Insights into the Role of Nanorod-Shaped MnO<sub<2</sub< and CeO<sub<2</sub< in a Plasma Catalysis System for Methanol Oxidation
Published papers highlight the roles of the catalysts in plasma catalysis systems, and it is essential to provide deep insight into the mechanism of the reaction. In this work, a coaxial dielectric barrier discharge (DBD) reactor packed with γ-MnO<sub<2</sub< and CeO<sub<2</sub&...
Ausführliche Beschreibung
Autor*in: |
Guangyi Zhang [verfasserIn] Gui Chen [verfasserIn] Haomin Huang [verfasserIn] Yexia Qin [verfasserIn] Mingli Fu [verfasserIn] Xin Tu [verfasserIn] Daiqi Ye [verfasserIn] Junliang Wu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Nanomaterials - MDPI AG, 2012, 13(2023), 6, p 1026 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2023 ; number:6, p 1026 |
Links: |
---|
DOI / URN: |
10.3390/nano13061026 |
---|
Katalog-ID: |
DOAJ087277158 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ087277158 | ||
003 | DE-627 | ||
005 | 20240413050050.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230331s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/nano13061026 |2 doi | |
035 | |a (DE-627)DOAJ087277158 | ||
035 | |a (DE-599)DOAJdc312de3d5ef44569e34d9dc516a3674 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QD1-999 | |
100 | 0 | |a Guangyi Zhang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Insights into the Role of Nanorod-Shaped MnO<sub<2</sub< and CeO<sub<2</sub< in a Plasma Catalysis System for Methanol Oxidation |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Published papers highlight the roles of the catalysts in plasma catalysis systems, and it is essential to provide deep insight into the mechanism of the reaction. In this work, a coaxial dielectric barrier discharge (DBD) reactor packed with γ-MnO<sub<2</sub< and CeO<sub<2</sub< with similar nanorod morphologies and particle sizes was used for methanol oxidation at atmospheric pressure and room temperature. The experimental results showed that both γ-MnO<sub<2</sub< and CeO<sub<2</sub< exhibited good performance in methanol conversion (up to 100%), but the CO<sub<2</sub< selectivity of CeO<sub<2</sub< (up to 59.3%) was much higher than that of γ-MnO<sub<2</sub< (up to 28.6%). Catalyst characterization results indicated that CeO<sub<2</sub< contained more surface-active oxygen species, adsorbed more methanol and utilized more plasma-induced active species than γ-MnO<sub<2</sub<. In addition, in situ Raman spectroscopy and Fourier transform infrared spectroscopy (FT-IR) were applied with a novel in situ cell to reveal the major factors affecting the catalytic performance in methanol oxidation. More reactive oxygen species (O<sub<2</sub<<sup<2−</sup<, O<sup<2−</sup<) from ozone decomposition were produced on CeO<sub<2</sub< compared with γ-MnO<sub<2</sub<, and less of the intermediate product formate accumulated on the CeO<sub<2</sub<. The combined results showed that CeO<sub<2</sub< was a more effective catalyst than γ-MnO<sub<2</sub< for methanol oxidation in the plasma catalysis system. | ||
650 | 4 | |a methanol oxidation | |
650 | 4 | |a plasma catalysis | |
650 | 4 | |a CeO<sub<2</sub< | |
650 | 4 | |a MnO<sub<2</sub< | |
650 | 4 | |a in situ ft-IR | |
653 | 0 | |a Chemistry | |
700 | 0 | |a Gui Chen |e verfasserin |4 aut | |
700 | 0 | |a Haomin Huang |e verfasserin |4 aut | |
700 | 0 | |a Yexia Qin |e verfasserin |4 aut | |
700 | 0 | |a Mingli Fu |e verfasserin |4 aut | |
700 | 0 | |a Xin Tu |e verfasserin |4 aut | |
700 | 0 | |a Daiqi Ye |e verfasserin |4 aut | |
700 | 0 | |a Junliang Wu |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Nanomaterials |d MDPI AG, 2012 |g 13(2023), 6, p 1026 |w (DE-627)718627199 |w (DE-600)2662255-5 |x 20794991 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2023 |g number:6, p 1026 |
856 | 4 | 0 | |u https://doi.org/10.3390/nano13061026 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/dc312de3d5ef44569e34d9dc516a3674 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2079-4991/13/6/1026 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2079-4991 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2023 |e 6, p 1026 |
author_variant |
g z gz g c gc h h hh y q yq m f mf x t xt d y dy j w jw |
---|---|
matchkey_str |
article:20794991:2023----::nihsnohrlonnrdhpdnsbsbncou2uialsaaayi |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
QD |
publishDate |
2023 |
allfields |
10.3390/nano13061026 doi (DE-627)DOAJ087277158 (DE-599)DOAJdc312de3d5ef44569e34d9dc516a3674 DE-627 ger DE-627 rakwb eng QD1-999 Guangyi Zhang verfasserin aut Insights into the Role of Nanorod-Shaped MnO<sub<2</sub< and CeO<sub<2</sub< in a Plasma Catalysis System for Methanol Oxidation 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Published papers highlight the roles of the catalysts in plasma catalysis systems, and it is essential to provide deep insight into the mechanism of the reaction. In this work, a coaxial dielectric barrier discharge (DBD) reactor packed with γ-MnO<sub<2</sub< and CeO<sub<2</sub< with similar nanorod morphologies and particle sizes was used for methanol oxidation at atmospheric pressure and room temperature. The experimental results showed that both γ-MnO<sub<2</sub< and CeO<sub<2</sub< exhibited good performance in methanol conversion (up to 100%), but the CO<sub<2</sub< selectivity of CeO<sub<2</sub< (up to 59.3%) was much higher than that of γ-MnO<sub<2</sub< (up to 28.6%). Catalyst characterization results indicated that CeO<sub<2</sub< contained more surface-active oxygen species, adsorbed more methanol and utilized more plasma-induced active species than γ-MnO<sub<2</sub<. In addition, in situ Raman spectroscopy and Fourier transform infrared spectroscopy (FT-IR) were applied with a novel in situ cell to reveal the major factors affecting the catalytic performance in methanol oxidation. More reactive oxygen species (O<sub<2</sub<<sup<2−</sup<, O<sup<2−</sup<) from ozone decomposition were produced on CeO<sub<2</sub< compared with γ-MnO<sub<2</sub<, and less of the intermediate product formate accumulated on the CeO<sub<2</sub<. The combined results showed that CeO<sub<2</sub< was a more effective catalyst than γ-MnO<sub<2</sub< for methanol oxidation in the plasma catalysis system. methanol oxidation plasma catalysis CeO<sub<2</sub< MnO<sub<2</sub< in situ ft-IR Chemistry Gui Chen verfasserin aut Haomin Huang verfasserin aut Yexia Qin verfasserin aut Mingli Fu verfasserin aut Xin Tu verfasserin aut Daiqi Ye verfasserin aut Junliang Wu verfasserin aut In Nanomaterials MDPI AG, 2012 13(2023), 6, p 1026 (DE-627)718627199 (DE-600)2662255-5 20794991 nnns volume:13 year:2023 number:6, p 1026 https://doi.org/10.3390/nano13061026 kostenfrei https://doaj.org/article/dc312de3d5ef44569e34d9dc516a3674 kostenfrei https://www.mdpi.com/2079-4991/13/6/1026 kostenfrei https://doaj.org/toc/2079-4991 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 6, p 1026 |
spelling |
10.3390/nano13061026 doi (DE-627)DOAJ087277158 (DE-599)DOAJdc312de3d5ef44569e34d9dc516a3674 DE-627 ger DE-627 rakwb eng QD1-999 Guangyi Zhang verfasserin aut Insights into the Role of Nanorod-Shaped MnO<sub<2</sub< and CeO<sub<2</sub< in a Plasma Catalysis System for Methanol Oxidation 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Published papers highlight the roles of the catalysts in plasma catalysis systems, and it is essential to provide deep insight into the mechanism of the reaction. In this work, a coaxial dielectric barrier discharge (DBD) reactor packed with γ-MnO<sub<2</sub< and CeO<sub<2</sub< with similar nanorod morphologies and particle sizes was used for methanol oxidation at atmospheric pressure and room temperature. The experimental results showed that both γ-MnO<sub<2</sub< and CeO<sub<2</sub< exhibited good performance in methanol conversion (up to 100%), but the CO<sub<2</sub< selectivity of CeO<sub<2</sub< (up to 59.3%) was much higher than that of γ-MnO<sub<2</sub< (up to 28.6%). Catalyst characterization results indicated that CeO<sub<2</sub< contained more surface-active oxygen species, adsorbed more methanol and utilized more plasma-induced active species than γ-MnO<sub<2</sub<. In addition, in situ Raman spectroscopy and Fourier transform infrared spectroscopy (FT-IR) were applied with a novel in situ cell to reveal the major factors affecting the catalytic performance in methanol oxidation. More reactive oxygen species (O<sub<2</sub<<sup<2−</sup<, O<sup<2−</sup<) from ozone decomposition were produced on CeO<sub<2</sub< compared with γ-MnO<sub<2</sub<, and less of the intermediate product formate accumulated on the CeO<sub<2</sub<. The combined results showed that CeO<sub<2</sub< was a more effective catalyst than γ-MnO<sub<2</sub< for methanol oxidation in the plasma catalysis system. methanol oxidation plasma catalysis CeO<sub<2</sub< MnO<sub<2</sub< in situ ft-IR Chemistry Gui Chen verfasserin aut Haomin Huang verfasserin aut Yexia Qin verfasserin aut Mingli Fu verfasserin aut Xin Tu verfasserin aut Daiqi Ye verfasserin aut Junliang Wu verfasserin aut In Nanomaterials MDPI AG, 2012 13(2023), 6, p 1026 (DE-627)718627199 (DE-600)2662255-5 20794991 nnns volume:13 year:2023 number:6, p 1026 https://doi.org/10.3390/nano13061026 kostenfrei https://doaj.org/article/dc312de3d5ef44569e34d9dc516a3674 kostenfrei https://www.mdpi.com/2079-4991/13/6/1026 kostenfrei https://doaj.org/toc/2079-4991 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 6, p 1026 |
allfields_unstemmed |
10.3390/nano13061026 doi (DE-627)DOAJ087277158 (DE-599)DOAJdc312de3d5ef44569e34d9dc516a3674 DE-627 ger DE-627 rakwb eng QD1-999 Guangyi Zhang verfasserin aut Insights into the Role of Nanorod-Shaped MnO<sub<2</sub< and CeO<sub<2</sub< in a Plasma Catalysis System for Methanol Oxidation 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Published papers highlight the roles of the catalysts in plasma catalysis systems, and it is essential to provide deep insight into the mechanism of the reaction. In this work, a coaxial dielectric barrier discharge (DBD) reactor packed with γ-MnO<sub<2</sub< and CeO<sub<2</sub< with similar nanorod morphologies and particle sizes was used for methanol oxidation at atmospheric pressure and room temperature. The experimental results showed that both γ-MnO<sub<2</sub< and CeO<sub<2</sub< exhibited good performance in methanol conversion (up to 100%), but the CO<sub<2</sub< selectivity of CeO<sub<2</sub< (up to 59.3%) was much higher than that of γ-MnO<sub<2</sub< (up to 28.6%). Catalyst characterization results indicated that CeO<sub<2</sub< contained more surface-active oxygen species, adsorbed more methanol and utilized more plasma-induced active species than γ-MnO<sub<2</sub<. In addition, in situ Raman spectroscopy and Fourier transform infrared spectroscopy (FT-IR) were applied with a novel in situ cell to reveal the major factors affecting the catalytic performance in methanol oxidation. More reactive oxygen species (O<sub<2</sub<<sup<2−</sup<, O<sup<2−</sup<) from ozone decomposition were produced on CeO<sub<2</sub< compared with γ-MnO<sub<2</sub<, and less of the intermediate product formate accumulated on the CeO<sub<2</sub<. The combined results showed that CeO<sub<2</sub< was a more effective catalyst than γ-MnO<sub<2</sub< for methanol oxidation in the plasma catalysis system. methanol oxidation plasma catalysis CeO<sub<2</sub< MnO<sub<2</sub< in situ ft-IR Chemistry Gui Chen verfasserin aut Haomin Huang verfasserin aut Yexia Qin verfasserin aut Mingli Fu verfasserin aut Xin Tu verfasserin aut Daiqi Ye verfasserin aut Junliang Wu verfasserin aut In Nanomaterials MDPI AG, 2012 13(2023), 6, p 1026 (DE-627)718627199 (DE-600)2662255-5 20794991 nnns volume:13 year:2023 number:6, p 1026 https://doi.org/10.3390/nano13061026 kostenfrei https://doaj.org/article/dc312de3d5ef44569e34d9dc516a3674 kostenfrei https://www.mdpi.com/2079-4991/13/6/1026 kostenfrei https://doaj.org/toc/2079-4991 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 6, p 1026 |
allfieldsGer |
10.3390/nano13061026 doi (DE-627)DOAJ087277158 (DE-599)DOAJdc312de3d5ef44569e34d9dc516a3674 DE-627 ger DE-627 rakwb eng QD1-999 Guangyi Zhang verfasserin aut Insights into the Role of Nanorod-Shaped MnO<sub<2</sub< and CeO<sub<2</sub< in a Plasma Catalysis System for Methanol Oxidation 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Published papers highlight the roles of the catalysts in plasma catalysis systems, and it is essential to provide deep insight into the mechanism of the reaction. In this work, a coaxial dielectric barrier discharge (DBD) reactor packed with γ-MnO<sub<2</sub< and CeO<sub<2</sub< with similar nanorod morphologies and particle sizes was used for methanol oxidation at atmospheric pressure and room temperature. The experimental results showed that both γ-MnO<sub<2</sub< and CeO<sub<2</sub< exhibited good performance in methanol conversion (up to 100%), but the CO<sub<2</sub< selectivity of CeO<sub<2</sub< (up to 59.3%) was much higher than that of γ-MnO<sub<2</sub< (up to 28.6%). Catalyst characterization results indicated that CeO<sub<2</sub< contained more surface-active oxygen species, adsorbed more methanol and utilized more plasma-induced active species than γ-MnO<sub<2</sub<. In addition, in situ Raman spectroscopy and Fourier transform infrared spectroscopy (FT-IR) were applied with a novel in situ cell to reveal the major factors affecting the catalytic performance in methanol oxidation. More reactive oxygen species (O<sub<2</sub<<sup<2−</sup<, O<sup<2−</sup<) from ozone decomposition were produced on CeO<sub<2</sub< compared with γ-MnO<sub<2</sub<, and less of the intermediate product formate accumulated on the CeO<sub<2</sub<. The combined results showed that CeO<sub<2</sub< was a more effective catalyst than γ-MnO<sub<2</sub< for methanol oxidation in the plasma catalysis system. methanol oxidation plasma catalysis CeO<sub<2</sub< MnO<sub<2</sub< in situ ft-IR Chemistry Gui Chen verfasserin aut Haomin Huang verfasserin aut Yexia Qin verfasserin aut Mingli Fu verfasserin aut Xin Tu verfasserin aut Daiqi Ye verfasserin aut Junliang Wu verfasserin aut In Nanomaterials MDPI AG, 2012 13(2023), 6, p 1026 (DE-627)718627199 (DE-600)2662255-5 20794991 nnns volume:13 year:2023 number:6, p 1026 https://doi.org/10.3390/nano13061026 kostenfrei https://doaj.org/article/dc312de3d5ef44569e34d9dc516a3674 kostenfrei https://www.mdpi.com/2079-4991/13/6/1026 kostenfrei https://doaj.org/toc/2079-4991 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 6, p 1026 |
allfieldsSound |
10.3390/nano13061026 doi (DE-627)DOAJ087277158 (DE-599)DOAJdc312de3d5ef44569e34d9dc516a3674 DE-627 ger DE-627 rakwb eng QD1-999 Guangyi Zhang verfasserin aut Insights into the Role of Nanorod-Shaped MnO<sub<2</sub< and CeO<sub<2</sub< in a Plasma Catalysis System for Methanol Oxidation 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Published papers highlight the roles of the catalysts in plasma catalysis systems, and it is essential to provide deep insight into the mechanism of the reaction. In this work, a coaxial dielectric barrier discharge (DBD) reactor packed with γ-MnO<sub<2</sub< and CeO<sub<2</sub< with similar nanorod morphologies and particle sizes was used for methanol oxidation at atmospheric pressure and room temperature. The experimental results showed that both γ-MnO<sub<2</sub< and CeO<sub<2</sub< exhibited good performance in methanol conversion (up to 100%), but the CO<sub<2</sub< selectivity of CeO<sub<2</sub< (up to 59.3%) was much higher than that of γ-MnO<sub<2</sub< (up to 28.6%). Catalyst characterization results indicated that CeO<sub<2</sub< contained more surface-active oxygen species, adsorbed more methanol and utilized more plasma-induced active species than γ-MnO<sub<2</sub<. In addition, in situ Raman spectroscopy and Fourier transform infrared spectroscopy (FT-IR) were applied with a novel in situ cell to reveal the major factors affecting the catalytic performance in methanol oxidation. More reactive oxygen species (O<sub<2</sub<<sup<2−</sup<, O<sup<2−</sup<) from ozone decomposition were produced on CeO<sub<2</sub< compared with γ-MnO<sub<2</sub<, and less of the intermediate product formate accumulated on the CeO<sub<2</sub<. The combined results showed that CeO<sub<2</sub< was a more effective catalyst than γ-MnO<sub<2</sub< for methanol oxidation in the plasma catalysis system. methanol oxidation plasma catalysis CeO<sub<2</sub< MnO<sub<2</sub< in situ ft-IR Chemistry Gui Chen verfasserin aut Haomin Huang verfasserin aut Yexia Qin verfasserin aut Mingli Fu verfasserin aut Xin Tu verfasserin aut Daiqi Ye verfasserin aut Junliang Wu verfasserin aut In Nanomaterials MDPI AG, 2012 13(2023), 6, p 1026 (DE-627)718627199 (DE-600)2662255-5 20794991 nnns volume:13 year:2023 number:6, p 1026 https://doi.org/10.3390/nano13061026 kostenfrei https://doaj.org/article/dc312de3d5ef44569e34d9dc516a3674 kostenfrei https://www.mdpi.com/2079-4991/13/6/1026 kostenfrei https://doaj.org/toc/2079-4991 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 6, p 1026 |
language |
English |
source |
In Nanomaterials 13(2023), 6, p 1026 volume:13 year:2023 number:6, p 1026 |
sourceStr |
In Nanomaterials 13(2023), 6, p 1026 volume:13 year:2023 number:6, p 1026 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
methanol oxidation plasma catalysis CeO<sub<2</sub< MnO<sub<2</sub< in situ ft-IR Chemistry |
isfreeaccess_bool |
true |
container_title |
Nanomaterials |
authorswithroles_txt_mv |
Guangyi Zhang @@aut@@ Gui Chen @@aut@@ Haomin Huang @@aut@@ Yexia Qin @@aut@@ Mingli Fu @@aut@@ Xin Tu @@aut@@ Daiqi Ye @@aut@@ Junliang Wu @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
718627199 |
id |
DOAJ087277158 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ087277158</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413050050.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230331s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/nano13061026</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ087277158</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJdc312de3d5ef44569e34d9dc516a3674</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Guangyi Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Insights into the Role of Nanorod-Shaped MnO<sub<2</sub< and CeO<sub<2</sub< in a Plasma Catalysis System for Methanol Oxidation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Published papers highlight the roles of the catalysts in plasma catalysis systems, and it is essential to provide deep insight into the mechanism of the reaction. In this work, a coaxial dielectric barrier discharge (DBD) reactor packed with γ-MnO<sub<2</sub< and CeO<sub<2</sub< with similar nanorod morphologies and particle sizes was used for methanol oxidation at atmospheric pressure and room temperature. The experimental results showed that both γ-MnO<sub<2</sub< and CeO<sub<2</sub< exhibited good performance in methanol conversion (up to 100%), but the CO<sub<2</sub< selectivity of CeO<sub<2</sub< (up to 59.3%) was much higher than that of γ-MnO<sub<2</sub< (up to 28.6%). Catalyst characterization results indicated that CeO<sub<2</sub< contained more surface-active oxygen species, adsorbed more methanol and utilized more plasma-induced active species than γ-MnO<sub<2</sub<. In addition, in situ Raman spectroscopy and Fourier transform infrared spectroscopy (FT-IR) were applied with a novel in situ cell to reveal the major factors affecting the catalytic performance in methanol oxidation. More reactive oxygen species (O<sub<2</sub<<sup<2−</sup<, O<sup<2−</sup<) from ozone decomposition were produced on CeO<sub<2</sub< compared with γ-MnO<sub<2</sub<, and less of the intermediate product formate accumulated on the CeO<sub<2</sub<. The combined results showed that CeO<sub<2</sub< was a more effective catalyst than γ-MnO<sub<2</sub< for methanol oxidation in the plasma catalysis system.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">methanol oxidation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">plasma catalysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CeO<sub<2</sub<</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MnO<sub<2</sub<</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">in situ ft-IR</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gui Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haomin Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yexia Qin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mingli Fu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xin Tu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Daiqi Ye</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Junliang Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Nanomaterials</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">13(2023), 6, p 1026</subfield><subfield code="w">(DE-627)718627199</subfield><subfield code="w">(DE-600)2662255-5</subfield><subfield code="x">20794991</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:6, p 1026</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/nano13061026</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/dc312de3d5ef44569e34d9dc516a3674</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2079-4991/13/6/1026</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2079-4991</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2023</subfield><subfield code="e">6, p 1026</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Guangyi Zhang |
spellingShingle |
Guangyi Zhang misc QD1-999 misc methanol oxidation misc plasma catalysis misc CeO<sub<2</sub< misc MnO<sub<2</sub< misc in situ ft-IR misc Chemistry Insights into the Role of Nanorod-Shaped MnO<sub<2</sub< and CeO<sub<2</sub< in a Plasma Catalysis System for Methanol Oxidation |
authorStr |
Guangyi Zhang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)718627199 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QD1-999 |
illustrated |
Not Illustrated |
issn |
20794991 |
topic_title |
QD1-999 Insights into the Role of Nanorod-Shaped MnO<sub<2</sub< and CeO<sub<2</sub< in a Plasma Catalysis System for Methanol Oxidation methanol oxidation plasma catalysis CeO<sub<2</sub< MnO<sub<2</sub< in situ ft-IR |
topic |
misc QD1-999 misc methanol oxidation misc plasma catalysis misc CeO<sub<2</sub< misc MnO<sub<2</sub< misc in situ ft-IR misc Chemistry |
topic_unstemmed |
misc QD1-999 misc methanol oxidation misc plasma catalysis misc CeO<sub<2</sub< misc MnO<sub<2</sub< misc in situ ft-IR misc Chemistry |
topic_browse |
misc QD1-999 misc methanol oxidation misc plasma catalysis misc CeO<sub<2</sub< misc MnO<sub<2</sub< misc in situ ft-IR misc Chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Nanomaterials |
hierarchy_parent_id |
718627199 |
hierarchy_top_title |
Nanomaterials |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)718627199 (DE-600)2662255-5 |
title |
Insights into the Role of Nanorod-Shaped MnO<sub<2</sub< and CeO<sub<2</sub< in a Plasma Catalysis System for Methanol Oxidation |
ctrlnum |
(DE-627)DOAJ087277158 (DE-599)DOAJdc312de3d5ef44569e34d9dc516a3674 |
title_full |
Insights into the Role of Nanorod-Shaped MnO<sub<2</sub< and CeO<sub<2</sub< in a Plasma Catalysis System for Methanol Oxidation |
author_sort |
Guangyi Zhang |
journal |
Nanomaterials |
journalStr |
Nanomaterials |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Guangyi Zhang Gui Chen Haomin Huang Yexia Qin Mingli Fu Xin Tu Daiqi Ye Junliang Wu |
container_volume |
13 |
class |
QD1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Guangyi Zhang |
doi_str_mv |
10.3390/nano13061026 |
author2-role |
verfasserin |
title_sort |
insights into the role of nanorod-shaped mno<sub<2</sub< and ceo<sub<2</sub< in a plasma catalysis system for methanol oxidation |
callnumber |
QD1-999 |
title_auth |
Insights into the Role of Nanorod-Shaped MnO<sub<2</sub< and CeO<sub<2</sub< in a Plasma Catalysis System for Methanol Oxidation |
abstract |
Published papers highlight the roles of the catalysts in plasma catalysis systems, and it is essential to provide deep insight into the mechanism of the reaction. In this work, a coaxial dielectric barrier discharge (DBD) reactor packed with γ-MnO<sub<2</sub< and CeO<sub<2</sub< with similar nanorod morphologies and particle sizes was used for methanol oxidation at atmospheric pressure and room temperature. The experimental results showed that both γ-MnO<sub<2</sub< and CeO<sub<2</sub< exhibited good performance in methanol conversion (up to 100%), but the CO<sub<2</sub< selectivity of CeO<sub<2</sub< (up to 59.3%) was much higher than that of γ-MnO<sub<2</sub< (up to 28.6%). Catalyst characterization results indicated that CeO<sub<2</sub< contained more surface-active oxygen species, adsorbed more methanol and utilized more plasma-induced active species than γ-MnO<sub<2</sub<. In addition, in situ Raman spectroscopy and Fourier transform infrared spectroscopy (FT-IR) were applied with a novel in situ cell to reveal the major factors affecting the catalytic performance in methanol oxidation. More reactive oxygen species (O<sub<2</sub<<sup<2−</sup<, O<sup<2−</sup<) from ozone decomposition were produced on CeO<sub<2</sub< compared with γ-MnO<sub<2</sub<, and less of the intermediate product formate accumulated on the CeO<sub<2</sub<. The combined results showed that CeO<sub<2</sub< was a more effective catalyst than γ-MnO<sub<2</sub< for methanol oxidation in the plasma catalysis system. |
abstractGer |
Published papers highlight the roles of the catalysts in plasma catalysis systems, and it is essential to provide deep insight into the mechanism of the reaction. In this work, a coaxial dielectric barrier discharge (DBD) reactor packed with γ-MnO<sub<2</sub< and CeO<sub<2</sub< with similar nanorod morphologies and particle sizes was used for methanol oxidation at atmospheric pressure and room temperature. The experimental results showed that both γ-MnO<sub<2</sub< and CeO<sub<2</sub< exhibited good performance in methanol conversion (up to 100%), but the CO<sub<2</sub< selectivity of CeO<sub<2</sub< (up to 59.3%) was much higher than that of γ-MnO<sub<2</sub< (up to 28.6%). Catalyst characterization results indicated that CeO<sub<2</sub< contained more surface-active oxygen species, adsorbed more methanol and utilized more plasma-induced active species than γ-MnO<sub<2</sub<. In addition, in situ Raman spectroscopy and Fourier transform infrared spectroscopy (FT-IR) were applied with a novel in situ cell to reveal the major factors affecting the catalytic performance in methanol oxidation. More reactive oxygen species (O<sub<2</sub<<sup<2−</sup<, O<sup<2−</sup<) from ozone decomposition were produced on CeO<sub<2</sub< compared with γ-MnO<sub<2</sub<, and less of the intermediate product formate accumulated on the CeO<sub<2</sub<. The combined results showed that CeO<sub<2</sub< was a more effective catalyst than γ-MnO<sub<2</sub< for methanol oxidation in the plasma catalysis system. |
abstract_unstemmed |
Published papers highlight the roles of the catalysts in plasma catalysis systems, and it is essential to provide deep insight into the mechanism of the reaction. In this work, a coaxial dielectric barrier discharge (DBD) reactor packed with γ-MnO<sub<2</sub< and CeO<sub<2</sub< with similar nanorod morphologies and particle sizes was used for methanol oxidation at atmospheric pressure and room temperature. The experimental results showed that both γ-MnO<sub<2</sub< and CeO<sub<2</sub< exhibited good performance in methanol conversion (up to 100%), but the CO<sub<2</sub< selectivity of CeO<sub<2</sub< (up to 59.3%) was much higher than that of γ-MnO<sub<2</sub< (up to 28.6%). Catalyst characterization results indicated that CeO<sub<2</sub< contained more surface-active oxygen species, adsorbed more methanol and utilized more plasma-induced active species than γ-MnO<sub<2</sub<. In addition, in situ Raman spectroscopy and Fourier transform infrared spectroscopy (FT-IR) were applied with a novel in situ cell to reveal the major factors affecting the catalytic performance in methanol oxidation. More reactive oxygen species (O<sub<2</sub<<sup<2−</sup<, O<sup<2−</sup<) from ozone decomposition were produced on CeO<sub<2</sub< compared with γ-MnO<sub<2</sub<, and less of the intermediate product formate accumulated on the CeO<sub<2</sub<. The combined results showed that CeO<sub<2</sub< was a more effective catalyst than γ-MnO<sub<2</sub< for methanol oxidation in the plasma catalysis system. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
6, p 1026 |
title_short |
Insights into the Role of Nanorod-Shaped MnO<sub<2</sub< and CeO<sub<2</sub< in a Plasma Catalysis System for Methanol Oxidation |
url |
https://doi.org/10.3390/nano13061026 https://doaj.org/article/dc312de3d5ef44569e34d9dc516a3674 https://www.mdpi.com/2079-4991/13/6/1026 https://doaj.org/toc/2079-4991 |
remote_bool |
true |
author2 |
Gui Chen Haomin Huang Yexia Qin Mingli Fu Xin Tu Daiqi Ye Junliang Wu |
author2Str |
Gui Chen Haomin Huang Yexia Qin Mingli Fu Xin Tu Daiqi Ye Junliang Wu |
ppnlink |
718627199 |
callnumber-subject |
QD - Chemistry |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/nano13061026 |
callnumber-a |
QD1-999 |
up_date |
2024-07-04T01:00:04.529Z |
_version_ |
1803608186715897856 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ087277158</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413050050.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230331s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/nano13061026</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ087277158</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJdc312de3d5ef44569e34d9dc516a3674</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Guangyi Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Insights into the Role of Nanorod-Shaped MnO<sub<2</sub< and CeO<sub<2</sub< in a Plasma Catalysis System for Methanol Oxidation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Published papers highlight the roles of the catalysts in plasma catalysis systems, and it is essential to provide deep insight into the mechanism of the reaction. In this work, a coaxial dielectric barrier discharge (DBD) reactor packed with γ-MnO<sub<2</sub< and CeO<sub<2</sub< with similar nanorod morphologies and particle sizes was used for methanol oxidation at atmospheric pressure and room temperature. The experimental results showed that both γ-MnO<sub<2</sub< and CeO<sub<2</sub< exhibited good performance in methanol conversion (up to 100%), but the CO<sub<2</sub< selectivity of CeO<sub<2</sub< (up to 59.3%) was much higher than that of γ-MnO<sub<2</sub< (up to 28.6%). Catalyst characterization results indicated that CeO<sub<2</sub< contained more surface-active oxygen species, adsorbed more methanol and utilized more plasma-induced active species than γ-MnO<sub<2</sub<. In addition, in situ Raman spectroscopy and Fourier transform infrared spectroscopy (FT-IR) were applied with a novel in situ cell to reveal the major factors affecting the catalytic performance in methanol oxidation. More reactive oxygen species (O<sub<2</sub<<sup<2−</sup<, O<sup<2−</sup<) from ozone decomposition were produced on CeO<sub<2</sub< compared with γ-MnO<sub<2</sub<, and less of the intermediate product formate accumulated on the CeO<sub<2</sub<. The combined results showed that CeO<sub<2</sub< was a more effective catalyst than γ-MnO<sub<2</sub< for methanol oxidation in the plasma catalysis system.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">methanol oxidation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">plasma catalysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CeO<sub<2</sub<</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MnO<sub<2</sub<</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">in situ ft-IR</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gui Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haomin Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yexia Qin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mingli Fu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xin Tu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Daiqi Ye</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Junliang Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Nanomaterials</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">13(2023), 6, p 1026</subfield><subfield code="w">(DE-627)718627199</subfield><subfield code="w">(DE-600)2662255-5</subfield><subfield code="x">20794991</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:6, p 1026</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/nano13061026</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/dc312de3d5ef44569e34d9dc516a3674</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2079-4991/13/6/1026</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2079-4991</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2023</subfield><subfield code="e">6, p 1026</subfield></datafield></record></collection>
|
score |
7.4029303 |