An Ultrasonic Target Detection System Based on Piezoelectric Micromachined Ultrasonic Transducers
In this paper, an ultrasonic target detection system based on Piezoelectric Micromachined Ultrasonic Transducers (PMUTs) is proposed, which consists of the PMUTs based ultrasonic sensor and the sensor system. Two pieces of 3 × 3 PMUTs arrays with the resonant frequency of 115 kHz are used as transmi...
Ausführliche Beschreibung
Autor*in: |
Mingze Gao [verfasserIn] Zhihao Tong [verfasserIn] Zhipeng Wu [verfasserIn] Liang Lou [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Micromachines - MDPI AG, 2010, 14(2023), 3, p 683 |
---|---|
Übergeordnetes Werk: |
volume:14 ; year:2023 ; number:3, p 683 |
Links: |
---|
DOI / URN: |
10.3390/mi14030683 |
---|
Katalog-ID: |
DOAJ087290332 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ087290332 | ||
003 | DE-627 | ||
005 | 20240413050305.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230331s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/mi14030683 |2 doi | |
035 | |a (DE-627)DOAJ087290332 | ||
035 | |a (DE-599)DOAJba98de005e754d4ab51b2c03476e8abf | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TJ1-1570 | |
100 | 0 | |a Mingze Gao |e verfasserin |4 aut | |
245 | 1 | 3 | |a An Ultrasonic Target Detection System Based on Piezoelectric Micromachined Ultrasonic Transducers |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In this paper, an ultrasonic target detection system based on Piezoelectric Micromachined Ultrasonic Transducers (PMUTs) is proposed, which consists of the PMUTs based ultrasonic sensor and the sensor system. Two pieces of 3 × 3 PMUTs arrays with the resonant frequency of 115 kHz are used as transmitter and receiver of the PMUTs-based ultrasonic sensor. Then, the sensor system can calculate the target’s position through the signal received by the above receiver. The static and dynamic performance of the proposed prototype system are characterized on black, white, and transparent targets. The experiment results demonstrated that the proposed system can detect targets of different colors, transparencies, and motion states. In the static experiments, the static location errors of the proposed system in the range of 200 mm to 320 mm are 0.51 mm, 0.50 mm and 0.53 mm, whereas the errors of a commercial laser sensor are 2.89 mm, 0.62 mm, and N\A. In the dynamic experiments, the experimental materials are the targets with thicknesses of 1 mm, 1.5 mm, 2 mm and 2.5 mm, respectively. The proposed system can detect the above targets with a maximum detection error of 4.00%. Meanwhile, the minimum resolution of the proposed system is about 0.5 mm. Finally, in the comprehensive experiments, the proposed system successfully guides a robotic manipulator to realize the detecting, grasping, and moving of a transparent target with 1 mm. This ultrasonic target detection system has demonstrated a cost-effective method to detect targets, especially transparent targets, which can be widely used in the detection and transfer of glass substrates in automated production lines. | ||
650 | 4 | |a target detection system | |
650 | 4 | |a ultrasonic sensor | |
650 | 4 | |a Piezoelectric Micromachined Ultrasonic Transducers (PMUTs) | |
650 | 4 | |a robot control | |
653 | 0 | |a Mechanical engineering and machinery | |
700 | 0 | |a Zhihao Tong |e verfasserin |4 aut | |
700 | 0 | |a Zhipeng Wu |e verfasserin |4 aut | |
700 | 0 | |a Liang Lou |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Micromachines |d MDPI AG, 2010 |g 14(2023), 3, p 683 |w (DE-627)665016069 |w (DE-600)2620864-7 |x 2072666X |7 nnns |
773 | 1 | 8 | |g volume:14 |g year:2023 |g number:3, p 683 |
856 | 4 | 0 | |u https://doi.org/10.3390/mi14030683 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/ba98de005e754d4ab51b2c03476e8abf |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2072-666X/14/3/683 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2072-666X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 14 |j 2023 |e 3, p 683 |
author_variant |
m g mg z t zt z w zw l l ll |
---|---|
matchkey_str |
article:2072666X:2023----::nlrsncagteetossebsdnizeetimcoah |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TJ |
publishDate |
2023 |
allfields |
10.3390/mi14030683 doi (DE-627)DOAJ087290332 (DE-599)DOAJba98de005e754d4ab51b2c03476e8abf DE-627 ger DE-627 rakwb eng TJ1-1570 Mingze Gao verfasserin aut An Ultrasonic Target Detection System Based on Piezoelectric Micromachined Ultrasonic Transducers 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, an ultrasonic target detection system based on Piezoelectric Micromachined Ultrasonic Transducers (PMUTs) is proposed, which consists of the PMUTs based ultrasonic sensor and the sensor system. Two pieces of 3 × 3 PMUTs arrays with the resonant frequency of 115 kHz are used as transmitter and receiver of the PMUTs-based ultrasonic sensor. Then, the sensor system can calculate the target’s position through the signal received by the above receiver. The static and dynamic performance of the proposed prototype system are characterized on black, white, and transparent targets. The experiment results demonstrated that the proposed system can detect targets of different colors, transparencies, and motion states. In the static experiments, the static location errors of the proposed system in the range of 200 mm to 320 mm are 0.51 mm, 0.50 mm and 0.53 mm, whereas the errors of a commercial laser sensor are 2.89 mm, 0.62 mm, and N\A. In the dynamic experiments, the experimental materials are the targets with thicknesses of 1 mm, 1.5 mm, 2 mm and 2.5 mm, respectively. The proposed system can detect the above targets with a maximum detection error of 4.00%. Meanwhile, the minimum resolution of the proposed system is about 0.5 mm. Finally, in the comprehensive experiments, the proposed system successfully guides a robotic manipulator to realize the detecting, grasping, and moving of a transparent target with 1 mm. This ultrasonic target detection system has demonstrated a cost-effective method to detect targets, especially transparent targets, which can be widely used in the detection and transfer of glass substrates in automated production lines. target detection system ultrasonic sensor Piezoelectric Micromachined Ultrasonic Transducers (PMUTs) robot control Mechanical engineering and machinery Zhihao Tong verfasserin aut Zhipeng Wu verfasserin aut Liang Lou verfasserin aut In Micromachines MDPI AG, 2010 14(2023), 3, p 683 (DE-627)665016069 (DE-600)2620864-7 2072666X nnns volume:14 year:2023 number:3, p 683 https://doi.org/10.3390/mi14030683 kostenfrei https://doaj.org/article/ba98de005e754d4ab51b2c03476e8abf kostenfrei https://www.mdpi.com/2072-666X/14/3/683 kostenfrei https://doaj.org/toc/2072-666X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2023 3, p 683 |
spelling |
10.3390/mi14030683 doi (DE-627)DOAJ087290332 (DE-599)DOAJba98de005e754d4ab51b2c03476e8abf DE-627 ger DE-627 rakwb eng TJ1-1570 Mingze Gao verfasserin aut An Ultrasonic Target Detection System Based on Piezoelectric Micromachined Ultrasonic Transducers 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, an ultrasonic target detection system based on Piezoelectric Micromachined Ultrasonic Transducers (PMUTs) is proposed, which consists of the PMUTs based ultrasonic sensor and the sensor system. Two pieces of 3 × 3 PMUTs arrays with the resonant frequency of 115 kHz are used as transmitter and receiver of the PMUTs-based ultrasonic sensor. Then, the sensor system can calculate the target’s position through the signal received by the above receiver. The static and dynamic performance of the proposed prototype system are characterized on black, white, and transparent targets. The experiment results demonstrated that the proposed system can detect targets of different colors, transparencies, and motion states. In the static experiments, the static location errors of the proposed system in the range of 200 mm to 320 mm are 0.51 mm, 0.50 mm and 0.53 mm, whereas the errors of a commercial laser sensor are 2.89 mm, 0.62 mm, and N\A. In the dynamic experiments, the experimental materials are the targets with thicknesses of 1 mm, 1.5 mm, 2 mm and 2.5 mm, respectively. The proposed system can detect the above targets with a maximum detection error of 4.00%. Meanwhile, the minimum resolution of the proposed system is about 0.5 mm. Finally, in the comprehensive experiments, the proposed system successfully guides a robotic manipulator to realize the detecting, grasping, and moving of a transparent target with 1 mm. This ultrasonic target detection system has demonstrated a cost-effective method to detect targets, especially transparent targets, which can be widely used in the detection and transfer of glass substrates in automated production lines. target detection system ultrasonic sensor Piezoelectric Micromachined Ultrasonic Transducers (PMUTs) robot control Mechanical engineering and machinery Zhihao Tong verfasserin aut Zhipeng Wu verfasserin aut Liang Lou verfasserin aut In Micromachines MDPI AG, 2010 14(2023), 3, p 683 (DE-627)665016069 (DE-600)2620864-7 2072666X nnns volume:14 year:2023 number:3, p 683 https://doi.org/10.3390/mi14030683 kostenfrei https://doaj.org/article/ba98de005e754d4ab51b2c03476e8abf kostenfrei https://www.mdpi.com/2072-666X/14/3/683 kostenfrei https://doaj.org/toc/2072-666X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2023 3, p 683 |
allfields_unstemmed |
10.3390/mi14030683 doi (DE-627)DOAJ087290332 (DE-599)DOAJba98de005e754d4ab51b2c03476e8abf DE-627 ger DE-627 rakwb eng TJ1-1570 Mingze Gao verfasserin aut An Ultrasonic Target Detection System Based on Piezoelectric Micromachined Ultrasonic Transducers 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, an ultrasonic target detection system based on Piezoelectric Micromachined Ultrasonic Transducers (PMUTs) is proposed, which consists of the PMUTs based ultrasonic sensor and the sensor system. Two pieces of 3 × 3 PMUTs arrays with the resonant frequency of 115 kHz are used as transmitter and receiver of the PMUTs-based ultrasonic sensor. Then, the sensor system can calculate the target’s position through the signal received by the above receiver. The static and dynamic performance of the proposed prototype system are characterized on black, white, and transparent targets. The experiment results demonstrated that the proposed system can detect targets of different colors, transparencies, and motion states. In the static experiments, the static location errors of the proposed system in the range of 200 mm to 320 mm are 0.51 mm, 0.50 mm and 0.53 mm, whereas the errors of a commercial laser sensor are 2.89 mm, 0.62 mm, and N\A. In the dynamic experiments, the experimental materials are the targets with thicknesses of 1 mm, 1.5 mm, 2 mm and 2.5 mm, respectively. The proposed system can detect the above targets with a maximum detection error of 4.00%. Meanwhile, the minimum resolution of the proposed system is about 0.5 mm. Finally, in the comprehensive experiments, the proposed system successfully guides a robotic manipulator to realize the detecting, grasping, and moving of a transparent target with 1 mm. This ultrasonic target detection system has demonstrated a cost-effective method to detect targets, especially transparent targets, which can be widely used in the detection and transfer of glass substrates in automated production lines. target detection system ultrasonic sensor Piezoelectric Micromachined Ultrasonic Transducers (PMUTs) robot control Mechanical engineering and machinery Zhihao Tong verfasserin aut Zhipeng Wu verfasserin aut Liang Lou verfasserin aut In Micromachines MDPI AG, 2010 14(2023), 3, p 683 (DE-627)665016069 (DE-600)2620864-7 2072666X nnns volume:14 year:2023 number:3, p 683 https://doi.org/10.3390/mi14030683 kostenfrei https://doaj.org/article/ba98de005e754d4ab51b2c03476e8abf kostenfrei https://www.mdpi.com/2072-666X/14/3/683 kostenfrei https://doaj.org/toc/2072-666X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2023 3, p 683 |
allfieldsGer |
10.3390/mi14030683 doi (DE-627)DOAJ087290332 (DE-599)DOAJba98de005e754d4ab51b2c03476e8abf DE-627 ger DE-627 rakwb eng TJ1-1570 Mingze Gao verfasserin aut An Ultrasonic Target Detection System Based on Piezoelectric Micromachined Ultrasonic Transducers 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, an ultrasonic target detection system based on Piezoelectric Micromachined Ultrasonic Transducers (PMUTs) is proposed, which consists of the PMUTs based ultrasonic sensor and the sensor system. Two pieces of 3 × 3 PMUTs arrays with the resonant frequency of 115 kHz are used as transmitter and receiver of the PMUTs-based ultrasonic sensor. Then, the sensor system can calculate the target’s position through the signal received by the above receiver. The static and dynamic performance of the proposed prototype system are characterized on black, white, and transparent targets. The experiment results demonstrated that the proposed system can detect targets of different colors, transparencies, and motion states. In the static experiments, the static location errors of the proposed system in the range of 200 mm to 320 mm are 0.51 mm, 0.50 mm and 0.53 mm, whereas the errors of a commercial laser sensor are 2.89 mm, 0.62 mm, and N\A. In the dynamic experiments, the experimental materials are the targets with thicknesses of 1 mm, 1.5 mm, 2 mm and 2.5 mm, respectively. The proposed system can detect the above targets with a maximum detection error of 4.00%. Meanwhile, the minimum resolution of the proposed system is about 0.5 mm. Finally, in the comprehensive experiments, the proposed system successfully guides a robotic manipulator to realize the detecting, grasping, and moving of a transparent target with 1 mm. This ultrasonic target detection system has demonstrated a cost-effective method to detect targets, especially transparent targets, which can be widely used in the detection and transfer of glass substrates in automated production lines. target detection system ultrasonic sensor Piezoelectric Micromachined Ultrasonic Transducers (PMUTs) robot control Mechanical engineering and machinery Zhihao Tong verfasserin aut Zhipeng Wu verfasserin aut Liang Lou verfasserin aut In Micromachines MDPI AG, 2010 14(2023), 3, p 683 (DE-627)665016069 (DE-600)2620864-7 2072666X nnns volume:14 year:2023 number:3, p 683 https://doi.org/10.3390/mi14030683 kostenfrei https://doaj.org/article/ba98de005e754d4ab51b2c03476e8abf kostenfrei https://www.mdpi.com/2072-666X/14/3/683 kostenfrei https://doaj.org/toc/2072-666X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2023 3, p 683 |
allfieldsSound |
10.3390/mi14030683 doi (DE-627)DOAJ087290332 (DE-599)DOAJba98de005e754d4ab51b2c03476e8abf DE-627 ger DE-627 rakwb eng TJ1-1570 Mingze Gao verfasserin aut An Ultrasonic Target Detection System Based on Piezoelectric Micromachined Ultrasonic Transducers 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, an ultrasonic target detection system based on Piezoelectric Micromachined Ultrasonic Transducers (PMUTs) is proposed, which consists of the PMUTs based ultrasonic sensor and the sensor system. Two pieces of 3 × 3 PMUTs arrays with the resonant frequency of 115 kHz are used as transmitter and receiver of the PMUTs-based ultrasonic sensor. Then, the sensor system can calculate the target’s position through the signal received by the above receiver. The static and dynamic performance of the proposed prototype system are characterized on black, white, and transparent targets. The experiment results demonstrated that the proposed system can detect targets of different colors, transparencies, and motion states. In the static experiments, the static location errors of the proposed system in the range of 200 mm to 320 mm are 0.51 mm, 0.50 mm and 0.53 mm, whereas the errors of a commercial laser sensor are 2.89 mm, 0.62 mm, and N\A. In the dynamic experiments, the experimental materials are the targets with thicknesses of 1 mm, 1.5 mm, 2 mm and 2.5 mm, respectively. The proposed system can detect the above targets with a maximum detection error of 4.00%. Meanwhile, the minimum resolution of the proposed system is about 0.5 mm. Finally, in the comprehensive experiments, the proposed system successfully guides a robotic manipulator to realize the detecting, grasping, and moving of a transparent target with 1 mm. This ultrasonic target detection system has demonstrated a cost-effective method to detect targets, especially transparent targets, which can be widely used in the detection and transfer of glass substrates in automated production lines. target detection system ultrasonic sensor Piezoelectric Micromachined Ultrasonic Transducers (PMUTs) robot control Mechanical engineering and machinery Zhihao Tong verfasserin aut Zhipeng Wu verfasserin aut Liang Lou verfasserin aut In Micromachines MDPI AG, 2010 14(2023), 3, p 683 (DE-627)665016069 (DE-600)2620864-7 2072666X nnns volume:14 year:2023 number:3, p 683 https://doi.org/10.3390/mi14030683 kostenfrei https://doaj.org/article/ba98de005e754d4ab51b2c03476e8abf kostenfrei https://www.mdpi.com/2072-666X/14/3/683 kostenfrei https://doaj.org/toc/2072-666X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2023 3, p 683 |
language |
English |
source |
In Micromachines 14(2023), 3, p 683 volume:14 year:2023 number:3, p 683 |
sourceStr |
In Micromachines 14(2023), 3, p 683 volume:14 year:2023 number:3, p 683 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
target detection system ultrasonic sensor Piezoelectric Micromachined Ultrasonic Transducers (PMUTs) robot control Mechanical engineering and machinery |
isfreeaccess_bool |
true |
container_title |
Micromachines |
authorswithroles_txt_mv |
Mingze Gao @@aut@@ Zhihao Tong @@aut@@ Zhipeng Wu @@aut@@ Liang Lou @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
665016069 |
id |
DOAJ087290332 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ087290332</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413050305.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230331s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/mi14030683</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ087290332</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJba98de005e754d4ab51b2c03476e8abf</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ1-1570</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mingze Gao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="3"><subfield code="a">An Ultrasonic Target Detection System Based on Piezoelectric Micromachined Ultrasonic Transducers</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, an ultrasonic target detection system based on Piezoelectric Micromachined Ultrasonic Transducers (PMUTs) is proposed, which consists of the PMUTs based ultrasonic sensor and the sensor system. Two pieces of 3 × 3 PMUTs arrays with the resonant frequency of 115 kHz are used as transmitter and receiver of the PMUTs-based ultrasonic sensor. Then, the sensor system can calculate the target’s position through the signal received by the above receiver. The static and dynamic performance of the proposed prototype system are characterized on black, white, and transparent targets. The experiment results demonstrated that the proposed system can detect targets of different colors, transparencies, and motion states. In the static experiments, the static location errors of the proposed system in the range of 200 mm to 320 mm are 0.51 mm, 0.50 mm and 0.53 mm, whereas the errors of a commercial laser sensor are 2.89 mm, 0.62 mm, and N\A. In the dynamic experiments, the experimental materials are the targets with thicknesses of 1 mm, 1.5 mm, 2 mm and 2.5 mm, respectively. The proposed system can detect the above targets with a maximum detection error of 4.00%. Meanwhile, the minimum resolution of the proposed system is about 0.5 mm. Finally, in the comprehensive experiments, the proposed system successfully guides a robotic manipulator to realize the detecting, grasping, and moving of a transparent target with 1 mm. This ultrasonic target detection system has demonstrated a cost-effective method to detect targets, especially transparent targets, which can be widely used in the detection and transfer of glass substrates in automated production lines.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">target detection system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ultrasonic sensor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Piezoelectric Micromachined Ultrasonic Transducers (PMUTs)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">robot control</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mechanical engineering and machinery</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhihao Tong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhipeng Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Liang Lou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Micromachines</subfield><subfield code="d">MDPI AG, 2010</subfield><subfield code="g">14(2023), 3, p 683</subfield><subfield code="w">(DE-627)665016069</subfield><subfield code="w">(DE-600)2620864-7</subfield><subfield code="x">2072666X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:3, p 683</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/mi14030683</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ba98de005e754d4ab51b2c03476e8abf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2072-666X/14/3/683</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-666X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2023</subfield><subfield code="e">3, p 683</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Mingze Gao |
spellingShingle |
Mingze Gao misc TJ1-1570 misc target detection system misc ultrasonic sensor misc Piezoelectric Micromachined Ultrasonic Transducers (PMUTs) misc robot control misc Mechanical engineering and machinery An Ultrasonic Target Detection System Based on Piezoelectric Micromachined Ultrasonic Transducers |
authorStr |
Mingze Gao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)665016069 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TJ1-1570 |
illustrated |
Not Illustrated |
issn |
2072666X |
topic_title |
TJ1-1570 An Ultrasonic Target Detection System Based on Piezoelectric Micromachined Ultrasonic Transducers target detection system ultrasonic sensor Piezoelectric Micromachined Ultrasonic Transducers (PMUTs) robot control |
topic |
misc TJ1-1570 misc target detection system misc ultrasonic sensor misc Piezoelectric Micromachined Ultrasonic Transducers (PMUTs) misc robot control misc Mechanical engineering and machinery |
topic_unstemmed |
misc TJ1-1570 misc target detection system misc ultrasonic sensor misc Piezoelectric Micromachined Ultrasonic Transducers (PMUTs) misc robot control misc Mechanical engineering and machinery |
topic_browse |
misc TJ1-1570 misc target detection system misc ultrasonic sensor misc Piezoelectric Micromachined Ultrasonic Transducers (PMUTs) misc robot control misc Mechanical engineering and machinery |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Micromachines |
hierarchy_parent_id |
665016069 |
hierarchy_top_title |
Micromachines |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)665016069 (DE-600)2620864-7 |
title |
An Ultrasonic Target Detection System Based on Piezoelectric Micromachined Ultrasonic Transducers |
ctrlnum |
(DE-627)DOAJ087290332 (DE-599)DOAJba98de005e754d4ab51b2c03476e8abf |
title_full |
An Ultrasonic Target Detection System Based on Piezoelectric Micromachined Ultrasonic Transducers |
author_sort |
Mingze Gao |
journal |
Micromachines |
journalStr |
Micromachines |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Mingze Gao Zhihao Tong Zhipeng Wu Liang Lou |
container_volume |
14 |
class |
TJ1-1570 |
format_se |
Elektronische Aufsätze |
author-letter |
Mingze Gao |
doi_str_mv |
10.3390/mi14030683 |
author2-role |
verfasserin |
title_sort |
ultrasonic target detection system based on piezoelectric micromachined ultrasonic transducers |
callnumber |
TJ1-1570 |
title_auth |
An Ultrasonic Target Detection System Based on Piezoelectric Micromachined Ultrasonic Transducers |
abstract |
In this paper, an ultrasonic target detection system based on Piezoelectric Micromachined Ultrasonic Transducers (PMUTs) is proposed, which consists of the PMUTs based ultrasonic sensor and the sensor system. Two pieces of 3 × 3 PMUTs arrays with the resonant frequency of 115 kHz are used as transmitter and receiver of the PMUTs-based ultrasonic sensor. Then, the sensor system can calculate the target’s position through the signal received by the above receiver. The static and dynamic performance of the proposed prototype system are characterized on black, white, and transparent targets. The experiment results demonstrated that the proposed system can detect targets of different colors, transparencies, and motion states. In the static experiments, the static location errors of the proposed system in the range of 200 mm to 320 mm are 0.51 mm, 0.50 mm and 0.53 mm, whereas the errors of a commercial laser sensor are 2.89 mm, 0.62 mm, and N\A. In the dynamic experiments, the experimental materials are the targets with thicknesses of 1 mm, 1.5 mm, 2 mm and 2.5 mm, respectively. The proposed system can detect the above targets with a maximum detection error of 4.00%. Meanwhile, the minimum resolution of the proposed system is about 0.5 mm. Finally, in the comprehensive experiments, the proposed system successfully guides a robotic manipulator to realize the detecting, grasping, and moving of a transparent target with 1 mm. This ultrasonic target detection system has demonstrated a cost-effective method to detect targets, especially transparent targets, which can be widely used in the detection and transfer of glass substrates in automated production lines. |
abstractGer |
In this paper, an ultrasonic target detection system based on Piezoelectric Micromachined Ultrasonic Transducers (PMUTs) is proposed, which consists of the PMUTs based ultrasonic sensor and the sensor system. Two pieces of 3 × 3 PMUTs arrays with the resonant frequency of 115 kHz are used as transmitter and receiver of the PMUTs-based ultrasonic sensor. Then, the sensor system can calculate the target’s position through the signal received by the above receiver. The static and dynamic performance of the proposed prototype system are characterized on black, white, and transparent targets. The experiment results demonstrated that the proposed system can detect targets of different colors, transparencies, and motion states. In the static experiments, the static location errors of the proposed system in the range of 200 mm to 320 mm are 0.51 mm, 0.50 mm and 0.53 mm, whereas the errors of a commercial laser sensor are 2.89 mm, 0.62 mm, and N\A. In the dynamic experiments, the experimental materials are the targets with thicknesses of 1 mm, 1.5 mm, 2 mm and 2.5 mm, respectively. The proposed system can detect the above targets with a maximum detection error of 4.00%. Meanwhile, the minimum resolution of the proposed system is about 0.5 mm. Finally, in the comprehensive experiments, the proposed system successfully guides a robotic manipulator to realize the detecting, grasping, and moving of a transparent target with 1 mm. This ultrasonic target detection system has demonstrated a cost-effective method to detect targets, especially transparent targets, which can be widely used in the detection and transfer of glass substrates in automated production lines. |
abstract_unstemmed |
In this paper, an ultrasonic target detection system based on Piezoelectric Micromachined Ultrasonic Transducers (PMUTs) is proposed, which consists of the PMUTs based ultrasonic sensor and the sensor system. Two pieces of 3 × 3 PMUTs arrays with the resonant frequency of 115 kHz are used as transmitter and receiver of the PMUTs-based ultrasonic sensor. Then, the sensor system can calculate the target’s position through the signal received by the above receiver. The static and dynamic performance of the proposed prototype system are characterized on black, white, and transparent targets. The experiment results demonstrated that the proposed system can detect targets of different colors, transparencies, and motion states. In the static experiments, the static location errors of the proposed system in the range of 200 mm to 320 mm are 0.51 mm, 0.50 mm and 0.53 mm, whereas the errors of a commercial laser sensor are 2.89 mm, 0.62 mm, and N\A. In the dynamic experiments, the experimental materials are the targets with thicknesses of 1 mm, 1.5 mm, 2 mm and 2.5 mm, respectively. The proposed system can detect the above targets with a maximum detection error of 4.00%. Meanwhile, the minimum resolution of the proposed system is about 0.5 mm. Finally, in the comprehensive experiments, the proposed system successfully guides a robotic manipulator to realize the detecting, grasping, and moving of a transparent target with 1 mm. This ultrasonic target detection system has demonstrated a cost-effective method to detect targets, especially transparent targets, which can be widely used in the detection and transfer of glass substrates in automated production lines. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
3, p 683 |
title_short |
An Ultrasonic Target Detection System Based on Piezoelectric Micromachined Ultrasonic Transducers |
url |
https://doi.org/10.3390/mi14030683 https://doaj.org/article/ba98de005e754d4ab51b2c03476e8abf https://www.mdpi.com/2072-666X/14/3/683 https://doaj.org/toc/2072-666X |
remote_bool |
true |
author2 |
Zhihao Tong Zhipeng Wu Liang Lou |
author2Str |
Zhihao Tong Zhipeng Wu Liang Lou |
ppnlink |
665016069 |
callnumber-subject |
TJ - Mechanical Engineering and Machinery |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/mi14030683 |
callnumber-a |
TJ1-1570 |
up_date |
2024-07-04T01:03:34.199Z |
_version_ |
1803608406570827776 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ087290332</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413050305.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230331s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/mi14030683</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ087290332</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJba98de005e754d4ab51b2c03476e8abf</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ1-1570</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mingze Gao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="3"><subfield code="a">An Ultrasonic Target Detection System Based on Piezoelectric Micromachined Ultrasonic Transducers</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, an ultrasonic target detection system based on Piezoelectric Micromachined Ultrasonic Transducers (PMUTs) is proposed, which consists of the PMUTs based ultrasonic sensor and the sensor system. Two pieces of 3 × 3 PMUTs arrays with the resonant frequency of 115 kHz are used as transmitter and receiver of the PMUTs-based ultrasonic sensor. Then, the sensor system can calculate the target’s position through the signal received by the above receiver. The static and dynamic performance of the proposed prototype system are characterized on black, white, and transparent targets. The experiment results demonstrated that the proposed system can detect targets of different colors, transparencies, and motion states. In the static experiments, the static location errors of the proposed system in the range of 200 mm to 320 mm are 0.51 mm, 0.50 mm and 0.53 mm, whereas the errors of a commercial laser sensor are 2.89 mm, 0.62 mm, and N\A. In the dynamic experiments, the experimental materials are the targets with thicknesses of 1 mm, 1.5 mm, 2 mm and 2.5 mm, respectively. The proposed system can detect the above targets with a maximum detection error of 4.00%. Meanwhile, the minimum resolution of the proposed system is about 0.5 mm. Finally, in the comprehensive experiments, the proposed system successfully guides a robotic manipulator to realize the detecting, grasping, and moving of a transparent target with 1 mm. This ultrasonic target detection system has demonstrated a cost-effective method to detect targets, especially transparent targets, which can be widely used in the detection and transfer of glass substrates in automated production lines.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">target detection system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ultrasonic sensor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Piezoelectric Micromachined Ultrasonic Transducers (PMUTs)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">robot control</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mechanical engineering and machinery</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhihao Tong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhipeng Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Liang Lou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Micromachines</subfield><subfield code="d">MDPI AG, 2010</subfield><subfield code="g">14(2023), 3, p 683</subfield><subfield code="w">(DE-627)665016069</subfield><subfield code="w">(DE-600)2620864-7</subfield><subfield code="x">2072666X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:3, p 683</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/mi14030683</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ba98de005e754d4ab51b2c03476e8abf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2072-666X/14/3/683</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-666X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2023</subfield><subfield code="e">3, p 683</subfield></datafield></record></collection>
|
score |
7.4016743 |