Design Optimization Method Based on Artificial Intelligence (Hybrid Method) for Repair and Restoration Using Additive Manufacturing Technology
The concept of repair and restoration using additive manufacturing (AM) is to build new metal layers on a broken part. It is beneficial for complex parts that are no longer available in the market. Optimization methods are used to solve product design problems to produce efficient and highly sustain...
Ausführliche Beschreibung
Autor*in: |
Hiyam Adil Habeeb [verfasserIn] Dzuraidah Abd Wahab [verfasserIn] Abdul Hadi Azman [verfasserIn] Mohd Rizal Alkahari [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Metals - MDPI AG, 2012, 13(2023), 3, p 490 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2023 ; number:3, p 490 |
Links: |
---|
DOI / URN: |
10.3390/met13030490 |
---|
Katalog-ID: |
DOAJ087294532 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ087294532 | ||
003 | DE-627 | ||
005 | 20240413050350.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230331s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/met13030490 |2 doi | |
035 | |a (DE-627)DOAJ087294532 | ||
035 | |a (DE-599)DOAJc5b6177f9b364f638bf40c23e0400407 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TN1-997 | |
100 | 0 | |a Hiyam Adil Habeeb |e verfasserin |4 aut | |
245 | 1 | 0 | |a Design Optimization Method Based on Artificial Intelligence (Hybrid Method) for Repair and Restoration Using Additive Manufacturing Technology |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The concept of repair and restoration using additive manufacturing (AM) is to build new metal layers on a broken part. It is beneficial for complex parts that are no longer available in the market. Optimization methods are used to solve product design problems to produce efficient and highly sustainable products. Design optimization can improve the design of parts to improve the efficiency of the repair and restoration process using additive manufacturing during the end-of-life (EoL) phase. In this paper, the objective is to review the strategies for remanufacturing and restoration of products during or at the EoL phase and facilitate the process using AM. Design optimization for remanufacturing is important to reduce repair and restoration time. This review paper focuses on the main challenges and constraints of AM for repair and restoration. Various AI techniques, including the hybrid method that can be integrated into the design of AM, are analyzed and presented. This paper highlights the research gap and provides recommendations for future research directions. In conclusion, the combination of artificial neural network (ANN) algorithms with genetic algorithms as a hybrid method is a key solution in solving limitations and is the future for repair and restoration using additive manufacturing. | ||
650 | 4 | |a additive manufacturing | |
650 | 4 | |a repair and restoration | |
650 | 4 | |a design optimization | |
650 | 4 | |a design for additive manufacturing | |
650 | 4 | |a artificial intelligence | |
650 | 4 | |a hybrid method | |
653 | 0 | |a Mining engineering. Metallurgy | |
700 | 0 | |a Dzuraidah Abd Wahab |e verfasserin |4 aut | |
700 | 0 | |a Abdul Hadi Azman |e verfasserin |4 aut | |
700 | 0 | |a Mohd Rizal Alkahari |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Metals |d MDPI AG, 2012 |g 13(2023), 3, p 490 |w (DE-627)718627172 |w (DE-600)2662252-X |x 20754701 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2023 |g number:3, p 490 |
856 | 4 | 0 | |u https://doi.org/10.3390/met13030490 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/c5b6177f9b364f638bf40c23e0400407 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2075-4701/13/3/490 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2075-4701 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2023 |e 3, p 490 |
author_variant |
h a h hah d a w daw a h a aha m r a mra |
---|---|
matchkey_str |
article:20754701:2023----::einpiiainehdaeoatfcaitliechbimtofrearnrsoainsn |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TN |
publishDate |
2023 |
allfields |
10.3390/met13030490 doi (DE-627)DOAJ087294532 (DE-599)DOAJc5b6177f9b364f638bf40c23e0400407 DE-627 ger DE-627 rakwb eng TN1-997 Hiyam Adil Habeeb verfasserin aut Design Optimization Method Based on Artificial Intelligence (Hybrid Method) for Repair and Restoration Using Additive Manufacturing Technology 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The concept of repair and restoration using additive manufacturing (AM) is to build new metal layers on a broken part. It is beneficial for complex parts that are no longer available in the market. Optimization methods are used to solve product design problems to produce efficient and highly sustainable products. Design optimization can improve the design of parts to improve the efficiency of the repair and restoration process using additive manufacturing during the end-of-life (EoL) phase. In this paper, the objective is to review the strategies for remanufacturing and restoration of products during or at the EoL phase and facilitate the process using AM. Design optimization for remanufacturing is important to reduce repair and restoration time. This review paper focuses on the main challenges and constraints of AM for repair and restoration. Various AI techniques, including the hybrid method that can be integrated into the design of AM, are analyzed and presented. This paper highlights the research gap and provides recommendations for future research directions. In conclusion, the combination of artificial neural network (ANN) algorithms with genetic algorithms as a hybrid method is a key solution in solving limitations and is the future for repair and restoration using additive manufacturing. additive manufacturing repair and restoration design optimization design for additive manufacturing artificial intelligence hybrid method Mining engineering. Metallurgy Dzuraidah Abd Wahab verfasserin aut Abdul Hadi Azman verfasserin aut Mohd Rizal Alkahari verfasserin aut In Metals MDPI AG, 2012 13(2023), 3, p 490 (DE-627)718627172 (DE-600)2662252-X 20754701 nnns volume:13 year:2023 number:3, p 490 https://doi.org/10.3390/met13030490 kostenfrei https://doaj.org/article/c5b6177f9b364f638bf40c23e0400407 kostenfrei https://www.mdpi.com/2075-4701/13/3/490 kostenfrei https://doaj.org/toc/2075-4701 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 3, p 490 |
spelling |
10.3390/met13030490 doi (DE-627)DOAJ087294532 (DE-599)DOAJc5b6177f9b364f638bf40c23e0400407 DE-627 ger DE-627 rakwb eng TN1-997 Hiyam Adil Habeeb verfasserin aut Design Optimization Method Based on Artificial Intelligence (Hybrid Method) for Repair and Restoration Using Additive Manufacturing Technology 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The concept of repair and restoration using additive manufacturing (AM) is to build new metal layers on a broken part. It is beneficial for complex parts that are no longer available in the market. Optimization methods are used to solve product design problems to produce efficient and highly sustainable products. Design optimization can improve the design of parts to improve the efficiency of the repair and restoration process using additive manufacturing during the end-of-life (EoL) phase. In this paper, the objective is to review the strategies for remanufacturing and restoration of products during or at the EoL phase and facilitate the process using AM. Design optimization for remanufacturing is important to reduce repair and restoration time. This review paper focuses on the main challenges and constraints of AM for repair and restoration. Various AI techniques, including the hybrid method that can be integrated into the design of AM, are analyzed and presented. This paper highlights the research gap and provides recommendations for future research directions. In conclusion, the combination of artificial neural network (ANN) algorithms with genetic algorithms as a hybrid method is a key solution in solving limitations and is the future for repair and restoration using additive manufacturing. additive manufacturing repair and restoration design optimization design for additive manufacturing artificial intelligence hybrid method Mining engineering. Metallurgy Dzuraidah Abd Wahab verfasserin aut Abdul Hadi Azman verfasserin aut Mohd Rizal Alkahari verfasserin aut In Metals MDPI AG, 2012 13(2023), 3, p 490 (DE-627)718627172 (DE-600)2662252-X 20754701 nnns volume:13 year:2023 number:3, p 490 https://doi.org/10.3390/met13030490 kostenfrei https://doaj.org/article/c5b6177f9b364f638bf40c23e0400407 kostenfrei https://www.mdpi.com/2075-4701/13/3/490 kostenfrei https://doaj.org/toc/2075-4701 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 3, p 490 |
allfields_unstemmed |
10.3390/met13030490 doi (DE-627)DOAJ087294532 (DE-599)DOAJc5b6177f9b364f638bf40c23e0400407 DE-627 ger DE-627 rakwb eng TN1-997 Hiyam Adil Habeeb verfasserin aut Design Optimization Method Based on Artificial Intelligence (Hybrid Method) for Repair and Restoration Using Additive Manufacturing Technology 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The concept of repair and restoration using additive manufacturing (AM) is to build new metal layers on a broken part. It is beneficial for complex parts that are no longer available in the market. Optimization methods are used to solve product design problems to produce efficient and highly sustainable products. Design optimization can improve the design of parts to improve the efficiency of the repair and restoration process using additive manufacturing during the end-of-life (EoL) phase. In this paper, the objective is to review the strategies for remanufacturing and restoration of products during or at the EoL phase and facilitate the process using AM. Design optimization for remanufacturing is important to reduce repair and restoration time. This review paper focuses on the main challenges and constraints of AM for repair and restoration. Various AI techniques, including the hybrid method that can be integrated into the design of AM, are analyzed and presented. This paper highlights the research gap and provides recommendations for future research directions. In conclusion, the combination of artificial neural network (ANN) algorithms with genetic algorithms as a hybrid method is a key solution in solving limitations and is the future for repair and restoration using additive manufacturing. additive manufacturing repair and restoration design optimization design for additive manufacturing artificial intelligence hybrid method Mining engineering. Metallurgy Dzuraidah Abd Wahab verfasserin aut Abdul Hadi Azman verfasserin aut Mohd Rizal Alkahari verfasserin aut In Metals MDPI AG, 2012 13(2023), 3, p 490 (DE-627)718627172 (DE-600)2662252-X 20754701 nnns volume:13 year:2023 number:3, p 490 https://doi.org/10.3390/met13030490 kostenfrei https://doaj.org/article/c5b6177f9b364f638bf40c23e0400407 kostenfrei https://www.mdpi.com/2075-4701/13/3/490 kostenfrei https://doaj.org/toc/2075-4701 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 3, p 490 |
allfieldsGer |
10.3390/met13030490 doi (DE-627)DOAJ087294532 (DE-599)DOAJc5b6177f9b364f638bf40c23e0400407 DE-627 ger DE-627 rakwb eng TN1-997 Hiyam Adil Habeeb verfasserin aut Design Optimization Method Based on Artificial Intelligence (Hybrid Method) for Repair and Restoration Using Additive Manufacturing Technology 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The concept of repair and restoration using additive manufacturing (AM) is to build new metal layers on a broken part. It is beneficial for complex parts that are no longer available in the market. Optimization methods are used to solve product design problems to produce efficient and highly sustainable products. Design optimization can improve the design of parts to improve the efficiency of the repair and restoration process using additive manufacturing during the end-of-life (EoL) phase. In this paper, the objective is to review the strategies for remanufacturing and restoration of products during or at the EoL phase and facilitate the process using AM. Design optimization for remanufacturing is important to reduce repair and restoration time. This review paper focuses on the main challenges and constraints of AM for repair and restoration. Various AI techniques, including the hybrid method that can be integrated into the design of AM, are analyzed and presented. This paper highlights the research gap and provides recommendations for future research directions. In conclusion, the combination of artificial neural network (ANN) algorithms with genetic algorithms as a hybrid method is a key solution in solving limitations and is the future for repair and restoration using additive manufacturing. additive manufacturing repair and restoration design optimization design for additive manufacturing artificial intelligence hybrid method Mining engineering. Metallurgy Dzuraidah Abd Wahab verfasserin aut Abdul Hadi Azman verfasserin aut Mohd Rizal Alkahari verfasserin aut In Metals MDPI AG, 2012 13(2023), 3, p 490 (DE-627)718627172 (DE-600)2662252-X 20754701 nnns volume:13 year:2023 number:3, p 490 https://doi.org/10.3390/met13030490 kostenfrei https://doaj.org/article/c5b6177f9b364f638bf40c23e0400407 kostenfrei https://www.mdpi.com/2075-4701/13/3/490 kostenfrei https://doaj.org/toc/2075-4701 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 3, p 490 |
allfieldsSound |
10.3390/met13030490 doi (DE-627)DOAJ087294532 (DE-599)DOAJc5b6177f9b364f638bf40c23e0400407 DE-627 ger DE-627 rakwb eng TN1-997 Hiyam Adil Habeeb verfasserin aut Design Optimization Method Based on Artificial Intelligence (Hybrid Method) for Repair and Restoration Using Additive Manufacturing Technology 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The concept of repair and restoration using additive manufacturing (AM) is to build new metal layers on a broken part. It is beneficial for complex parts that are no longer available in the market. Optimization methods are used to solve product design problems to produce efficient and highly sustainable products. Design optimization can improve the design of parts to improve the efficiency of the repair and restoration process using additive manufacturing during the end-of-life (EoL) phase. In this paper, the objective is to review the strategies for remanufacturing and restoration of products during or at the EoL phase and facilitate the process using AM. Design optimization for remanufacturing is important to reduce repair and restoration time. This review paper focuses on the main challenges and constraints of AM for repair and restoration. Various AI techniques, including the hybrid method that can be integrated into the design of AM, are analyzed and presented. This paper highlights the research gap and provides recommendations for future research directions. In conclusion, the combination of artificial neural network (ANN) algorithms with genetic algorithms as a hybrid method is a key solution in solving limitations and is the future for repair and restoration using additive manufacturing. additive manufacturing repair and restoration design optimization design for additive manufacturing artificial intelligence hybrid method Mining engineering. Metallurgy Dzuraidah Abd Wahab verfasserin aut Abdul Hadi Azman verfasserin aut Mohd Rizal Alkahari verfasserin aut In Metals MDPI AG, 2012 13(2023), 3, p 490 (DE-627)718627172 (DE-600)2662252-X 20754701 nnns volume:13 year:2023 number:3, p 490 https://doi.org/10.3390/met13030490 kostenfrei https://doaj.org/article/c5b6177f9b364f638bf40c23e0400407 kostenfrei https://www.mdpi.com/2075-4701/13/3/490 kostenfrei https://doaj.org/toc/2075-4701 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 3, p 490 |
language |
English |
source |
In Metals 13(2023), 3, p 490 volume:13 year:2023 number:3, p 490 |
sourceStr |
In Metals 13(2023), 3, p 490 volume:13 year:2023 number:3, p 490 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
additive manufacturing repair and restoration design optimization design for additive manufacturing artificial intelligence hybrid method Mining engineering. Metallurgy |
isfreeaccess_bool |
true |
container_title |
Metals |
authorswithroles_txt_mv |
Hiyam Adil Habeeb @@aut@@ Dzuraidah Abd Wahab @@aut@@ Abdul Hadi Azman @@aut@@ Mohd Rizal Alkahari @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
718627172 |
id |
DOAJ087294532 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ087294532</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413050350.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230331s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/met13030490</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ087294532</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJc5b6177f9b364f638bf40c23e0400407</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TN1-997</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Hiyam Adil Habeeb</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Design Optimization Method Based on Artificial Intelligence (Hybrid Method) for Repair and Restoration Using Additive Manufacturing Technology</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The concept of repair and restoration using additive manufacturing (AM) is to build new metal layers on a broken part. It is beneficial for complex parts that are no longer available in the market. Optimization methods are used to solve product design problems to produce efficient and highly sustainable products. Design optimization can improve the design of parts to improve the efficiency of the repair and restoration process using additive manufacturing during the end-of-life (EoL) phase. In this paper, the objective is to review the strategies for remanufacturing and restoration of products during or at the EoL phase and facilitate the process using AM. Design optimization for remanufacturing is important to reduce repair and restoration time. This review paper focuses on the main challenges and constraints of AM for repair and restoration. Various AI techniques, including the hybrid method that can be integrated into the design of AM, are analyzed and presented. This paper highlights the research gap and provides recommendations for future research directions. In conclusion, the combination of artificial neural network (ANN) algorithms with genetic algorithms as a hybrid method is a key solution in solving limitations and is the future for repair and restoration using additive manufacturing.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">additive manufacturing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">repair and restoration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">design optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">design for additive manufacturing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hybrid method</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mining engineering. Metallurgy</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dzuraidah Abd Wahab</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Abdul Hadi Azman</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mohd Rizal Alkahari</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Metals</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">13(2023), 3, p 490</subfield><subfield code="w">(DE-627)718627172</subfield><subfield code="w">(DE-600)2662252-X</subfield><subfield code="x">20754701</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:3, p 490</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/met13030490</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/c5b6177f9b364f638bf40c23e0400407</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2075-4701/13/3/490</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2075-4701</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2023</subfield><subfield code="e">3, p 490</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Hiyam Adil Habeeb |
spellingShingle |
Hiyam Adil Habeeb misc TN1-997 misc additive manufacturing misc repair and restoration misc design optimization misc design for additive manufacturing misc artificial intelligence misc hybrid method misc Mining engineering. Metallurgy Design Optimization Method Based on Artificial Intelligence (Hybrid Method) for Repair and Restoration Using Additive Manufacturing Technology |
authorStr |
Hiyam Adil Habeeb |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)718627172 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TN1-997 |
illustrated |
Not Illustrated |
issn |
20754701 |
topic_title |
TN1-997 Design Optimization Method Based on Artificial Intelligence (Hybrid Method) for Repair and Restoration Using Additive Manufacturing Technology additive manufacturing repair and restoration design optimization design for additive manufacturing artificial intelligence hybrid method |
topic |
misc TN1-997 misc additive manufacturing misc repair and restoration misc design optimization misc design for additive manufacturing misc artificial intelligence misc hybrid method misc Mining engineering. Metallurgy |
topic_unstemmed |
misc TN1-997 misc additive manufacturing misc repair and restoration misc design optimization misc design for additive manufacturing misc artificial intelligence misc hybrid method misc Mining engineering. Metallurgy |
topic_browse |
misc TN1-997 misc additive manufacturing misc repair and restoration misc design optimization misc design for additive manufacturing misc artificial intelligence misc hybrid method misc Mining engineering. Metallurgy |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Metals |
hierarchy_parent_id |
718627172 |
hierarchy_top_title |
Metals |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)718627172 (DE-600)2662252-X |
title |
Design Optimization Method Based on Artificial Intelligence (Hybrid Method) for Repair and Restoration Using Additive Manufacturing Technology |
ctrlnum |
(DE-627)DOAJ087294532 (DE-599)DOAJc5b6177f9b364f638bf40c23e0400407 |
title_full |
Design Optimization Method Based on Artificial Intelligence (Hybrid Method) for Repair and Restoration Using Additive Manufacturing Technology |
author_sort |
Hiyam Adil Habeeb |
journal |
Metals |
journalStr |
Metals |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Hiyam Adil Habeeb Dzuraidah Abd Wahab Abdul Hadi Azman Mohd Rizal Alkahari |
container_volume |
13 |
class |
TN1-997 |
format_se |
Elektronische Aufsätze |
author-letter |
Hiyam Adil Habeeb |
doi_str_mv |
10.3390/met13030490 |
author2-role |
verfasserin |
title_sort |
design optimization method based on artificial intelligence (hybrid method) for repair and restoration using additive manufacturing technology |
callnumber |
TN1-997 |
title_auth |
Design Optimization Method Based on Artificial Intelligence (Hybrid Method) for Repair and Restoration Using Additive Manufacturing Technology |
abstract |
The concept of repair and restoration using additive manufacturing (AM) is to build new metal layers on a broken part. It is beneficial for complex parts that are no longer available in the market. Optimization methods are used to solve product design problems to produce efficient and highly sustainable products. Design optimization can improve the design of parts to improve the efficiency of the repair and restoration process using additive manufacturing during the end-of-life (EoL) phase. In this paper, the objective is to review the strategies for remanufacturing and restoration of products during or at the EoL phase and facilitate the process using AM. Design optimization for remanufacturing is important to reduce repair and restoration time. This review paper focuses on the main challenges and constraints of AM for repair and restoration. Various AI techniques, including the hybrid method that can be integrated into the design of AM, are analyzed and presented. This paper highlights the research gap and provides recommendations for future research directions. In conclusion, the combination of artificial neural network (ANN) algorithms with genetic algorithms as a hybrid method is a key solution in solving limitations and is the future for repair and restoration using additive manufacturing. |
abstractGer |
The concept of repair and restoration using additive manufacturing (AM) is to build new metal layers on a broken part. It is beneficial for complex parts that are no longer available in the market. Optimization methods are used to solve product design problems to produce efficient and highly sustainable products. Design optimization can improve the design of parts to improve the efficiency of the repair and restoration process using additive manufacturing during the end-of-life (EoL) phase. In this paper, the objective is to review the strategies for remanufacturing and restoration of products during or at the EoL phase and facilitate the process using AM. Design optimization for remanufacturing is important to reduce repair and restoration time. This review paper focuses on the main challenges and constraints of AM for repair and restoration. Various AI techniques, including the hybrid method that can be integrated into the design of AM, are analyzed and presented. This paper highlights the research gap and provides recommendations for future research directions. In conclusion, the combination of artificial neural network (ANN) algorithms with genetic algorithms as a hybrid method is a key solution in solving limitations and is the future for repair and restoration using additive manufacturing. |
abstract_unstemmed |
The concept of repair and restoration using additive manufacturing (AM) is to build new metal layers on a broken part. It is beneficial for complex parts that are no longer available in the market. Optimization methods are used to solve product design problems to produce efficient and highly sustainable products. Design optimization can improve the design of parts to improve the efficiency of the repair and restoration process using additive manufacturing during the end-of-life (EoL) phase. In this paper, the objective is to review the strategies for remanufacturing and restoration of products during or at the EoL phase and facilitate the process using AM. Design optimization for remanufacturing is important to reduce repair and restoration time. This review paper focuses on the main challenges and constraints of AM for repair and restoration. Various AI techniques, including the hybrid method that can be integrated into the design of AM, are analyzed and presented. This paper highlights the research gap and provides recommendations for future research directions. In conclusion, the combination of artificial neural network (ANN) algorithms with genetic algorithms as a hybrid method is a key solution in solving limitations and is the future for repair and restoration using additive manufacturing. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
3, p 490 |
title_short |
Design Optimization Method Based on Artificial Intelligence (Hybrid Method) for Repair and Restoration Using Additive Manufacturing Technology |
url |
https://doi.org/10.3390/met13030490 https://doaj.org/article/c5b6177f9b364f638bf40c23e0400407 https://www.mdpi.com/2075-4701/13/3/490 https://doaj.org/toc/2075-4701 |
remote_bool |
true |
author2 |
Dzuraidah Abd Wahab Abdul Hadi Azman Mohd Rizal Alkahari |
author2Str |
Dzuraidah Abd Wahab Abdul Hadi Azman Mohd Rizal Alkahari |
ppnlink |
718627172 |
callnumber-subject |
TN - Mining Engineering and Metallurgy |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/met13030490 |
callnumber-a |
TN1-997 |
up_date |
2024-07-04T01:04:38.619Z |
_version_ |
1803608474120093696 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ087294532</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413050350.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230331s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/met13030490</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ087294532</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJc5b6177f9b364f638bf40c23e0400407</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TN1-997</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Hiyam Adil Habeeb</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Design Optimization Method Based on Artificial Intelligence (Hybrid Method) for Repair and Restoration Using Additive Manufacturing Technology</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The concept of repair and restoration using additive manufacturing (AM) is to build new metal layers on a broken part. It is beneficial for complex parts that are no longer available in the market. Optimization methods are used to solve product design problems to produce efficient and highly sustainable products. Design optimization can improve the design of parts to improve the efficiency of the repair and restoration process using additive manufacturing during the end-of-life (EoL) phase. In this paper, the objective is to review the strategies for remanufacturing and restoration of products during or at the EoL phase and facilitate the process using AM. Design optimization for remanufacturing is important to reduce repair and restoration time. This review paper focuses on the main challenges and constraints of AM for repair and restoration. Various AI techniques, including the hybrid method that can be integrated into the design of AM, are analyzed and presented. This paper highlights the research gap and provides recommendations for future research directions. In conclusion, the combination of artificial neural network (ANN) algorithms with genetic algorithms as a hybrid method is a key solution in solving limitations and is the future for repair and restoration using additive manufacturing.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">additive manufacturing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">repair and restoration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">design optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">design for additive manufacturing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hybrid method</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mining engineering. Metallurgy</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dzuraidah Abd Wahab</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Abdul Hadi Azman</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mohd Rizal Alkahari</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Metals</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">13(2023), 3, p 490</subfield><subfield code="w">(DE-627)718627172</subfield><subfield code="w">(DE-600)2662252-X</subfield><subfield code="x">20754701</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:3, p 490</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/met13030490</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/c5b6177f9b364f638bf40c23e0400407</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2075-4701/13/3/490</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2075-4701</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2023</subfield><subfield code="e">3, p 490</subfield></datafield></record></collection>
|
score |
7.4000053 |