Analysis of the Influence of Seasonal Water Column Dynamics on the Relationship between Marine Viruses and Microbial Food Web Components Using an Artificial Neural Network
Artificial neural network analysis (ANN) is used to study the seasonal distribution of viruses and microbial food web (MFW) components in the open Adriatic Sea. The effect of viruses within the MFW is often overlooked, although viruses play an important role in microbial community dynamics. The resu...
Ausführliche Beschreibung
Autor*in: |
Marin Ordulj [verfasserIn] Danijela Šantić [verfasserIn] Frano Matić [verfasserIn] Slaven Jozić [verfasserIn] Stefanija Šestanović [verfasserIn] Mladen Šolić [verfasserIn] Jere Veža [verfasserIn] Živana Ninčević Gladan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Journal of Marine Science and Engineering - MDPI AG, 2014, 11(2023), 3, p 639 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2023 ; number:3, p 639 |
Links: |
---|
DOI / URN: |
10.3390/jmse11030639 |
---|
Katalog-ID: |
DOAJ087323915 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ087323915 | ||
003 | DE-627 | ||
005 | 20240413050908.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230331s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/jmse11030639 |2 doi | |
035 | |a (DE-627)DOAJ087323915 | ||
035 | |a (DE-599)DOAJaa2e90d3578d4011815e46665b7e4d8b | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a VM1-989 | |
050 | 0 | |a GC1-1581 | |
100 | 0 | |a Marin Ordulj |e verfasserin |4 aut | |
245 | 1 | 0 | |a Analysis of the Influence of Seasonal Water Column Dynamics on the Relationship between Marine Viruses and Microbial Food Web Components Using an Artificial Neural Network |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Artificial neural network analysis (ANN) is used to study the seasonal distribution of viruses and microbial food web (MFW) components in the open Adriatic Sea. The effect of viruses within the MFW is often overlooked, although viruses play an important role in microbial community dynamics. The results showed that the strongest influence is found in the nonlinear relationship between viruses and temperature. In addition, the algorithm showed that the number of viral populations in the P-limited open sea varies by season and according to the abundance of their main hosts, HB. A strong positive relationship between viruses and HB was found in more than 50% of the observed data. Moreover, this algorithm confirmed the association of the virus with the autotrophic part of the picoplankton and with heterotrophic nanoflagellates. The dynamics of the four resulting clusters, characterized by biological and environmental parameters, is described as a cyclic pattern in the water layer above the thermocline. Neural gas network analysis has been shown to be an excellent tool for describing changes in MFW components in the open Adriatic. | ||
650 | 4 | |a viruses | |
650 | 4 | |a heterotrophic bacteria | |
650 | 4 | |a autotrophic picoplankton | |
650 | 4 | |a heterotrophic nanoflagellates | |
650 | 4 | |a oligotrophic environment | |
650 | 4 | |a P-limitation | |
653 | 0 | |a Naval architecture. Shipbuilding. Marine engineering | |
653 | 0 | |a Oceanography | |
700 | 0 | |a Danijela Šantić |e verfasserin |4 aut | |
700 | 0 | |a Frano Matić |e verfasserin |4 aut | |
700 | 0 | |a Slaven Jozić |e verfasserin |4 aut | |
700 | 0 | |a Stefanija Šestanović |e verfasserin |4 aut | |
700 | 0 | |a Mladen Šolić |e verfasserin |4 aut | |
700 | 0 | |a Jere Veža |e verfasserin |4 aut | |
700 | 0 | |a Živana Ninčević Gladan |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Journal of Marine Science and Engineering |d MDPI AG, 2014 |g 11(2023), 3, p 639 |w (DE-627)771274181 |w (DE-600)2738390-8 |x 20771312 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2023 |g number:3, p 639 |
856 | 4 | 0 | |u https://doi.org/10.3390/jmse11030639 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/aa2e90d3578d4011815e46665b7e4d8b |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2077-1312/11/3/639 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2077-1312 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2023 |e 3, p 639 |
author_variant |
m o mo d š dš f m fm s j sj s š sš m š mš j v jv ž n g žng |
---|---|
matchkey_str |
article:20771312:2023----::nlssfhifunefesnlaeclmdnmcoteeainhpewemrnvrssnmcoilodec |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
VM |
publishDate |
2023 |
allfields |
10.3390/jmse11030639 doi (DE-627)DOAJ087323915 (DE-599)DOAJaa2e90d3578d4011815e46665b7e4d8b DE-627 ger DE-627 rakwb eng VM1-989 GC1-1581 Marin Ordulj verfasserin aut Analysis of the Influence of Seasonal Water Column Dynamics on the Relationship between Marine Viruses and Microbial Food Web Components Using an Artificial Neural Network 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Artificial neural network analysis (ANN) is used to study the seasonal distribution of viruses and microbial food web (MFW) components in the open Adriatic Sea. The effect of viruses within the MFW is often overlooked, although viruses play an important role in microbial community dynamics. The results showed that the strongest influence is found in the nonlinear relationship between viruses and temperature. In addition, the algorithm showed that the number of viral populations in the P-limited open sea varies by season and according to the abundance of their main hosts, HB. A strong positive relationship between viruses and HB was found in more than 50% of the observed data. Moreover, this algorithm confirmed the association of the virus with the autotrophic part of the picoplankton and with heterotrophic nanoflagellates. The dynamics of the four resulting clusters, characterized by biological and environmental parameters, is described as a cyclic pattern in the water layer above the thermocline. Neural gas network analysis has been shown to be an excellent tool for describing changes in MFW components in the open Adriatic. viruses heterotrophic bacteria autotrophic picoplankton heterotrophic nanoflagellates oligotrophic environment P-limitation Naval architecture. Shipbuilding. Marine engineering Oceanography Danijela Šantić verfasserin aut Frano Matić verfasserin aut Slaven Jozić verfasserin aut Stefanija Šestanović verfasserin aut Mladen Šolić verfasserin aut Jere Veža verfasserin aut Živana Ninčević Gladan verfasserin aut In Journal of Marine Science and Engineering MDPI AG, 2014 11(2023), 3, p 639 (DE-627)771274181 (DE-600)2738390-8 20771312 nnns volume:11 year:2023 number:3, p 639 https://doi.org/10.3390/jmse11030639 kostenfrei https://doaj.org/article/aa2e90d3578d4011815e46665b7e4d8b kostenfrei https://www.mdpi.com/2077-1312/11/3/639 kostenfrei https://doaj.org/toc/2077-1312 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 3, p 639 |
spelling |
10.3390/jmse11030639 doi (DE-627)DOAJ087323915 (DE-599)DOAJaa2e90d3578d4011815e46665b7e4d8b DE-627 ger DE-627 rakwb eng VM1-989 GC1-1581 Marin Ordulj verfasserin aut Analysis of the Influence of Seasonal Water Column Dynamics on the Relationship between Marine Viruses and Microbial Food Web Components Using an Artificial Neural Network 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Artificial neural network analysis (ANN) is used to study the seasonal distribution of viruses and microbial food web (MFW) components in the open Adriatic Sea. The effect of viruses within the MFW is often overlooked, although viruses play an important role in microbial community dynamics. The results showed that the strongest influence is found in the nonlinear relationship between viruses and temperature. In addition, the algorithm showed that the number of viral populations in the P-limited open sea varies by season and according to the abundance of their main hosts, HB. A strong positive relationship between viruses and HB was found in more than 50% of the observed data. Moreover, this algorithm confirmed the association of the virus with the autotrophic part of the picoplankton and with heterotrophic nanoflagellates. The dynamics of the four resulting clusters, characterized by biological and environmental parameters, is described as a cyclic pattern in the water layer above the thermocline. Neural gas network analysis has been shown to be an excellent tool for describing changes in MFW components in the open Adriatic. viruses heterotrophic bacteria autotrophic picoplankton heterotrophic nanoflagellates oligotrophic environment P-limitation Naval architecture. Shipbuilding. Marine engineering Oceanography Danijela Šantić verfasserin aut Frano Matić verfasserin aut Slaven Jozić verfasserin aut Stefanija Šestanović verfasserin aut Mladen Šolić verfasserin aut Jere Veža verfasserin aut Živana Ninčević Gladan verfasserin aut In Journal of Marine Science and Engineering MDPI AG, 2014 11(2023), 3, p 639 (DE-627)771274181 (DE-600)2738390-8 20771312 nnns volume:11 year:2023 number:3, p 639 https://doi.org/10.3390/jmse11030639 kostenfrei https://doaj.org/article/aa2e90d3578d4011815e46665b7e4d8b kostenfrei https://www.mdpi.com/2077-1312/11/3/639 kostenfrei https://doaj.org/toc/2077-1312 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 3, p 639 |
allfields_unstemmed |
10.3390/jmse11030639 doi (DE-627)DOAJ087323915 (DE-599)DOAJaa2e90d3578d4011815e46665b7e4d8b DE-627 ger DE-627 rakwb eng VM1-989 GC1-1581 Marin Ordulj verfasserin aut Analysis of the Influence of Seasonal Water Column Dynamics on the Relationship between Marine Viruses and Microbial Food Web Components Using an Artificial Neural Network 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Artificial neural network analysis (ANN) is used to study the seasonal distribution of viruses and microbial food web (MFW) components in the open Adriatic Sea. The effect of viruses within the MFW is often overlooked, although viruses play an important role in microbial community dynamics. The results showed that the strongest influence is found in the nonlinear relationship between viruses and temperature. In addition, the algorithm showed that the number of viral populations in the P-limited open sea varies by season and according to the abundance of their main hosts, HB. A strong positive relationship between viruses and HB was found in more than 50% of the observed data. Moreover, this algorithm confirmed the association of the virus with the autotrophic part of the picoplankton and with heterotrophic nanoflagellates. The dynamics of the four resulting clusters, characterized by biological and environmental parameters, is described as a cyclic pattern in the water layer above the thermocline. Neural gas network analysis has been shown to be an excellent tool for describing changes in MFW components in the open Adriatic. viruses heterotrophic bacteria autotrophic picoplankton heterotrophic nanoflagellates oligotrophic environment P-limitation Naval architecture. Shipbuilding. Marine engineering Oceanography Danijela Šantić verfasserin aut Frano Matić verfasserin aut Slaven Jozić verfasserin aut Stefanija Šestanović verfasserin aut Mladen Šolić verfasserin aut Jere Veža verfasserin aut Živana Ninčević Gladan verfasserin aut In Journal of Marine Science and Engineering MDPI AG, 2014 11(2023), 3, p 639 (DE-627)771274181 (DE-600)2738390-8 20771312 nnns volume:11 year:2023 number:3, p 639 https://doi.org/10.3390/jmse11030639 kostenfrei https://doaj.org/article/aa2e90d3578d4011815e46665b7e4d8b kostenfrei https://www.mdpi.com/2077-1312/11/3/639 kostenfrei https://doaj.org/toc/2077-1312 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 3, p 639 |
allfieldsGer |
10.3390/jmse11030639 doi (DE-627)DOAJ087323915 (DE-599)DOAJaa2e90d3578d4011815e46665b7e4d8b DE-627 ger DE-627 rakwb eng VM1-989 GC1-1581 Marin Ordulj verfasserin aut Analysis of the Influence of Seasonal Water Column Dynamics on the Relationship between Marine Viruses and Microbial Food Web Components Using an Artificial Neural Network 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Artificial neural network analysis (ANN) is used to study the seasonal distribution of viruses and microbial food web (MFW) components in the open Adriatic Sea. The effect of viruses within the MFW is often overlooked, although viruses play an important role in microbial community dynamics. The results showed that the strongest influence is found in the nonlinear relationship between viruses and temperature. In addition, the algorithm showed that the number of viral populations in the P-limited open sea varies by season and according to the abundance of their main hosts, HB. A strong positive relationship between viruses and HB was found in more than 50% of the observed data. Moreover, this algorithm confirmed the association of the virus with the autotrophic part of the picoplankton and with heterotrophic nanoflagellates. The dynamics of the four resulting clusters, characterized by biological and environmental parameters, is described as a cyclic pattern in the water layer above the thermocline. Neural gas network analysis has been shown to be an excellent tool for describing changes in MFW components in the open Adriatic. viruses heterotrophic bacteria autotrophic picoplankton heterotrophic nanoflagellates oligotrophic environment P-limitation Naval architecture. Shipbuilding. Marine engineering Oceanography Danijela Šantić verfasserin aut Frano Matić verfasserin aut Slaven Jozić verfasserin aut Stefanija Šestanović verfasserin aut Mladen Šolić verfasserin aut Jere Veža verfasserin aut Živana Ninčević Gladan verfasserin aut In Journal of Marine Science and Engineering MDPI AG, 2014 11(2023), 3, p 639 (DE-627)771274181 (DE-600)2738390-8 20771312 nnns volume:11 year:2023 number:3, p 639 https://doi.org/10.3390/jmse11030639 kostenfrei https://doaj.org/article/aa2e90d3578d4011815e46665b7e4d8b kostenfrei https://www.mdpi.com/2077-1312/11/3/639 kostenfrei https://doaj.org/toc/2077-1312 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 3, p 639 |
allfieldsSound |
10.3390/jmse11030639 doi (DE-627)DOAJ087323915 (DE-599)DOAJaa2e90d3578d4011815e46665b7e4d8b DE-627 ger DE-627 rakwb eng VM1-989 GC1-1581 Marin Ordulj verfasserin aut Analysis of the Influence of Seasonal Water Column Dynamics on the Relationship between Marine Viruses and Microbial Food Web Components Using an Artificial Neural Network 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Artificial neural network analysis (ANN) is used to study the seasonal distribution of viruses and microbial food web (MFW) components in the open Adriatic Sea. The effect of viruses within the MFW is often overlooked, although viruses play an important role in microbial community dynamics. The results showed that the strongest influence is found in the nonlinear relationship between viruses and temperature. In addition, the algorithm showed that the number of viral populations in the P-limited open sea varies by season and according to the abundance of their main hosts, HB. A strong positive relationship between viruses and HB was found in more than 50% of the observed data. Moreover, this algorithm confirmed the association of the virus with the autotrophic part of the picoplankton and with heterotrophic nanoflagellates. The dynamics of the four resulting clusters, characterized by biological and environmental parameters, is described as a cyclic pattern in the water layer above the thermocline. Neural gas network analysis has been shown to be an excellent tool for describing changes in MFW components in the open Adriatic. viruses heterotrophic bacteria autotrophic picoplankton heterotrophic nanoflagellates oligotrophic environment P-limitation Naval architecture. Shipbuilding. Marine engineering Oceanography Danijela Šantić verfasserin aut Frano Matić verfasserin aut Slaven Jozić verfasserin aut Stefanija Šestanović verfasserin aut Mladen Šolić verfasserin aut Jere Veža verfasserin aut Živana Ninčević Gladan verfasserin aut In Journal of Marine Science and Engineering MDPI AG, 2014 11(2023), 3, p 639 (DE-627)771274181 (DE-600)2738390-8 20771312 nnns volume:11 year:2023 number:3, p 639 https://doi.org/10.3390/jmse11030639 kostenfrei https://doaj.org/article/aa2e90d3578d4011815e46665b7e4d8b kostenfrei https://www.mdpi.com/2077-1312/11/3/639 kostenfrei https://doaj.org/toc/2077-1312 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 3, p 639 |
language |
English |
source |
In Journal of Marine Science and Engineering 11(2023), 3, p 639 volume:11 year:2023 number:3, p 639 |
sourceStr |
In Journal of Marine Science and Engineering 11(2023), 3, p 639 volume:11 year:2023 number:3, p 639 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
viruses heterotrophic bacteria autotrophic picoplankton heterotrophic nanoflagellates oligotrophic environment P-limitation Naval architecture. Shipbuilding. Marine engineering Oceanography |
isfreeaccess_bool |
true |
container_title |
Journal of Marine Science and Engineering |
authorswithroles_txt_mv |
Marin Ordulj @@aut@@ Danijela Šantić @@aut@@ Frano Matić @@aut@@ Slaven Jozić @@aut@@ Stefanija Šestanović @@aut@@ Mladen Šolić @@aut@@ Jere Veža @@aut@@ Živana Ninčević Gladan @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
771274181 |
id |
DOAJ087323915 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ087323915</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413050908.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230331s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/jmse11030639</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ087323915</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJaa2e90d3578d4011815e46665b7e4d8b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">VM1-989</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GC1-1581</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Marin Ordulj</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analysis of the Influence of Seasonal Water Column Dynamics on the Relationship between Marine Viruses and Microbial Food Web Components Using an Artificial Neural Network</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Artificial neural network analysis (ANN) is used to study the seasonal distribution of viruses and microbial food web (MFW) components in the open Adriatic Sea. The effect of viruses within the MFW is often overlooked, although viruses play an important role in microbial community dynamics. The results showed that the strongest influence is found in the nonlinear relationship between viruses and temperature. In addition, the algorithm showed that the number of viral populations in the P-limited open sea varies by season and according to the abundance of their main hosts, HB. A strong positive relationship between viruses and HB was found in more than 50% of the observed data. Moreover, this algorithm confirmed the association of the virus with the autotrophic part of the picoplankton and with heterotrophic nanoflagellates. The dynamics of the four resulting clusters, characterized by biological and environmental parameters, is described as a cyclic pattern in the water layer above the thermocline. Neural gas network analysis has been shown to be an excellent tool for describing changes in MFW components in the open Adriatic.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">viruses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">heterotrophic bacteria</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">autotrophic picoplankton</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">heterotrophic nanoflagellates</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">oligotrophic environment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">P-limitation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Naval architecture. Shipbuilding. Marine engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Oceanography</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Danijela Šantić</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Frano Matić</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Slaven Jozić</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Stefanija Šestanović</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mladen Šolić</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jere Veža</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Živana Ninčević Gladan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Marine Science and Engineering</subfield><subfield code="d">MDPI AG, 2014</subfield><subfield code="g">11(2023), 3, p 639</subfield><subfield code="w">(DE-627)771274181</subfield><subfield code="w">(DE-600)2738390-8</subfield><subfield code="x">20771312</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:3, p 639</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/jmse11030639</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/aa2e90d3578d4011815e46665b7e4d8b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2077-1312/11/3/639</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2077-1312</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2023</subfield><subfield code="e">3, p 639</subfield></datafield></record></collection>
|
callnumber-first |
V - Naval Science |
author |
Marin Ordulj |
spellingShingle |
Marin Ordulj misc VM1-989 misc GC1-1581 misc viruses misc heterotrophic bacteria misc autotrophic picoplankton misc heterotrophic nanoflagellates misc oligotrophic environment misc P-limitation misc Naval architecture. Shipbuilding. Marine engineering misc Oceanography Analysis of the Influence of Seasonal Water Column Dynamics on the Relationship between Marine Viruses and Microbial Food Web Components Using an Artificial Neural Network |
authorStr |
Marin Ordulj |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)771274181 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
VM1-989 |
illustrated |
Not Illustrated |
issn |
20771312 |
topic_title |
VM1-989 GC1-1581 Analysis of the Influence of Seasonal Water Column Dynamics on the Relationship between Marine Viruses and Microbial Food Web Components Using an Artificial Neural Network viruses heterotrophic bacteria autotrophic picoplankton heterotrophic nanoflagellates oligotrophic environment P-limitation |
topic |
misc VM1-989 misc GC1-1581 misc viruses misc heterotrophic bacteria misc autotrophic picoplankton misc heterotrophic nanoflagellates misc oligotrophic environment misc P-limitation misc Naval architecture. Shipbuilding. Marine engineering misc Oceanography |
topic_unstemmed |
misc VM1-989 misc GC1-1581 misc viruses misc heterotrophic bacteria misc autotrophic picoplankton misc heterotrophic nanoflagellates misc oligotrophic environment misc P-limitation misc Naval architecture. Shipbuilding. Marine engineering misc Oceanography |
topic_browse |
misc VM1-989 misc GC1-1581 misc viruses misc heterotrophic bacteria misc autotrophic picoplankton misc heterotrophic nanoflagellates misc oligotrophic environment misc P-limitation misc Naval architecture. Shipbuilding. Marine engineering misc Oceanography |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of Marine Science and Engineering |
hierarchy_parent_id |
771274181 |
hierarchy_top_title |
Journal of Marine Science and Engineering |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)771274181 (DE-600)2738390-8 |
title |
Analysis of the Influence of Seasonal Water Column Dynamics on the Relationship between Marine Viruses and Microbial Food Web Components Using an Artificial Neural Network |
ctrlnum |
(DE-627)DOAJ087323915 (DE-599)DOAJaa2e90d3578d4011815e46665b7e4d8b |
title_full |
Analysis of the Influence of Seasonal Water Column Dynamics on the Relationship between Marine Viruses and Microbial Food Web Components Using an Artificial Neural Network |
author_sort |
Marin Ordulj |
journal |
Journal of Marine Science and Engineering |
journalStr |
Journal of Marine Science and Engineering |
callnumber-first-code |
V |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Marin Ordulj Danijela Šantić Frano Matić Slaven Jozić Stefanija Šestanović Mladen Šolić Jere Veža Živana Ninčević Gladan |
container_volume |
11 |
class |
VM1-989 GC1-1581 |
format_se |
Elektronische Aufsätze |
author-letter |
Marin Ordulj |
doi_str_mv |
10.3390/jmse11030639 |
author2-role |
verfasserin |
title_sort |
analysis of the influence of seasonal water column dynamics on the relationship between marine viruses and microbial food web components using an artificial neural network |
callnumber |
VM1-989 |
title_auth |
Analysis of the Influence of Seasonal Water Column Dynamics on the Relationship between Marine Viruses and Microbial Food Web Components Using an Artificial Neural Network |
abstract |
Artificial neural network analysis (ANN) is used to study the seasonal distribution of viruses and microbial food web (MFW) components in the open Adriatic Sea. The effect of viruses within the MFW is often overlooked, although viruses play an important role in microbial community dynamics. The results showed that the strongest influence is found in the nonlinear relationship between viruses and temperature. In addition, the algorithm showed that the number of viral populations in the P-limited open sea varies by season and according to the abundance of their main hosts, HB. A strong positive relationship between viruses and HB was found in more than 50% of the observed data. Moreover, this algorithm confirmed the association of the virus with the autotrophic part of the picoplankton and with heterotrophic nanoflagellates. The dynamics of the four resulting clusters, characterized by biological and environmental parameters, is described as a cyclic pattern in the water layer above the thermocline. Neural gas network analysis has been shown to be an excellent tool for describing changes in MFW components in the open Adriatic. |
abstractGer |
Artificial neural network analysis (ANN) is used to study the seasonal distribution of viruses and microbial food web (MFW) components in the open Adriatic Sea. The effect of viruses within the MFW is often overlooked, although viruses play an important role in microbial community dynamics. The results showed that the strongest influence is found in the nonlinear relationship between viruses and temperature. In addition, the algorithm showed that the number of viral populations in the P-limited open sea varies by season and according to the abundance of their main hosts, HB. A strong positive relationship between viruses and HB was found in more than 50% of the observed data. Moreover, this algorithm confirmed the association of the virus with the autotrophic part of the picoplankton and with heterotrophic nanoflagellates. The dynamics of the four resulting clusters, characterized by biological and environmental parameters, is described as a cyclic pattern in the water layer above the thermocline. Neural gas network analysis has been shown to be an excellent tool for describing changes in MFW components in the open Adriatic. |
abstract_unstemmed |
Artificial neural network analysis (ANN) is used to study the seasonal distribution of viruses and microbial food web (MFW) components in the open Adriatic Sea. The effect of viruses within the MFW is often overlooked, although viruses play an important role in microbial community dynamics. The results showed that the strongest influence is found in the nonlinear relationship between viruses and temperature. In addition, the algorithm showed that the number of viral populations in the P-limited open sea varies by season and according to the abundance of their main hosts, HB. A strong positive relationship between viruses and HB was found in more than 50% of the observed data. Moreover, this algorithm confirmed the association of the virus with the autotrophic part of the picoplankton and with heterotrophic nanoflagellates. The dynamics of the four resulting clusters, characterized by biological and environmental parameters, is described as a cyclic pattern in the water layer above the thermocline. Neural gas network analysis has been shown to be an excellent tool for describing changes in MFW components in the open Adriatic. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
3, p 639 |
title_short |
Analysis of the Influence of Seasonal Water Column Dynamics on the Relationship between Marine Viruses and Microbial Food Web Components Using an Artificial Neural Network |
url |
https://doi.org/10.3390/jmse11030639 https://doaj.org/article/aa2e90d3578d4011815e46665b7e4d8b https://www.mdpi.com/2077-1312/11/3/639 https://doaj.org/toc/2077-1312 |
remote_bool |
true |
author2 |
Danijela Šantić Frano Matić Slaven Jozić Stefanija Šestanović Mladen Šolić Jere Veža Živana Ninčević Gladan |
author2Str |
Danijela Šantić Frano Matić Slaven Jozić Stefanija Šestanović Mladen Šolić Jere Veža Živana Ninčević Gladan |
ppnlink |
771274181 |
callnumber-subject |
VM - Naval Architecture, Shipbuilding, Marine Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/jmse11030639 |
callnumber-a |
VM1-989 |
up_date |
2024-07-04T01:12:11.875Z |
_version_ |
1803608949396602880 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ087323915</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413050908.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230331s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/jmse11030639</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ087323915</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJaa2e90d3578d4011815e46665b7e4d8b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">VM1-989</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GC1-1581</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Marin Ordulj</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analysis of the Influence of Seasonal Water Column Dynamics on the Relationship between Marine Viruses and Microbial Food Web Components Using an Artificial Neural Network</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Artificial neural network analysis (ANN) is used to study the seasonal distribution of viruses and microbial food web (MFW) components in the open Adriatic Sea. The effect of viruses within the MFW is often overlooked, although viruses play an important role in microbial community dynamics. The results showed that the strongest influence is found in the nonlinear relationship between viruses and temperature. In addition, the algorithm showed that the number of viral populations in the P-limited open sea varies by season and according to the abundance of their main hosts, HB. A strong positive relationship between viruses and HB was found in more than 50% of the observed data. Moreover, this algorithm confirmed the association of the virus with the autotrophic part of the picoplankton and with heterotrophic nanoflagellates. The dynamics of the four resulting clusters, characterized by biological and environmental parameters, is described as a cyclic pattern in the water layer above the thermocline. Neural gas network analysis has been shown to be an excellent tool for describing changes in MFW components in the open Adriatic.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">viruses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">heterotrophic bacteria</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">autotrophic picoplankton</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">heterotrophic nanoflagellates</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">oligotrophic environment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">P-limitation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Naval architecture. Shipbuilding. Marine engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Oceanography</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Danijela Šantić</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Frano Matić</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Slaven Jozić</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Stefanija Šestanović</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mladen Šolić</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jere Veža</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Živana Ninčević Gladan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Marine Science and Engineering</subfield><subfield code="d">MDPI AG, 2014</subfield><subfield code="g">11(2023), 3, p 639</subfield><subfield code="w">(DE-627)771274181</subfield><subfield code="w">(DE-600)2738390-8</subfield><subfield code="x">20771312</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:3, p 639</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/jmse11030639</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/aa2e90d3578d4011815e46665b7e4d8b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2077-1312/11/3/639</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2077-1312</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2023</subfield><subfield code="e">3, p 639</subfield></datafield></record></collection>
|
score |
7.399967 |