical, thermal, thermo-mechanical, thermal conductivity (TC), and lap shear strength (LSS) behavior. It was observed that SiC NPs performed significantly better than ZrC and WC NCs in all performance properties (LSS: 154%, TC: 263%, tensile strength: 21%). Thermal conductivity (TC) and tensile properties were validated using various predictive models, such as the rule of mixture parallel model, the Chiew and Glandt model, and the Lewis model. Scanning electron micrographs were used for the morphological analysis of LSS samples to detect macro- and micro-failure. Micrographs showed evidence of micro-striation and plastic deformation as a micromodel, as well as mixed failure, i.e., adhesive–cohesive as a macro-failure mode.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">adhesives</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">polyaryletherketone</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">thermal conductivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">lap shear strength</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanocomposites</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jayashree Bijwe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Nanomaterials</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">13(2023), 6, p 1028</subfield><subfield code="w">(DE-627)718627199</subfield><subfield code="w">(DE-600)2662255-5</subfield><subfield code="x">20794991</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:6, p 1028</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/nano13061028</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a0505fd1aa944a258555d91a948be154</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2079-4991/13/6/1028</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2079-4991</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2023</subfield><subfield code="e">6, p 1028</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Umesh Marathe |
spellingShingle |
Umesh Marathe misc QD1-999 misc adhesives misc polyaryletherketone misc thermal conductivity misc lap shear strength misc nanocomposites misc Chemistry Assimilation of Nanoparticles of SiC, ZrC, and WC with Polyaryletherketone for Performance Augmentation of Adhesives |
authorStr |
Umesh Marathe |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)718627199 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QD1-999 |
illustrated |
Not Illustrated |
issn |
20794991 |
topic_title |
QD1-999 Assimilation of Nanoparticles of SiC, ZrC, and WC with Polyaryletherketone for Performance Augmentation of Adhesives adhesives polyaryletherketone thermal conductivity lap shear strength nanocomposites |
topic |
misc QD1-999 misc adhesives misc polyaryletherketone misc thermal conductivity misc lap shear strength misc nanocomposites misc Chemistry |
topic_unstemmed |
misc QD1-999 misc adhesives misc polyaryletherketone misc thermal conductivity misc lap shear strength misc nanocomposites misc Chemistry |
topic_browse |
misc QD1-999 misc adhesives misc polyaryletherketone misc thermal conductivity misc lap shear strength misc nanocomposites misc Chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Nanomaterials |
hierarchy_parent_id |
718627199 |
hierarchy_top_title |
Nanomaterials |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)718627199 (DE-600)2662255-5 |
title |
Assimilation of Nanoparticles of SiC, ZrC, and WC with Polyaryletherketone for Performance Augmentation of Adhesives |
ctrlnum |
(DE-627)DOAJ087277123 (DE-599)DOAJa0505fd1aa944a258555d91a948be154 |
title_full |
Assimilation of Nanoparticles of SiC, ZrC, and WC with Polyaryletherketone for Performance Augmentation of Adhesives |
author_sort |
Umesh Marathe |
journal |
Nanomaterials |
journalStr |
Nanomaterials |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Umesh Marathe Jayashree Bijwe |
container_volume |
13 |
class |
QD1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Umesh Marathe |
doi_str_mv |
10.3390/nano13061028 |
author2-role |
verfasserin |
title_sort |
assimilation of nanoparticles of sic, zrc, and wc with polyaryletherketone for performance augmentation of adhesives |
callnumber |
QD1-999 |
title_auth |
Assimilation of Nanoparticles of SiC, ZrC, and WC with Polyaryletherketone for Performance Augmentation of Adhesives |
abstract |
The present paper reports the analyses of results obtained from experiments carried out to explore the challenge of homogeneous, uniform, and deagglomerated dispersion of ultra-heavy nanoparticles (NPs) in the high-performance polyaryletherketone (PAEK) matrix. An equal and fixed amount of (0.5 vol. %) NPs of silicon carbide (SiC), zirconium carbide (ZrC), and tungsten carbide (WC) were dispersed in a PAEK matrix and compression molded to develop three different nanocomposites. Simultaneously, nano-adhesives of the same composition were also developed to join the stainless steel adherends. The composites and adhesives were characterized for their physical, thermal, thermo-mechanical, thermal conductivity (TC), and lap shear strength (LSS) behavior. It was observed that SiC NPs performed significantly better than ZrC and WC NCs in all performance properties (LSS: 154%, TC: 263%, tensile strength: 21%). Thermal conductivity (TC) and tensile properties were validated using various predictive models, such as the rule of mixture parallel model, the Chiew and Glandt model, and the Lewis model. Scanning electron micrographs were used for the morphological analysis of LSS samples to detect macro- and micro-failure. Micrographs showed evidence of micro-striation and plastic deformation as a micromodel, as well as mixed failure, i.e., adhesive–cohesive as a macro-failure mode. |
abstractGer |
The present paper reports the analyses of results obtained from experiments carried out to explore the challenge of homogeneous, uniform, and deagglomerated dispersion of ultra-heavy nanoparticles (NPs) in the high-performance polyaryletherketone (PAEK) matrix. An equal and fixed amount of (0.5 vol. %) NPs of silicon carbide (SiC), zirconium carbide (ZrC), and tungsten carbide (WC) were dispersed in a PAEK matrix and compression molded to develop three different nanocomposites. Simultaneously, nano-adhesives of the same composition were also developed to join the stainless steel adherends. The composites and adhesives were characterized for their physical, thermal, thermo-mechanical, thermal conductivity (TC), and lap shear strength (LSS) behavior. It was observed that SiC NPs performed significantly better than ZrC and WC NCs in all performance properties (LSS: 154%, TC: 263%, tensile strength: 21%). Thermal conductivity (TC) and tensile properties were validated using various predictive models, such as the rule of mixture parallel model, the Chiew and Glandt model, and the Lewis model. Scanning electron micrographs were used for the morphological analysis of LSS samples to detect macro- and micro-failure. Micrographs showed evidence of micro-striation and plastic deformation as a micromodel, as well as mixed failure, i.e., adhesive–cohesive as a macro-failure mode. |
abstract_unstemmed |
The present paper reports the analyses of results obtained from experiments carried out to explore the challenge of homogeneous, uniform, and deagglomerated dispersion of ultra-heavy nanoparticles (NPs) in the high-performance polyaryletherketone (PAEK) matrix. An equal and fixed amount of (0.5 vol. %) NPs of silicon carbide (SiC), zirconium carbide (ZrC), and tungsten carbide (WC) were dispersed in a PAEK matrix and compression molded to develop three different nanocomposites. Simultaneously, nano-adhesives of the same composition were also developed to join the stainless steel adherends. The composites and adhesives were characterized for their physical, thermal, thermo-mechanical, thermal conductivity (TC), and lap shear strength (LSS) behavior. It was observed that SiC NPs performed significantly better than ZrC and WC NCs in all performance properties (LSS: 154%, TC: 263%, tensile strength: 21%). Thermal conductivity (TC) and tensile properties were validated using various predictive models, such as the rule of mixture parallel model, the Chiew and Glandt model, and the Lewis model. Scanning electron micrographs were used for the morphological analysis of LSS samples to detect macro- and micro-failure. Micrographs showed evidence of micro-striation and plastic deformation as a micromodel, as well as mixed failure, i.e., adhesive–cohesive as a macro-failure mode. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
6, p 1028 |
title_short |
Assimilation of Nanoparticles of SiC, ZrC, and WC with Polyaryletherketone for Performance Augmentation of Adhesives |
url |
https://doi.org/10.3390/nano13061028 https://doaj.org/article/a0505fd1aa944a258555d91a948be154 https://www.mdpi.com/2079-4991/13/6/1028 https://doaj.org/toc/2079-4991 |
remote_bool |
true |
author2 |
Jayashree Bijwe |
author2Str |
Jayashree Bijwe |
ppnlink |
718627199 |
callnumber-subject |
QD - Chemistry |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/nano13061028 |
callnumber-a |
QD1-999 |
up_date |
2024-07-04T01:00:04.119Z |
_version_ |
1803608186285981696 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ087277123</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413050049.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230331s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/nano13061028</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ087277123</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa0505fd1aa944a258555d91a948be154</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Umesh Marathe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Assimilation of Nanoparticles of SiC, ZrC, and WC with Polyaryletherketone for Performance Augmentation of Adhesives</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The present paper reports the analyses of results obtained from experiments carried out to explore the challenge of homogeneous, uniform, and deagglomerated dispersion of ultra-heavy nanoparticles (NPs) in the high-performance polyaryletherketone (PAEK) matrix. An equal and fixed amount of (0.5 vol. %) NPs of silicon carbide (SiC), zirconium carbide (ZrC), and tungsten carbide (WC) were dispersed in a PAEK matrix and compression molded to develop three different nanocomposites. Simultaneously, nano-adhesives of the same composition were also developed to join the stainless steel adherends. The composites and adhesives were characterized for their physical, thermal, thermo-mechanical, thermal conductivity (TC), and lap shear strength (LSS) behavior. It was observed that SiC NPs performed significantly better than ZrC and WC NCs in all performance properties (LSS: 154%, TC: 263%, tensile strength: 21%). Thermal conductivity (TC) and tensile properties were validated using various predictive models, such as the rule of mixture parallel model, the Chiew and Glandt model, and the Lewis model. Scanning electron micrographs were used for the morphological analysis of LSS samples to detect macro- and micro-failure. Micrographs showed evidence of micro-striation and plastic deformation as a micromodel, as well as mixed failure, i.e., adhesive–cohesive as a macro-failure mode.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">adhesives</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">polyaryletherketone</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">thermal conductivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">lap shear strength</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanocomposites</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jayashree Bijwe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Nanomaterials</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">13(2023), 6, p 1028</subfield><subfield code="w">(DE-627)718627199</subfield><subfield code="w">(DE-600)2662255-5</subfield><subfield code="x">20794991</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:6, p 1028</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/nano13061028</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a0505fd1aa944a258555d91a948be154</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2079-4991/13/6/1028</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2079-4991</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2023</subfield><subfield code="e">6, p 1028</subfield></datafield></record></collection>
|
score |
7.3998785 |