Research on Multi-Decision Sinter Composition Optimization Based on OLS Algorithm
The adjustment of sintering raw materials has a decisive influence on the composition of blast furnace slag and the properties of sinter. In order to smelt high-quality molten iron in the blast furnace, the composition of the sinter must be properly adjusted so that the composition of the blast furn...
Ausführliche Beschreibung
Autor*in: |
Shilong Feng [verfasserIn] Bin Wang [verfasserIn] Zixing Zhou [verfasserIn] Tao Xue [verfasserIn] Aimin Yang [verfasserIn] Yifan Li [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Metals - MDPI AG, 2012, 13(2023), 3, p 548 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2023 ; number:3, p 548 |
Links: |
---|
DOI / URN: |
10.3390/met13030548 |
---|
Katalog-ID: |
DOAJ087293943 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ087293943 | ||
003 | DE-627 | ||
005 | 20240413050344.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230331s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/met13030548 |2 doi | |
035 | |a (DE-627)DOAJ087293943 | ||
035 | |a (DE-599)DOAJ6bb38484713a4b23826d5549dbf2114d | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TN1-997 | |
100 | 0 | |a Shilong Feng |e verfasserin |4 aut | |
245 | 1 | 0 | |a Research on Multi-Decision Sinter Composition Optimization Based on OLS Algorithm |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The adjustment of sintering raw materials has a decisive influence on the composition of blast furnace slag and the properties of sinter. In order to smelt high-quality molten iron in the blast furnace, the composition of the sinter must be properly adjusted so that the composition of the blast furnace slag and the metallurgical properties of the sinter are optimal for the quality of the iron and are conducive to the smooth operation of the blast furnace. In view of the huge difference in the quality and price of sintering raw materials, this paper proposes an automatic sintering ore blending model to quickly configure sintering raw materials according to the requirements of the production line. This method is based on the calculation process of blast furnace charge, combined with the constraints of process composition and cost performance, to establish a multi-decision sintering ore blending model based on the OLS(Ordinary least squares) algorithm to automatically screen from available raw materials and give the sinter that meets the requirements of the furnace. The plan finally makes TFe, CaO, MgO, SiO<sub<2</sub<, TiO<sub<2</sub<, Al<sub<2</sub<O<sub<3</sub<, P, Mn, Na<sub<2</sub<O, K<sub<2</sub<O, Zn, and other components meet the requirements of the production line, and meet the cost performance requirements of the enterprise for sinter. The model can complete the screening and proportioning of 43 kinds of raw materials within 10 s, and its performance can meet the requirements of the production of variable materials. Combined with an example, a comparative analysis experiment is carried out on the accuracy and practicability of the designed sintering and ore blending model. The experimental results show that the accuracy and efficiency of the method proposed in this paper are higher than those of the current ore blending scheme designed by enterprise engineers. This method can provide an effective reference for the stable operation of the sintering production line. | ||
650 | 4 | |a sintering decision | |
650 | 4 | |a sinter | |
650 | 4 | |a sintering change material | |
653 | 0 | |a Mining engineering. Metallurgy | |
700 | 0 | |a Bin Wang |e verfasserin |4 aut | |
700 | 0 | |a Zixing Zhou |e verfasserin |4 aut | |
700 | 0 | |a Tao Xue |e verfasserin |4 aut | |
700 | 0 | |a Aimin Yang |e verfasserin |4 aut | |
700 | 0 | |a Yifan Li |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Metals |d MDPI AG, 2012 |g 13(2023), 3, p 548 |w (DE-627)718627172 |w (DE-600)2662252-X |x 20754701 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2023 |g number:3, p 548 |
856 | 4 | 0 | |u https://doi.org/10.3390/met13030548 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/6bb38484713a4b23826d5549dbf2114d |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2075-4701/13/3/548 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2075-4701 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2023 |e 3, p 548 |
author_variant |
s f sf b w bw z z zz t x tx a y ay y l yl |
---|---|
matchkey_str |
article:20754701:2023----::eerhnutdcsosnecmoiinpiiai |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TN |
publishDate |
2023 |
allfields |
10.3390/met13030548 doi (DE-627)DOAJ087293943 (DE-599)DOAJ6bb38484713a4b23826d5549dbf2114d DE-627 ger DE-627 rakwb eng TN1-997 Shilong Feng verfasserin aut Research on Multi-Decision Sinter Composition Optimization Based on OLS Algorithm 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The adjustment of sintering raw materials has a decisive influence on the composition of blast furnace slag and the properties of sinter. In order to smelt high-quality molten iron in the blast furnace, the composition of the sinter must be properly adjusted so that the composition of the blast furnace slag and the metallurgical properties of the sinter are optimal for the quality of the iron and are conducive to the smooth operation of the blast furnace. In view of the huge difference in the quality and price of sintering raw materials, this paper proposes an automatic sintering ore blending model to quickly configure sintering raw materials according to the requirements of the production line. This method is based on the calculation process of blast furnace charge, combined with the constraints of process composition and cost performance, to establish a multi-decision sintering ore blending model based on the OLS(Ordinary least squares) algorithm to automatically screen from available raw materials and give the sinter that meets the requirements of the furnace. The plan finally makes TFe, CaO, MgO, SiO<sub<2</sub<, TiO<sub<2</sub<, Al<sub<2</sub<O<sub<3</sub<, P, Mn, Na<sub<2</sub<O, K<sub<2</sub<O, Zn, and other components meet the requirements of the production line, and meet the cost performance requirements of the enterprise for sinter. The model can complete the screening and proportioning of 43 kinds of raw materials within 10 s, and its performance can meet the requirements of the production of variable materials. Combined with an example, a comparative analysis experiment is carried out on the accuracy and practicability of the designed sintering and ore blending model. The experimental results show that the accuracy and efficiency of the method proposed in this paper are higher than those of the current ore blending scheme designed by enterprise engineers. This method can provide an effective reference for the stable operation of the sintering production line. sintering decision sinter sintering change material Mining engineering. Metallurgy Bin Wang verfasserin aut Zixing Zhou verfasserin aut Tao Xue verfasserin aut Aimin Yang verfasserin aut Yifan Li verfasserin aut In Metals MDPI AG, 2012 13(2023), 3, p 548 (DE-627)718627172 (DE-600)2662252-X 20754701 nnns volume:13 year:2023 number:3, p 548 https://doi.org/10.3390/met13030548 kostenfrei https://doaj.org/article/6bb38484713a4b23826d5549dbf2114d kostenfrei https://www.mdpi.com/2075-4701/13/3/548 kostenfrei https://doaj.org/toc/2075-4701 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 3, p 548 |
spelling |
10.3390/met13030548 doi (DE-627)DOAJ087293943 (DE-599)DOAJ6bb38484713a4b23826d5549dbf2114d DE-627 ger DE-627 rakwb eng TN1-997 Shilong Feng verfasserin aut Research on Multi-Decision Sinter Composition Optimization Based on OLS Algorithm 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The adjustment of sintering raw materials has a decisive influence on the composition of blast furnace slag and the properties of sinter. In order to smelt high-quality molten iron in the blast furnace, the composition of the sinter must be properly adjusted so that the composition of the blast furnace slag and the metallurgical properties of the sinter are optimal for the quality of the iron and are conducive to the smooth operation of the blast furnace. In view of the huge difference in the quality and price of sintering raw materials, this paper proposes an automatic sintering ore blending model to quickly configure sintering raw materials according to the requirements of the production line. This method is based on the calculation process of blast furnace charge, combined with the constraints of process composition and cost performance, to establish a multi-decision sintering ore blending model based on the OLS(Ordinary least squares) algorithm to automatically screen from available raw materials and give the sinter that meets the requirements of the furnace. The plan finally makes TFe, CaO, MgO, SiO<sub<2</sub<, TiO<sub<2</sub<, Al<sub<2</sub<O<sub<3</sub<, P, Mn, Na<sub<2</sub<O, K<sub<2</sub<O, Zn, and other components meet the requirements of the production line, and meet the cost performance requirements of the enterprise for sinter. The model can complete the screening and proportioning of 43 kinds of raw materials within 10 s, and its performance can meet the requirements of the production of variable materials. Combined with an example, a comparative analysis experiment is carried out on the accuracy and practicability of the designed sintering and ore blending model. The experimental results show that the accuracy and efficiency of the method proposed in this paper are higher than those of the current ore blending scheme designed by enterprise engineers. This method can provide an effective reference for the stable operation of the sintering production line. sintering decision sinter sintering change material Mining engineering. Metallurgy Bin Wang verfasserin aut Zixing Zhou verfasserin aut Tao Xue verfasserin aut Aimin Yang verfasserin aut Yifan Li verfasserin aut In Metals MDPI AG, 2012 13(2023), 3, p 548 (DE-627)718627172 (DE-600)2662252-X 20754701 nnns volume:13 year:2023 number:3, p 548 https://doi.org/10.3390/met13030548 kostenfrei https://doaj.org/article/6bb38484713a4b23826d5549dbf2114d kostenfrei https://www.mdpi.com/2075-4701/13/3/548 kostenfrei https://doaj.org/toc/2075-4701 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 3, p 548 |
allfields_unstemmed |
10.3390/met13030548 doi (DE-627)DOAJ087293943 (DE-599)DOAJ6bb38484713a4b23826d5549dbf2114d DE-627 ger DE-627 rakwb eng TN1-997 Shilong Feng verfasserin aut Research on Multi-Decision Sinter Composition Optimization Based on OLS Algorithm 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The adjustment of sintering raw materials has a decisive influence on the composition of blast furnace slag and the properties of sinter. In order to smelt high-quality molten iron in the blast furnace, the composition of the sinter must be properly adjusted so that the composition of the blast furnace slag and the metallurgical properties of the sinter are optimal for the quality of the iron and are conducive to the smooth operation of the blast furnace. In view of the huge difference in the quality and price of sintering raw materials, this paper proposes an automatic sintering ore blending model to quickly configure sintering raw materials according to the requirements of the production line. This method is based on the calculation process of blast furnace charge, combined with the constraints of process composition and cost performance, to establish a multi-decision sintering ore blending model based on the OLS(Ordinary least squares) algorithm to automatically screen from available raw materials and give the sinter that meets the requirements of the furnace. The plan finally makes TFe, CaO, MgO, SiO<sub<2</sub<, TiO<sub<2</sub<, Al<sub<2</sub<O<sub<3</sub<, P, Mn, Na<sub<2</sub<O, K<sub<2</sub<O, Zn, and other components meet the requirements of the production line, and meet the cost performance requirements of the enterprise for sinter. The model can complete the screening and proportioning of 43 kinds of raw materials within 10 s, and its performance can meet the requirements of the production of variable materials. Combined with an example, a comparative analysis experiment is carried out on the accuracy and practicability of the designed sintering and ore blending model. The experimental results show that the accuracy and efficiency of the method proposed in this paper are higher than those of the current ore blending scheme designed by enterprise engineers. This method can provide an effective reference for the stable operation of the sintering production line. sintering decision sinter sintering change material Mining engineering. Metallurgy Bin Wang verfasserin aut Zixing Zhou verfasserin aut Tao Xue verfasserin aut Aimin Yang verfasserin aut Yifan Li verfasserin aut In Metals MDPI AG, 2012 13(2023), 3, p 548 (DE-627)718627172 (DE-600)2662252-X 20754701 nnns volume:13 year:2023 number:3, p 548 https://doi.org/10.3390/met13030548 kostenfrei https://doaj.org/article/6bb38484713a4b23826d5549dbf2114d kostenfrei https://www.mdpi.com/2075-4701/13/3/548 kostenfrei https://doaj.org/toc/2075-4701 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 3, p 548 |
allfieldsGer |
10.3390/met13030548 doi (DE-627)DOAJ087293943 (DE-599)DOAJ6bb38484713a4b23826d5549dbf2114d DE-627 ger DE-627 rakwb eng TN1-997 Shilong Feng verfasserin aut Research on Multi-Decision Sinter Composition Optimization Based on OLS Algorithm 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The adjustment of sintering raw materials has a decisive influence on the composition of blast furnace slag and the properties of sinter. In order to smelt high-quality molten iron in the blast furnace, the composition of the sinter must be properly adjusted so that the composition of the blast furnace slag and the metallurgical properties of the sinter are optimal for the quality of the iron and are conducive to the smooth operation of the blast furnace. In view of the huge difference in the quality and price of sintering raw materials, this paper proposes an automatic sintering ore blending model to quickly configure sintering raw materials according to the requirements of the production line. This method is based on the calculation process of blast furnace charge, combined with the constraints of process composition and cost performance, to establish a multi-decision sintering ore blending model based on the OLS(Ordinary least squares) algorithm to automatically screen from available raw materials and give the sinter that meets the requirements of the furnace. The plan finally makes TFe, CaO, MgO, SiO<sub<2</sub<, TiO<sub<2</sub<, Al<sub<2</sub<O<sub<3</sub<, P, Mn, Na<sub<2</sub<O, K<sub<2</sub<O, Zn, and other components meet the requirements of the production line, and meet the cost performance requirements of the enterprise for sinter. The model can complete the screening and proportioning of 43 kinds of raw materials within 10 s, and its performance can meet the requirements of the production of variable materials. Combined with an example, a comparative analysis experiment is carried out on the accuracy and practicability of the designed sintering and ore blending model. The experimental results show that the accuracy and efficiency of the method proposed in this paper are higher than those of the current ore blending scheme designed by enterprise engineers. This method can provide an effective reference for the stable operation of the sintering production line. sintering decision sinter sintering change material Mining engineering. Metallurgy Bin Wang verfasserin aut Zixing Zhou verfasserin aut Tao Xue verfasserin aut Aimin Yang verfasserin aut Yifan Li verfasserin aut In Metals MDPI AG, 2012 13(2023), 3, p 548 (DE-627)718627172 (DE-600)2662252-X 20754701 nnns volume:13 year:2023 number:3, p 548 https://doi.org/10.3390/met13030548 kostenfrei https://doaj.org/article/6bb38484713a4b23826d5549dbf2114d kostenfrei https://www.mdpi.com/2075-4701/13/3/548 kostenfrei https://doaj.org/toc/2075-4701 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 3, p 548 |
allfieldsSound |
10.3390/met13030548 doi (DE-627)DOAJ087293943 (DE-599)DOAJ6bb38484713a4b23826d5549dbf2114d DE-627 ger DE-627 rakwb eng TN1-997 Shilong Feng verfasserin aut Research on Multi-Decision Sinter Composition Optimization Based on OLS Algorithm 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The adjustment of sintering raw materials has a decisive influence on the composition of blast furnace slag and the properties of sinter. In order to smelt high-quality molten iron in the blast furnace, the composition of the sinter must be properly adjusted so that the composition of the blast furnace slag and the metallurgical properties of the sinter are optimal for the quality of the iron and are conducive to the smooth operation of the blast furnace. In view of the huge difference in the quality and price of sintering raw materials, this paper proposes an automatic sintering ore blending model to quickly configure sintering raw materials according to the requirements of the production line. This method is based on the calculation process of blast furnace charge, combined with the constraints of process composition and cost performance, to establish a multi-decision sintering ore blending model based on the OLS(Ordinary least squares) algorithm to automatically screen from available raw materials and give the sinter that meets the requirements of the furnace. The plan finally makes TFe, CaO, MgO, SiO<sub<2</sub<, TiO<sub<2</sub<, Al<sub<2</sub<O<sub<3</sub<, P, Mn, Na<sub<2</sub<O, K<sub<2</sub<O, Zn, and other components meet the requirements of the production line, and meet the cost performance requirements of the enterprise for sinter. The model can complete the screening and proportioning of 43 kinds of raw materials within 10 s, and its performance can meet the requirements of the production of variable materials. Combined with an example, a comparative analysis experiment is carried out on the accuracy and practicability of the designed sintering and ore blending model. The experimental results show that the accuracy and efficiency of the method proposed in this paper are higher than those of the current ore blending scheme designed by enterprise engineers. This method can provide an effective reference for the stable operation of the sintering production line. sintering decision sinter sintering change material Mining engineering. Metallurgy Bin Wang verfasserin aut Zixing Zhou verfasserin aut Tao Xue verfasserin aut Aimin Yang verfasserin aut Yifan Li verfasserin aut In Metals MDPI AG, 2012 13(2023), 3, p 548 (DE-627)718627172 (DE-600)2662252-X 20754701 nnns volume:13 year:2023 number:3, p 548 https://doi.org/10.3390/met13030548 kostenfrei https://doaj.org/article/6bb38484713a4b23826d5549dbf2114d kostenfrei https://www.mdpi.com/2075-4701/13/3/548 kostenfrei https://doaj.org/toc/2075-4701 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 3, p 548 |
language |
English |
source |
In Metals 13(2023), 3, p 548 volume:13 year:2023 number:3, p 548 |
sourceStr |
In Metals 13(2023), 3, p 548 volume:13 year:2023 number:3, p 548 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
sintering decision sinter sintering change material Mining engineering. Metallurgy |
isfreeaccess_bool |
true |
container_title |
Metals |
authorswithroles_txt_mv |
Shilong Feng @@aut@@ Bin Wang @@aut@@ Zixing Zhou @@aut@@ Tao Xue @@aut@@ Aimin Yang @@aut@@ Yifan Li @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
718627172 |
id |
DOAJ087293943 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ087293943</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413050344.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230331s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/met13030548</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ087293943</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6bb38484713a4b23826d5549dbf2114d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TN1-997</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Shilong Feng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Research on Multi-Decision Sinter Composition Optimization Based on OLS Algorithm</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The adjustment of sintering raw materials has a decisive influence on the composition of blast furnace slag and the properties of sinter. In order to smelt high-quality molten iron in the blast furnace, the composition of the sinter must be properly adjusted so that the composition of the blast furnace slag and the metallurgical properties of the sinter are optimal for the quality of the iron and are conducive to the smooth operation of the blast furnace. In view of the huge difference in the quality and price of sintering raw materials, this paper proposes an automatic sintering ore blending model to quickly configure sintering raw materials according to the requirements of the production line. This method is based on the calculation process of blast furnace charge, combined with the constraints of process composition and cost performance, to establish a multi-decision sintering ore blending model based on the OLS(Ordinary least squares) algorithm to automatically screen from available raw materials and give the sinter that meets the requirements of the furnace. The plan finally makes TFe, CaO, MgO, SiO<sub<2</sub<, TiO<sub<2</sub<, Al<sub<2</sub<O<sub<3</sub<, P, Mn, Na<sub<2</sub<O, K<sub<2</sub<O, Zn, and other components meet the requirements of the production line, and meet the cost performance requirements of the enterprise for sinter. The model can complete the screening and proportioning of 43 kinds of raw materials within 10 s, and its performance can meet the requirements of the production of variable materials. Combined with an example, a comparative analysis experiment is carried out on the accuracy and practicability of the designed sintering and ore blending model. The experimental results show that the accuracy and efficiency of the method proposed in this paper are higher than those of the current ore blending scheme designed by enterprise engineers. This method can provide an effective reference for the stable operation of the sintering production line.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sintering decision</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sinter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sintering change material</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mining engineering. Metallurgy</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bin Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zixing Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tao Xue</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Aimin Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yifan Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Metals</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">13(2023), 3, p 548</subfield><subfield code="w">(DE-627)718627172</subfield><subfield code="w">(DE-600)2662252-X</subfield><subfield code="x">20754701</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:3, p 548</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/met13030548</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6bb38484713a4b23826d5549dbf2114d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2075-4701/13/3/548</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2075-4701</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2023</subfield><subfield code="e">3, p 548</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Shilong Feng |
spellingShingle |
Shilong Feng misc TN1-997 misc sintering decision misc sinter misc sintering change material misc Mining engineering. Metallurgy Research on Multi-Decision Sinter Composition Optimization Based on OLS Algorithm |
authorStr |
Shilong Feng |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)718627172 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TN1-997 |
illustrated |
Not Illustrated |
issn |
20754701 |
topic_title |
TN1-997 Research on Multi-Decision Sinter Composition Optimization Based on OLS Algorithm sintering decision sinter sintering change material |
topic |
misc TN1-997 misc sintering decision misc sinter misc sintering change material misc Mining engineering. Metallurgy |
topic_unstemmed |
misc TN1-997 misc sintering decision misc sinter misc sintering change material misc Mining engineering. Metallurgy |
topic_browse |
misc TN1-997 misc sintering decision misc sinter misc sintering change material misc Mining engineering. Metallurgy |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Metals |
hierarchy_parent_id |
718627172 |
hierarchy_top_title |
Metals |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)718627172 (DE-600)2662252-X |
title |
Research on Multi-Decision Sinter Composition Optimization Based on OLS Algorithm |
ctrlnum |
(DE-627)DOAJ087293943 (DE-599)DOAJ6bb38484713a4b23826d5549dbf2114d |
title_full |
Research on Multi-Decision Sinter Composition Optimization Based on OLS Algorithm |
author_sort |
Shilong Feng |
journal |
Metals |
journalStr |
Metals |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Shilong Feng Bin Wang Zixing Zhou Tao Xue Aimin Yang Yifan Li |
container_volume |
13 |
class |
TN1-997 |
format_se |
Elektronische Aufsätze |
author-letter |
Shilong Feng |
doi_str_mv |
10.3390/met13030548 |
author2-role |
verfasserin |
title_sort |
research on multi-decision sinter composition optimization based on ols algorithm |
callnumber |
TN1-997 |
title_auth |
Research on Multi-Decision Sinter Composition Optimization Based on OLS Algorithm |
abstract |
The adjustment of sintering raw materials has a decisive influence on the composition of blast furnace slag and the properties of sinter. In order to smelt high-quality molten iron in the blast furnace, the composition of the sinter must be properly adjusted so that the composition of the blast furnace slag and the metallurgical properties of the sinter are optimal for the quality of the iron and are conducive to the smooth operation of the blast furnace. In view of the huge difference in the quality and price of sintering raw materials, this paper proposes an automatic sintering ore blending model to quickly configure sintering raw materials according to the requirements of the production line. This method is based on the calculation process of blast furnace charge, combined with the constraints of process composition and cost performance, to establish a multi-decision sintering ore blending model based on the OLS(Ordinary least squares) algorithm to automatically screen from available raw materials and give the sinter that meets the requirements of the furnace. The plan finally makes TFe, CaO, MgO, SiO<sub<2</sub<, TiO<sub<2</sub<, Al<sub<2</sub<O<sub<3</sub<, P, Mn, Na<sub<2</sub<O, K<sub<2</sub<O, Zn, and other components meet the requirements of the production line, and meet the cost performance requirements of the enterprise for sinter. The model can complete the screening and proportioning of 43 kinds of raw materials within 10 s, and its performance can meet the requirements of the production of variable materials. Combined with an example, a comparative analysis experiment is carried out on the accuracy and practicability of the designed sintering and ore blending model. The experimental results show that the accuracy and efficiency of the method proposed in this paper are higher than those of the current ore blending scheme designed by enterprise engineers. This method can provide an effective reference for the stable operation of the sintering production line. |
abstractGer |
The adjustment of sintering raw materials has a decisive influence on the composition of blast furnace slag and the properties of sinter. In order to smelt high-quality molten iron in the blast furnace, the composition of the sinter must be properly adjusted so that the composition of the blast furnace slag and the metallurgical properties of the sinter are optimal for the quality of the iron and are conducive to the smooth operation of the blast furnace. In view of the huge difference in the quality and price of sintering raw materials, this paper proposes an automatic sintering ore blending model to quickly configure sintering raw materials according to the requirements of the production line. This method is based on the calculation process of blast furnace charge, combined with the constraints of process composition and cost performance, to establish a multi-decision sintering ore blending model based on the OLS(Ordinary least squares) algorithm to automatically screen from available raw materials and give the sinter that meets the requirements of the furnace. The plan finally makes TFe, CaO, MgO, SiO<sub<2</sub<, TiO<sub<2</sub<, Al<sub<2</sub<O<sub<3</sub<, P, Mn, Na<sub<2</sub<O, K<sub<2</sub<O, Zn, and other components meet the requirements of the production line, and meet the cost performance requirements of the enterprise for sinter. The model can complete the screening and proportioning of 43 kinds of raw materials within 10 s, and its performance can meet the requirements of the production of variable materials. Combined with an example, a comparative analysis experiment is carried out on the accuracy and practicability of the designed sintering and ore blending model. The experimental results show that the accuracy and efficiency of the method proposed in this paper are higher than those of the current ore blending scheme designed by enterprise engineers. This method can provide an effective reference for the stable operation of the sintering production line. |
abstract_unstemmed |
The adjustment of sintering raw materials has a decisive influence on the composition of blast furnace slag and the properties of sinter. In order to smelt high-quality molten iron in the blast furnace, the composition of the sinter must be properly adjusted so that the composition of the blast furnace slag and the metallurgical properties of the sinter are optimal for the quality of the iron and are conducive to the smooth operation of the blast furnace. In view of the huge difference in the quality and price of sintering raw materials, this paper proposes an automatic sintering ore blending model to quickly configure sintering raw materials according to the requirements of the production line. This method is based on the calculation process of blast furnace charge, combined with the constraints of process composition and cost performance, to establish a multi-decision sintering ore blending model based on the OLS(Ordinary least squares) algorithm to automatically screen from available raw materials and give the sinter that meets the requirements of the furnace. The plan finally makes TFe, CaO, MgO, SiO<sub<2</sub<, TiO<sub<2</sub<, Al<sub<2</sub<O<sub<3</sub<, P, Mn, Na<sub<2</sub<O, K<sub<2</sub<O, Zn, and other components meet the requirements of the production line, and meet the cost performance requirements of the enterprise for sinter. The model can complete the screening and proportioning of 43 kinds of raw materials within 10 s, and its performance can meet the requirements of the production of variable materials. Combined with an example, a comparative analysis experiment is carried out on the accuracy and practicability of the designed sintering and ore blending model. The experimental results show that the accuracy and efficiency of the method proposed in this paper are higher than those of the current ore blending scheme designed by enterprise engineers. This method can provide an effective reference for the stable operation of the sintering production line. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
3, p 548 |
title_short |
Research on Multi-Decision Sinter Composition Optimization Based on OLS Algorithm |
url |
https://doi.org/10.3390/met13030548 https://doaj.org/article/6bb38484713a4b23826d5549dbf2114d https://www.mdpi.com/2075-4701/13/3/548 https://doaj.org/toc/2075-4701 |
remote_bool |
true |
author2 |
Bin Wang Zixing Zhou Tao Xue Aimin Yang Yifan Li |
author2Str |
Bin Wang Zixing Zhou Tao Xue Aimin Yang Yifan Li |
ppnlink |
718627172 |
callnumber-subject |
TN - Mining Engineering and Metallurgy |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/met13030548 |
callnumber-a |
TN1-997 |
up_date |
2024-07-04T01:04:29.853Z |
_version_ |
1803608464929325057 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ087293943</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413050344.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230331s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/met13030548</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ087293943</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6bb38484713a4b23826d5549dbf2114d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TN1-997</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Shilong Feng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Research on Multi-Decision Sinter Composition Optimization Based on OLS Algorithm</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The adjustment of sintering raw materials has a decisive influence on the composition of blast furnace slag and the properties of sinter. In order to smelt high-quality molten iron in the blast furnace, the composition of the sinter must be properly adjusted so that the composition of the blast furnace slag and the metallurgical properties of the sinter are optimal for the quality of the iron and are conducive to the smooth operation of the blast furnace. In view of the huge difference in the quality and price of sintering raw materials, this paper proposes an automatic sintering ore blending model to quickly configure sintering raw materials according to the requirements of the production line. This method is based on the calculation process of blast furnace charge, combined with the constraints of process composition and cost performance, to establish a multi-decision sintering ore blending model based on the OLS(Ordinary least squares) algorithm to automatically screen from available raw materials and give the sinter that meets the requirements of the furnace. The plan finally makes TFe, CaO, MgO, SiO<sub<2</sub<, TiO<sub<2</sub<, Al<sub<2</sub<O<sub<3</sub<, P, Mn, Na<sub<2</sub<O, K<sub<2</sub<O, Zn, and other components meet the requirements of the production line, and meet the cost performance requirements of the enterprise for sinter. The model can complete the screening and proportioning of 43 kinds of raw materials within 10 s, and its performance can meet the requirements of the production of variable materials. Combined with an example, a comparative analysis experiment is carried out on the accuracy and practicability of the designed sintering and ore blending model. The experimental results show that the accuracy and efficiency of the method proposed in this paper are higher than those of the current ore blending scheme designed by enterprise engineers. This method can provide an effective reference for the stable operation of the sintering production line.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sintering decision</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sinter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sintering change material</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mining engineering. Metallurgy</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bin Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zixing Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tao Xue</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Aimin Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yifan Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Metals</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">13(2023), 3, p 548</subfield><subfield code="w">(DE-627)718627172</subfield><subfield code="w">(DE-600)2662252-X</subfield><subfield code="x">20754701</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:3, p 548</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/met13030548</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6bb38484713a4b23826d5549dbf2114d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2075-4701/13/3/548</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2075-4701</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2023</subfield><subfield code="e">3, p 548</subfield></datafield></record></collection>
|
score |
7.399296 |