Assessing the Effectiveness of Chemical Marker Extraction from Amazonian Plant Cupuassu (<i<Theobroma grandiflorum</i<) by PSI-HRMS/MS and LC-HRMS/MS
Employing a combination of liquid chromatography electrospray ionization and paper spray ionization high-resolution tandem mass spectrometry, extracts from cupuassu (<i<Theobroma grandiflorum</i<) pulp prepared with either water, methanol, acetonitrile or combinations thereof were subjec...
Ausführliche Beschreibung
Autor*in: |
Nerilson M. Lima [verfasserIn] Gesiane S. Lima [verfasserIn] Gabriel F. dos Santos [verfasserIn] Gagan Preet [verfasserIn] Lanaia I. L. Maciel [verfasserIn] Teresinha de Jesus A. S. Andrade [verfasserIn] Marcel Jaspars [verfasserIn] Andrea R. Chaves [verfasserIn] Boniek G. Vaz [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
ambient mass spectrometry ionization |
---|
Übergeordnetes Werk: |
In: Metabolites - MDPI AG, 2012, 13(2023), 3, p 367 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2023 ; number:3, p 367 |
Links: |
---|
DOI / URN: |
10.3390/metabo13030367 |
---|
Katalog-ID: |
DOAJ087296012 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ087296012 | ||
003 | DE-627 | ||
005 | 20240413050407.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230331s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/metabo13030367 |2 doi | |
035 | |a (DE-627)DOAJ087296012 | ||
035 | |a (DE-599)DOAJ3e811317ce994c26a712dc86d4341c19 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QR1-502 | |
100 | 0 | |a Nerilson M. Lima |e verfasserin |4 aut | |
245 | 1 | 0 | |a Assessing the Effectiveness of Chemical Marker Extraction from Amazonian Plant Cupuassu (<i<Theobroma grandiflorum</i<) by PSI-HRMS/MS and LC-HRMS/MS |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Employing a combination of liquid chromatography electrospray ionization and paper spray ionization high-resolution tandem mass spectrometry, extracts from cupuassu (<i<Theobroma grandiflorum</i<) pulp prepared with either water, methanol, acetonitrile or combinations thereof were subjected to metabolite fingerprinting. Among the tested extractors, 100% methanol extracted preferentially phenols and cinnamic acids derivatives, whereas acetonitrile and acetonitrile/methanol were more effective in extracting terpenoids and flavonoids, respectively. And while liquid chromatography- mass spectrometry detected twice as many metabolites as paper spray ionization tandem mass spectrometry, the latter proved its potential as a screening technique. Comprehensive structural annotation showed a high production of terpenes, mainly oleanane triterpene derivatives. of the mass spectra Further, five major metabolites with known antioxidant activity, namely catechin, citric acid, epigallocatechin-3′-glucuronide, 5,7,8-trihydroxyflavanone, and asiatic acid, were subjected to molecular docking analysis using the antioxidative enzyme peroxiredoxin 5 (PRDX5) as a model receptor. Based on its excellent docking score, a pharmacophore model of 5,7,8-trihydroxyflavanone was generated, which may help the design of new antioxidants. | ||
650 | 4 | |a ambient mass spectrometry ionization | |
650 | 4 | |a cupuassu | |
650 | 4 | |a <i<Theobroma grandiflorum</i< | |
650 | 4 | |a untargeted metabolomics | |
650 | 4 | |a paper spray ionization mass spectrometry | |
650 | 4 | |a liquid chromatography–mass spectrometry | |
653 | 0 | |a Microbiology | |
700 | 0 | |a Gesiane S. Lima |e verfasserin |4 aut | |
700 | 0 | |a Gabriel F. dos Santos |e verfasserin |4 aut | |
700 | 0 | |a Gagan Preet |e verfasserin |4 aut | |
700 | 0 | |a Lanaia I. L. Maciel |e verfasserin |4 aut | |
700 | 0 | |a Teresinha de Jesus A. S. Andrade |e verfasserin |4 aut | |
700 | 0 | |a Marcel Jaspars |e verfasserin |4 aut | |
700 | 0 | |a Andrea R. Chaves |e verfasserin |4 aut | |
700 | 0 | |a Boniek G. Vaz |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Metabolites |d MDPI AG, 2012 |g 13(2023), 3, p 367 |w (DE-627)718627164 |w (DE-600)2662251-8 |x 22181989 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2023 |g number:3, p 367 |
856 | 4 | 0 | |u https://doi.org/10.3390/metabo13030367 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/3e811317ce994c26a712dc86d4341c19 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2218-1989/13/3/367 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2218-1989 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2023 |e 3, p 367 |
author_variant |
n m l nml g s l gsl g f d s gfds g p gp l i l m lilm t d j a s a tdjasa m j mj a r c arc b g v bgv |
---|---|
matchkey_str |
article:22181989:2023----::sesntefetvnsoceiamreetatofoaaoinlncpasihormga |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
QR |
publishDate |
2023 |
allfields |
10.3390/metabo13030367 doi (DE-627)DOAJ087296012 (DE-599)DOAJ3e811317ce994c26a712dc86d4341c19 DE-627 ger DE-627 rakwb eng QR1-502 Nerilson M. Lima verfasserin aut Assessing the Effectiveness of Chemical Marker Extraction from Amazonian Plant Cupuassu (<i<Theobroma grandiflorum</i<) by PSI-HRMS/MS and LC-HRMS/MS 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Employing a combination of liquid chromatography electrospray ionization and paper spray ionization high-resolution tandem mass spectrometry, extracts from cupuassu (<i<Theobroma grandiflorum</i<) pulp prepared with either water, methanol, acetonitrile or combinations thereof were subjected to metabolite fingerprinting. Among the tested extractors, 100% methanol extracted preferentially phenols and cinnamic acids derivatives, whereas acetonitrile and acetonitrile/methanol were more effective in extracting terpenoids and flavonoids, respectively. And while liquid chromatography- mass spectrometry detected twice as many metabolites as paper spray ionization tandem mass spectrometry, the latter proved its potential as a screening technique. Comprehensive structural annotation showed a high production of terpenes, mainly oleanane triterpene derivatives. of the mass spectra Further, five major metabolites with known antioxidant activity, namely catechin, citric acid, epigallocatechin-3′-glucuronide, 5,7,8-trihydroxyflavanone, and asiatic acid, were subjected to molecular docking analysis using the antioxidative enzyme peroxiredoxin 5 (PRDX5) as a model receptor. Based on its excellent docking score, a pharmacophore model of 5,7,8-trihydroxyflavanone was generated, which may help the design of new antioxidants. ambient mass spectrometry ionization cupuassu <i<Theobroma grandiflorum</i< untargeted metabolomics paper spray ionization mass spectrometry liquid chromatography–mass spectrometry Microbiology Gesiane S. Lima verfasserin aut Gabriel F. dos Santos verfasserin aut Gagan Preet verfasserin aut Lanaia I. L. Maciel verfasserin aut Teresinha de Jesus A. S. Andrade verfasserin aut Marcel Jaspars verfasserin aut Andrea R. Chaves verfasserin aut Boniek G. Vaz verfasserin aut In Metabolites MDPI AG, 2012 13(2023), 3, p 367 (DE-627)718627164 (DE-600)2662251-8 22181989 nnns volume:13 year:2023 number:3, p 367 https://doi.org/10.3390/metabo13030367 kostenfrei https://doaj.org/article/3e811317ce994c26a712dc86d4341c19 kostenfrei https://www.mdpi.com/2218-1989/13/3/367 kostenfrei https://doaj.org/toc/2218-1989 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 3, p 367 |
spelling |
10.3390/metabo13030367 doi (DE-627)DOAJ087296012 (DE-599)DOAJ3e811317ce994c26a712dc86d4341c19 DE-627 ger DE-627 rakwb eng QR1-502 Nerilson M. Lima verfasserin aut Assessing the Effectiveness of Chemical Marker Extraction from Amazonian Plant Cupuassu (<i<Theobroma grandiflorum</i<) by PSI-HRMS/MS and LC-HRMS/MS 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Employing a combination of liquid chromatography electrospray ionization and paper spray ionization high-resolution tandem mass spectrometry, extracts from cupuassu (<i<Theobroma grandiflorum</i<) pulp prepared with either water, methanol, acetonitrile or combinations thereof were subjected to metabolite fingerprinting. Among the tested extractors, 100% methanol extracted preferentially phenols and cinnamic acids derivatives, whereas acetonitrile and acetonitrile/methanol were more effective in extracting terpenoids and flavonoids, respectively. And while liquid chromatography- mass spectrometry detected twice as many metabolites as paper spray ionization tandem mass spectrometry, the latter proved its potential as a screening technique. Comprehensive structural annotation showed a high production of terpenes, mainly oleanane triterpene derivatives. of the mass spectra Further, five major metabolites with known antioxidant activity, namely catechin, citric acid, epigallocatechin-3′-glucuronide, 5,7,8-trihydroxyflavanone, and asiatic acid, were subjected to molecular docking analysis using the antioxidative enzyme peroxiredoxin 5 (PRDX5) as a model receptor. Based on its excellent docking score, a pharmacophore model of 5,7,8-trihydroxyflavanone was generated, which may help the design of new antioxidants. ambient mass spectrometry ionization cupuassu <i<Theobroma grandiflorum</i< untargeted metabolomics paper spray ionization mass spectrometry liquid chromatography–mass spectrometry Microbiology Gesiane S. Lima verfasserin aut Gabriel F. dos Santos verfasserin aut Gagan Preet verfasserin aut Lanaia I. L. Maciel verfasserin aut Teresinha de Jesus A. S. Andrade verfasserin aut Marcel Jaspars verfasserin aut Andrea R. Chaves verfasserin aut Boniek G. Vaz verfasserin aut In Metabolites MDPI AG, 2012 13(2023), 3, p 367 (DE-627)718627164 (DE-600)2662251-8 22181989 nnns volume:13 year:2023 number:3, p 367 https://doi.org/10.3390/metabo13030367 kostenfrei https://doaj.org/article/3e811317ce994c26a712dc86d4341c19 kostenfrei https://www.mdpi.com/2218-1989/13/3/367 kostenfrei https://doaj.org/toc/2218-1989 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 3, p 367 |
allfields_unstemmed |
10.3390/metabo13030367 doi (DE-627)DOAJ087296012 (DE-599)DOAJ3e811317ce994c26a712dc86d4341c19 DE-627 ger DE-627 rakwb eng QR1-502 Nerilson M. Lima verfasserin aut Assessing the Effectiveness of Chemical Marker Extraction from Amazonian Plant Cupuassu (<i<Theobroma grandiflorum</i<) by PSI-HRMS/MS and LC-HRMS/MS 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Employing a combination of liquid chromatography electrospray ionization and paper spray ionization high-resolution tandem mass spectrometry, extracts from cupuassu (<i<Theobroma grandiflorum</i<) pulp prepared with either water, methanol, acetonitrile or combinations thereof were subjected to metabolite fingerprinting. Among the tested extractors, 100% methanol extracted preferentially phenols and cinnamic acids derivatives, whereas acetonitrile and acetonitrile/methanol were more effective in extracting terpenoids and flavonoids, respectively. And while liquid chromatography- mass spectrometry detected twice as many metabolites as paper spray ionization tandem mass spectrometry, the latter proved its potential as a screening technique. Comprehensive structural annotation showed a high production of terpenes, mainly oleanane triterpene derivatives. of the mass spectra Further, five major metabolites with known antioxidant activity, namely catechin, citric acid, epigallocatechin-3′-glucuronide, 5,7,8-trihydroxyflavanone, and asiatic acid, were subjected to molecular docking analysis using the antioxidative enzyme peroxiredoxin 5 (PRDX5) as a model receptor. Based on its excellent docking score, a pharmacophore model of 5,7,8-trihydroxyflavanone was generated, which may help the design of new antioxidants. ambient mass spectrometry ionization cupuassu <i<Theobroma grandiflorum</i< untargeted metabolomics paper spray ionization mass spectrometry liquid chromatography–mass spectrometry Microbiology Gesiane S. Lima verfasserin aut Gabriel F. dos Santos verfasserin aut Gagan Preet verfasserin aut Lanaia I. L. Maciel verfasserin aut Teresinha de Jesus A. S. Andrade verfasserin aut Marcel Jaspars verfasserin aut Andrea R. Chaves verfasserin aut Boniek G. Vaz verfasserin aut In Metabolites MDPI AG, 2012 13(2023), 3, p 367 (DE-627)718627164 (DE-600)2662251-8 22181989 nnns volume:13 year:2023 number:3, p 367 https://doi.org/10.3390/metabo13030367 kostenfrei https://doaj.org/article/3e811317ce994c26a712dc86d4341c19 kostenfrei https://www.mdpi.com/2218-1989/13/3/367 kostenfrei https://doaj.org/toc/2218-1989 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 3, p 367 |
allfieldsGer |
10.3390/metabo13030367 doi (DE-627)DOAJ087296012 (DE-599)DOAJ3e811317ce994c26a712dc86d4341c19 DE-627 ger DE-627 rakwb eng QR1-502 Nerilson M. Lima verfasserin aut Assessing the Effectiveness of Chemical Marker Extraction from Amazonian Plant Cupuassu (<i<Theobroma grandiflorum</i<) by PSI-HRMS/MS and LC-HRMS/MS 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Employing a combination of liquid chromatography electrospray ionization and paper spray ionization high-resolution tandem mass spectrometry, extracts from cupuassu (<i<Theobroma grandiflorum</i<) pulp prepared with either water, methanol, acetonitrile or combinations thereof were subjected to metabolite fingerprinting. Among the tested extractors, 100% methanol extracted preferentially phenols and cinnamic acids derivatives, whereas acetonitrile and acetonitrile/methanol were more effective in extracting terpenoids and flavonoids, respectively. And while liquid chromatography- mass spectrometry detected twice as many metabolites as paper spray ionization tandem mass spectrometry, the latter proved its potential as a screening technique. Comprehensive structural annotation showed a high production of terpenes, mainly oleanane triterpene derivatives. of the mass spectra Further, five major metabolites with known antioxidant activity, namely catechin, citric acid, epigallocatechin-3′-glucuronide, 5,7,8-trihydroxyflavanone, and asiatic acid, were subjected to molecular docking analysis using the antioxidative enzyme peroxiredoxin 5 (PRDX5) as a model receptor. Based on its excellent docking score, a pharmacophore model of 5,7,8-trihydroxyflavanone was generated, which may help the design of new antioxidants. ambient mass spectrometry ionization cupuassu <i<Theobroma grandiflorum</i< untargeted metabolomics paper spray ionization mass spectrometry liquid chromatography–mass spectrometry Microbiology Gesiane S. Lima verfasserin aut Gabriel F. dos Santos verfasserin aut Gagan Preet verfasserin aut Lanaia I. L. Maciel verfasserin aut Teresinha de Jesus A. S. Andrade verfasserin aut Marcel Jaspars verfasserin aut Andrea R. Chaves verfasserin aut Boniek G. Vaz verfasserin aut In Metabolites MDPI AG, 2012 13(2023), 3, p 367 (DE-627)718627164 (DE-600)2662251-8 22181989 nnns volume:13 year:2023 number:3, p 367 https://doi.org/10.3390/metabo13030367 kostenfrei https://doaj.org/article/3e811317ce994c26a712dc86d4341c19 kostenfrei https://www.mdpi.com/2218-1989/13/3/367 kostenfrei https://doaj.org/toc/2218-1989 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 3, p 367 |
allfieldsSound |
10.3390/metabo13030367 doi (DE-627)DOAJ087296012 (DE-599)DOAJ3e811317ce994c26a712dc86d4341c19 DE-627 ger DE-627 rakwb eng QR1-502 Nerilson M. Lima verfasserin aut Assessing the Effectiveness of Chemical Marker Extraction from Amazonian Plant Cupuassu (<i<Theobroma grandiflorum</i<) by PSI-HRMS/MS and LC-HRMS/MS 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Employing a combination of liquid chromatography electrospray ionization and paper spray ionization high-resolution tandem mass spectrometry, extracts from cupuassu (<i<Theobroma grandiflorum</i<) pulp prepared with either water, methanol, acetonitrile or combinations thereof were subjected to metabolite fingerprinting. Among the tested extractors, 100% methanol extracted preferentially phenols and cinnamic acids derivatives, whereas acetonitrile and acetonitrile/methanol were more effective in extracting terpenoids and flavonoids, respectively. And while liquid chromatography- mass spectrometry detected twice as many metabolites as paper spray ionization tandem mass spectrometry, the latter proved its potential as a screening technique. Comprehensive structural annotation showed a high production of terpenes, mainly oleanane triterpene derivatives. of the mass spectra Further, five major metabolites with known antioxidant activity, namely catechin, citric acid, epigallocatechin-3′-glucuronide, 5,7,8-trihydroxyflavanone, and asiatic acid, were subjected to molecular docking analysis using the antioxidative enzyme peroxiredoxin 5 (PRDX5) as a model receptor. Based on its excellent docking score, a pharmacophore model of 5,7,8-trihydroxyflavanone was generated, which may help the design of new antioxidants. ambient mass spectrometry ionization cupuassu <i<Theobroma grandiflorum</i< untargeted metabolomics paper spray ionization mass spectrometry liquid chromatography–mass spectrometry Microbiology Gesiane S. Lima verfasserin aut Gabriel F. dos Santos verfasserin aut Gagan Preet verfasserin aut Lanaia I. L. Maciel verfasserin aut Teresinha de Jesus A. S. Andrade verfasserin aut Marcel Jaspars verfasserin aut Andrea R. Chaves verfasserin aut Boniek G. Vaz verfasserin aut In Metabolites MDPI AG, 2012 13(2023), 3, p 367 (DE-627)718627164 (DE-600)2662251-8 22181989 nnns volume:13 year:2023 number:3, p 367 https://doi.org/10.3390/metabo13030367 kostenfrei https://doaj.org/article/3e811317ce994c26a712dc86d4341c19 kostenfrei https://www.mdpi.com/2218-1989/13/3/367 kostenfrei https://doaj.org/toc/2218-1989 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 3, p 367 |
language |
English |
source |
In Metabolites 13(2023), 3, p 367 volume:13 year:2023 number:3, p 367 |
sourceStr |
In Metabolites 13(2023), 3, p 367 volume:13 year:2023 number:3, p 367 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
ambient mass spectrometry ionization cupuassu <i<Theobroma grandiflorum</i< untargeted metabolomics paper spray ionization mass spectrometry liquid chromatography–mass spectrometry Microbiology |
isfreeaccess_bool |
true |
container_title |
Metabolites |
authorswithroles_txt_mv |
Nerilson M. Lima @@aut@@ Gesiane S. Lima @@aut@@ Gabriel F. dos Santos @@aut@@ Gagan Preet @@aut@@ Lanaia I. L. Maciel @@aut@@ Teresinha de Jesus A. S. Andrade @@aut@@ Marcel Jaspars @@aut@@ Andrea R. Chaves @@aut@@ Boniek G. Vaz @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
718627164 |
id |
DOAJ087296012 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ087296012</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413050407.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230331s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/metabo13030367</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ087296012</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ3e811317ce994c26a712dc86d4341c19</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QR1-502</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Nerilson M. Lima</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Assessing the Effectiveness of Chemical Marker Extraction from Amazonian Plant Cupuassu (<i<Theobroma grandiflorum</i<) by PSI-HRMS/MS and LC-HRMS/MS</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Employing a combination of liquid chromatography electrospray ionization and paper spray ionization high-resolution tandem mass spectrometry, extracts from cupuassu (<i<Theobroma grandiflorum</i<) pulp prepared with either water, methanol, acetonitrile or combinations thereof were subjected to metabolite fingerprinting. Among the tested extractors, 100% methanol extracted preferentially phenols and cinnamic acids derivatives, whereas acetonitrile and acetonitrile/methanol were more effective in extracting terpenoids and flavonoids, respectively. And while liquid chromatography- mass spectrometry detected twice as many metabolites as paper spray ionization tandem mass spectrometry, the latter proved its potential as a screening technique. Comprehensive structural annotation showed a high production of terpenes, mainly oleanane triterpene derivatives. of the mass spectra Further, five major metabolites with known antioxidant activity, namely catechin, citric acid, epigallocatechin-3′-glucuronide, 5,7,8-trihydroxyflavanone, and asiatic acid, were subjected to molecular docking analysis using the antioxidative enzyme peroxiredoxin 5 (PRDX5) as a model receptor. Based on its excellent docking score, a pharmacophore model of 5,7,8-trihydroxyflavanone was generated, which may help the design of new antioxidants.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ambient mass spectrometry ionization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cupuassu</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<Theobroma grandiflorum</i<</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">untargeted metabolomics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">paper spray ionization mass spectrometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">liquid chromatography–mass spectrometry</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Microbiology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gesiane S. Lima</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gabriel F. dos Santos</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gagan Preet</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lanaia I. L. Maciel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Teresinha de Jesus A. S. Andrade</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marcel Jaspars</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Andrea R. Chaves</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Boniek G. Vaz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Metabolites</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">13(2023), 3, p 367</subfield><subfield code="w">(DE-627)718627164</subfield><subfield code="w">(DE-600)2662251-8</subfield><subfield code="x">22181989</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:3, p 367</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/metabo13030367</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/3e811317ce994c26a712dc86d4341c19</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2218-1989/13/3/367</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2218-1989</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2023</subfield><subfield code="e">3, p 367</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Nerilson M. Lima |
spellingShingle |
Nerilson M. Lima misc QR1-502 misc ambient mass spectrometry ionization misc cupuassu misc <i<Theobroma grandiflorum</i< misc untargeted metabolomics misc paper spray ionization mass spectrometry misc liquid chromatography–mass spectrometry misc Microbiology Assessing the Effectiveness of Chemical Marker Extraction from Amazonian Plant Cupuassu (<i<Theobroma grandiflorum</i<) by PSI-HRMS/MS and LC-HRMS/MS |
authorStr |
Nerilson M. Lima |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)718627164 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QR1-502 |
illustrated |
Not Illustrated |
issn |
22181989 |
topic_title |
QR1-502 Assessing the Effectiveness of Chemical Marker Extraction from Amazonian Plant Cupuassu (<i<Theobroma grandiflorum</i<) by PSI-HRMS/MS and LC-HRMS/MS ambient mass spectrometry ionization cupuassu <i<Theobroma grandiflorum</i< untargeted metabolomics paper spray ionization mass spectrometry liquid chromatography–mass spectrometry |
topic |
misc QR1-502 misc ambient mass spectrometry ionization misc cupuassu misc <i<Theobroma grandiflorum</i< misc untargeted metabolomics misc paper spray ionization mass spectrometry misc liquid chromatography–mass spectrometry misc Microbiology |
topic_unstemmed |
misc QR1-502 misc ambient mass spectrometry ionization misc cupuassu misc <i<Theobroma grandiflorum</i< misc untargeted metabolomics misc paper spray ionization mass spectrometry misc liquid chromatography–mass spectrometry misc Microbiology |
topic_browse |
misc QR1-502 misc ambient mass spectrometry ionization misc cupuassu misc <i<Theobroma grandiflorum</i< misc untargeted metabolomics misc paper spray ionization mass spectrometry misc liquid chromatography–mass spectrometry misc Microbiology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Metabolites |
hierarchy_parent_id |
718627164 |
hierarchy_top_title |
Metabolites |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)718627164 (DE-600)2662251-8 |
title |
Assessing the Effectiveness of Chemical Marker Extraction from Amazonian Plant Cupuassu (<i<Theobroma grandiflorum</i<) by PSI-HRMS/MS and LC-HRMS/MS |
ctrlnum |
(DE-627)DOAJ087296012 (DE-599)DOAJ3e811317ce994c26a712dc86d4341c19 |
title_full |
Assessing the Effectiveness of Chemical Marker Extraction from Amazonian Plant Cupuassu (<i<Theobroma grandiflorum</i<) by PSI-HRMS/MS and LC-HRMS/MS |
author_sort |
Nerilson M. Lima |
journal |
Metabolites |
journalStr |
Metabolites |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Nerilson M. Lima Gesiane S. Lima Gabriel F. dos Santos Gagan Preet Lanaia I. L. Maciel Teresinha de Jesus A. S. Andrade Marcel Jaspars Andrea R. Chaves Boniek G. Vaz |
container_volume |
13 |
class |
QR1-502 |
format_se |
Elektronische Aufsätze |
author-letter |
Nerilson M. Lima |
doi_str_mv |
10.3390/metabo13030367 |
author2-role |
verfasserin |
title_sort |
assessing the effectiveness of chemical marker extraction from amazonian plant cupuassu (<i<theobroma grandiflorum</i<) by psi-hrms/ms and lc-hrms/ms |
callnumber |
QR1-502 |
title_auth |
Assessing the Effectiveness of Chemical Marker Extraction from Amazonian Plant Cupuassu (<i<Theobroma grandiflorum</i<) by PSI-HRMS/MS and LC-HRMS/MS |
abstract |
Employing a combination of liquid chromatography electrospray ionization and paper spray ionization high-resolution tandem mass spectrometry, extracts from cupuassu (<i<Theobroma grandiflorum</i<) pulp prepared with either water, methanol, acetonitrile or combinations thereof were subjected to metabolite fingerprinting. Among the tested extractors, 100% methanol extracted preferentially phenols and cinnamic acids derivatives, whereas acetonitrile and acetonitrile/methanol were more effective in extracting terpenoids and flavonoids, respectively. And while liquid chromatography- mass spectrometry detected twice as many metabolites as paper spray ionization tandem mass spectrometry, the latter proved its potential as a screening technique. Comprehensive structural annotation showed a high production of terpenes, mainly oleanane triterpene derivatives. of the mass spectra Further, five major metabolites with known antioxidant activity, namely catechin, citric acid, epigallocatechin-3′-glucuronide, 5,7,8-trihydroxyflavanone, and asiatic acid, were subjected to molecular docking analysis using the antioxidative enzyme peroxiredoxin 5 (PRDX5) as a model receptor. Based on its excellent docking score, a pharmacophore model of 5,7,8-trihydroxyflavanone was generated, which may help the design of new antioxidants. |
abstractGer |
Employing a combination of liquid chromatography electrospray ionization and paper spray ionization high-resolution tandem mass spectrometry, extracts from cupuassu (<i<Theobroma grandiflorum</i<) pulp prepared with either water, methanol, acetonitrile or combinations thereof were subjected to metabolite fingerprinting. Among the tested extractors, 100% methanol extracted preferentially phenols and cinnamic acids derivatives, whereas acetonitrile and acetonitrile/methanol were more effective in extracting terpenoids and flavonoids, respectively. And while liquid chromatography- mass spectrometry detected twice as many metabolites as paper spray ionization tandem mass spectrometry, the latter proved its potential as a screening technique. Comprehensive structural annotation showed a high production of terpenes, mainly oleanane triterpene derivatives. of the mass spectra Further, five major metabolites with known antioxidant activity, namely catechin, citric acid, epigallocatechin-3′-glucuronide, 5,7,8-trihydroxyflavanone, and asiatic acid, were subjected to molecular docking analysis using the antioxidative enzyme peroxiredoxin 5 (PRDX5) as a model receptor. Based on its excellent docking score, a pharmacophore model of 5,7,8-trihydroxyflavanone was generated, which may help the design of new antioxidants. |
abstract_unstemmed |
Employing a combination of liquid chromatography electrospray ionization and paper spray ionization high-resolution tandem mass spectrometry, extracts from cupuassu (<i<Theobroma grandiflorum</i<) pulp prepared with either water, methanol, acetonitrile or combinations thereof were subjected to metabolite fingerprinting. Among the tested extractors, 100% methanol extracted preferentially phenols and cinnamic acids derivatives, whereas acetonitrile and acetonitrile/methanol were more effective in extracting terpenoids and flavonoids, respectively. And while liquid chromatography- mass spectrometry detected twice as many metabolites as paper spray ionization tandem mass spectrometry, the latter proved its potential as a screening technique. Comprehensive structural annotation showed a high production of terpenes, mainly oleanane triterpene derivatives. of the mass spectra Further, five major metabolites with known antioxidant activity, namely catechin, citric acid, epigallocatechin-3′-glucuronide, 5,7,8-trihydroxyflavanone, and asiatic acid, were subjected to molecular docking analysis using the antioxidative enzyme peroxiredoxin 5 (PRDX5) as a model receptor. Based on its excellent docking score, a pharmacophore model of 5,7,8-trihydroxyflavanone was generated, which may help the design of new antioxidants. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
3, p 367 |
title_short |
Assessing the Effectiveness of Chemical Marker Extraction from Amazonian Plant Cupuassu (<i<Theobroma grandiflorum</i<) by PSI-HRMS/MS and LC-HRMS/MS |
url |
https://doi.org/10.3390/metabo13030367 https://doaj.org/article/3e811317ce994c26a712dc86d4341c19 https://www.mdpi.com/2218-1989/13/3/367 https://doaj.org/toc/2218-1989 |
remote_bool |
true |
author2 |
Gesiane S. Lima Gabriel F. dos Santos Gagan Preet Lanaia I. L. Maciel Teresinha de Jesus A. S. Andrade Marcel Jaspars Andrea R. Chaves Boniek G. Vaz |
author2Str |
Gesiane S. Lima Gabriel F. dos Santos Gagan Preet Lanaia I. L. Maciel Teresinha de Jesus A. S. Andrade Marcel Jaspars Andrea R. Chaves Boniek G. Vaz |
ppnlink |
718627164 |
callnumber-subject |
QR - Microbiology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/metabo13030367 |
callnumber-a |
QR1-502 |
up_date |
2024-07-04T01:05:02.673Z |
_version_ |
1803608499342540800 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ087296012</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413050407.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230331s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/metabo13030367</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ087296012</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ3e811317ce994c26a712dc86d4341c19</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QR1-502</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Nerilson M. Lima</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Assessing the Effectiveness of Chemical Marker Extraction from Amazonian Plant Cupuassu (<i<Theobroma grandiflorum</i<) by PSI-HRMS/MS and LC-HRMS/MS</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Employing a combination of liquid chromatography electrospray ionization and paper spray ionization high-resolution tandem mass spectrometry, extracts from cupuassu (<i<Theobroma grandiflorum</i<) pulp prepared with either water, methanol, acetonitrile or combinations thereof were subjected to metabolite fingerprinting. Among the tested extractors, 100% methanol extracted preferentially phenols and cinnamic acids derivatives, whereas acetonitrile and acetonitrile/methanol were more effective in extracting terpenoids and flavonoids, respectively. And while liquid chromatography- mass spectrometry detected twice as many metabolites as paper spray ionization tandem mass spectrometry, the latter proved its potential as a screening technique. Comprehensive structural annotation showed a high production of terpenes, mainly oleanane triterpene derivatives. of the mass spectra Further, five major metabolites with known antioxidant activity, namely catechin, citric acid, epigallocatechin-3′-glucuronide, 5,7,8-trihydroxyflavanone, and asiatic acid, were subjected to molecular docking analysis using the antioxidative enzyme peroxiredoxin 5 (PRDX5) as a model receptor. Based on its excellent docking score, a pharmacophore model of 5,7,8-trihydroxyflavanone was generated, which may help the design of new antioxidants.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ambient mass spectrometry ionization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cupuassu</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<Theobroma grandiflorum</i<</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">untargeted metabolomics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">paper spray ionization mass spectrometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">liquid chromatography–mass spectrometry</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Microbiology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gesiane S. Lima</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gabriel F. dos Santos</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gagan Preet</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lanaia I. L. Maciel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Teresinha de Jesus A. S. Andrade</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marcel Jaspars</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Andrea R. Chaves</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Boniek G. Vaz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Metabolites</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">13(2023), 3, p 367</subfield><subfield code="w">(DE-627)718627164</subfield><subfield code="w">(DE-600)2662251-8</subfield><subfield code="x">22181989</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:3, p 367</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/metabo13030367</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/3e811317ce994c26a712dc86d4341c19</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2218-1989/13/3/367</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2218-1989</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2023</subfield><subfield code="e">3, p 367</subfield></datafield></record></collection>
|
score |
7.400402 |