Animal Detection and Counting from UAV Images Using Convolutional Neural Networks
In the last decade, small unmanned aerial vehicles (UAVs/drones) have become increasingly popular in the airborne observation of large areas for many purposes, such as the monitoring of agricultural areas, the tracking of wild animals in their natural habitats, and the counting of livestock. Coupled...
Ausführliche Beschreibung
Autor*in: |
Kristina Rančić [verfasserIn] Boško Blagojević [verfasserIn] Atila Bezdan [verfasserIn] Bojana Ivošević [verfasserIn] Bojan Tubić [verfasserIn] Milica Vranešević [verfasserIn] Branislav Pejak [verfasserIn] Vladimir Crnojević [verfasserIn] Oskar Marko [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Drones - MDPI AG, 2018, 7(2023), 3, p 179 |
---|---|
Übergeordnetes Werk: |
volume:7 ; year:2023 ; number:3, p 179 |
Links: |
---|
DOI / URN: |
10.3390/drones7030179 |
---|
Katalog-ID: |
DOAJ087388995 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ087388995 | ||
003 | DE-627 | ||
005 | 20240413052020.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230331s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/drones7030179 |2 doi | |
035 | |a (DE-627)DOAJ087388995 | ||
035 | |a (DE-599)DOAJ9021cf399fc9421db5f7cc9ae50808d4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TL1-4050 | |
100 | 0 | |a Kristina Rančić |e verfasserin |4 aut | |
245 | 1 | 0 | |a Animal Detection and Counting from UAV Images Using Convolutional Neural Networks |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In the last decade, small unmanned aerial vehicles (UAVs/drones) have become increasingly popular in the airborne observation of large areas for many purposes, such as the monitoring of agricultural areas, the tracking of wild animals in their natural habitats, and the counting of livestock. Coupled with deep learning, they allow for automatic image processing and recognition. The aim of this work was to detect and count the deer population in northwestern Serbia from such images using deep neural networks, a tedious process that otherwise requires a lot of time and effort. In this paper, we present and compare the performance of several state-of-the-art network architectures, trained on a manually annotated set of images, and use it to predict the presence of objects in the rest of the dataset. We implemented three versions of the You Only Look Once (YOLO) architecture and a Single Shot Multibox Detector (SSD) to detect deer in a dense forest environment and measured their performance based on mean average precision (mAP), precision, recall, and F1 score. Moreover, we also evaluated the models based on their real-time performance. The results showed that the selected models were able to detect deer with a mean average precision of up to 70.45% and a confidence score of up to a 99%. The highest precision was achieved by the fourth version of YOLO with 86%, as well as the highest recall value of 75%. Its compressed version achieved slightly lower results, with 83% mAP in its best case, but it demonstrated four times better real-time performance. The counting function was applied on the best-performing models, providing us with the exact distribution of deer over all images. Yolov4 obtained an error of 8.3% in counting, while Yolov4-tiny mistook 12 deer, which accounted for an error of 7.1%. | ||
650 | 4 | |a convolutional neural networks | |
650 | 4 | |a deer | |
650 | 4 | |a animal counting | |
650 | 4 | |a deep learning | |
650 | 4 | |a YOLO | |
650 | 4 | |a SSD | |
653 | 0 | |a Motor vehicles. Aeronautics. Astronautics | |
700 | 0 | |a Boško Blagojević |e verfasserin |4 aut | |
700 | 0 | |a Atila Bezdan |e verfasserin |4 aut | |
700 | 0 | |a Bojana Ivošević |e verfasserin |4 aut | |
700 | 0 | |a Bojan Tubić |e verfasserin |4 aut | |
700 | 0 | |a Milica Vranešević |e verfasserin |4 aut | |
700 | 0 | |a Branislav Pejak |e verfasserin |4 aut | |
700 | 0 | |a Vladimir Crnojević |e verfasserin |4 aut | |
700 | 0 | |a Oskar Marko |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Drones |d MDPI AG, 2018 |g 7(2023), 3, p 179 |w (DE-627)1025498356 |x 2504446X |7 nnns |
773 | 1 | 8 | |g volume:7 |g year:2023 |g number:3, p 179 |
856 | 4 | 0 | |u https://doi.org/10.3390/drones7030179 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/9021cf399fc9421db5f7cc9ae50808d4 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2504-446X/7/3/179 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2504-446X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 7 |j 2023 |e 3, p 179 |
author_variant |
k r kr b b bb a b ab b i bi b t bt m v mv b p bp v c vc o m om |
---|---|
matchkey_str |
article:2504446X:2023----::nmleetoadonigrmaiaeuigovl |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TL |
publishDate |
2023 |
allfields |
10.3390/drones7030179 doi (DE-627)DOAJ087388995 (DE-599)DOAJ9021cf399fc9421db5f7cc9ae50808d4 DE-627 ger DE-627 rakwb eng TL1-4050 Kristina Rančić verfasserin aut Animal Detection and Counting from UAV Images Using Convolutional Neural Networks 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the last decade, small unmanned aerial vehicles (UAVs/drones) have become increasingly popular in the airborne observation of large areas for many purposes, such as the monitoring of agricultural areas, the tracking of wild animals in their natural habitats, and the counting of livestock. Coupled with deep learning, they allow for automatic image processing and recognition. The aim of this work was to detect and count the deer population in northwestern Serbia from such images using deep neural networks, a tedious process that otherwise requires a lot of time and effort. In this paper, we present and compare the performance of several state-of-the-art network architectures, trained on a manually annotated set of images, and use it to predict the presence of objects in the rest of the dataset. We implemented three versions of the You Only Look Once (YOLO) architecture and a Single Shot Multibox Detector (SSD) to detect deer in a dense forest environment and measured their performance based on mean average precision (mAP), precision, recall, and F1 score. Moreover, we also evaluated the models based on their real-time performance. The results showed that the selected models were able to detect deer with a mean average precision of up to 70.45% and a confidence score of up to a 99%. The highest precision was achieved by the fourth version of YOLO with 86%, as well as the highest recall value of 75%. Its compressed version achieved slightly lower results, with 83% mAP in its best case, but it demonstrated four times better real-time performance. The counting function was applied on the best-performing models, providing us with the exact distribution of deer over all images. Yolov4 obtained an error of 8.3% in counting, while Yolov4-tiny mistook 12 deer, which accounted for an error of 7.1%. convolutional neural networks deer animal counting deep learning YOLO SSD Motor vehicles. Aeronautics. Astronautics Boško Blagojević verfasserin aut Atila Bezdan verfasserin aut Bojana Ivošević verfasserin aut Bojan Tubić verfasserin aut Milica Vranešević verfasserin aut Branislav Pejak verfasserin aut Vladimir Crnojević verfasserin aut Oskar Marko verfasserin aut In Drones MDPI AG, 2018 7(2023), 3, p 179 (DE-627)1025498356 2504446X nnns volume:7 year:2023 number:3, p 179 https://doi.org/10.3390/drones7030179 kostenfrei https://doaj.org/article/9021cf399fc9421db5f7cc9ae50808d4 kostenfrei https://www.mdpi.com/2504-446X/7/3/179 kostenfrei https://doaj.org/toc/2504-446X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2023 3, p 179 |
spelling |
10.3390/drones7030179 doi (DE-627)DOAJ087388995 (DE-599)DOAJ9021cf399fc9421db5f7cc9ae50808d4 DE-627 ger DE-627 rakwb eng TL1-4050 Kristina Rančić verfasserin aut Animal Detection and Counting from UAV Images Using Convolutional Neural Networks 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the last decade, small unmanned aerial vehicles (UAVs/drones) have become increasingly popular in the airborne observation of large areas for many purposes, such as the monitoring of agricultural areas, the tracking of wild animals in their natural habitats, and the counting of livestock. Coupled with deep learning, they allow for automatic image processing and recognition. The aim of this work was to detect and count the deer population in northwestern Serbia from such images using deep neural networks, a tedious process that otherwise requires a lot of time and effort. In this paper, we present and compare the performance of several state-of-the-art network architectures, trained on a manually annotated set of images, and use it to predict the presence of objects in the rest of the dataset. We implemented three versions of the You Only Look Once (YOLO) architecture and a Single Shot Multibox Detector (SSD) to detect deer in a dense forest environment and measured their performance based on mean average precision (mAP), precision, recall, and F1 score. Moreover, we also evaluated the models based on their real-time performance. The results showed that the selected models were able to detect deer with a mean average precision of up to 70.45% and a confidence score of up to a 99%. The highest precision was achieved by the fourth version of YOLO with 86%, as well as the highest recall value of 75%. Its compressed version achieved slightly lower results, with 83% mAP in its best case, but it demonstrated four times better real-time performance. The counting function was applied on the best-performing models, providing us with the exact distribution of deer over all images. Yolov4 obtained an error of 8.3% in counting, while Yolov4-tiny mistook 12 deer, which accounted for an error of 7.1%. convolutional neural networks deer animal counting deep learning YOLO SSD Motor vehicles. Aeronautics. Astronautics Boško Blagojević verfasserin aut Atila Bezdan verfasserin aut Bojana Ivošević verfasserin aut Bojan Tubić verfasserin aut Milica Vranešević verfasserin aut Branislav Pejak verfasserin aut Vladimir Crnojević verfasserin aut Oskar Marko verfasserin aut In Drones MDPI AG, 2018 7(2023), 3, p 179 (DE-627)1025498356 2504446X nnns volume:7 year:2023 number:3, p 179 https://doi.org/10.3390/drones7030179 kostenfrei https://doaj.org/article/9021cf399fc9421db5f7cc9ae50808d4 kostenfrei https://www.mdpi.com/2504-446X/7/3/179 kostenfrei https://doaj.org/toc/2504-446X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2023 3, p 179 |
allfields_unstemmed |
10.3390/drones7030179 doi (DE-627)DOAJ087388995 (DE-599)DOAJ9021cf399fc9421db5f7cc9ae50808d4 DE-627 ger DE-627 rakwb eng TL1-4050 Kristina Rančić verfasserin aut Animal Detection and Counting from UAV Images Using Convolutional Neural Networks 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the last decade, small unmanned aerial vehicles (UAVs/drones) have become increasingly popular in the airborne observation of large areas for many purposes, such as the monitoring of agricultural areas, the tracking of wild animals in their natural habitats, and the counting of livestock. Coupled with deep learning, they allow for automatic image processing and recognition. The aim of this work was to detect and count the deer population in northwestern Serbia from such images using deep neural networks, a tedious process that otherwise requires a lot of time and effort. In this paper, we present and compare the performance of several state-of-the-art network architectures, trained on a manually annotated set of images, and use it to predict the presence of objects in the rest of the dataset. We implemented three versions of the You Only Look Once (YOLO) architecture and a Single Shot Multibox Detector (SSD) to detect deer in a dense forest environment and measured their performance based on mean average precision (mAP), precision, recall, and F1 score. Moreover, we also evaluated the models based on their real-time performance. The results showed that the selected models were able to detect deer with a mean average precision of up to 70.45% and a confidence score of up to a 99%. The highest precision was achieved by the fourth version of YOLO with 86%, as well as the highest recall value of 75%. Its compressed version achieved slightly lower results, with 83% mAP in its best case, but it demonstrated four times better real-time performance. The counting function was applied on the best-performing models, providing us with the exact distribution of deer over all images. Yolov4 obtained an error of 8.3% in counting, while Yolov4-tiny mistook 12 deer, which accounted for an error of 7.1%. convolutional neural networks deer animal counting deep learning YOLO SSD Motor vehicles. Aeronautics. Astronautics Boško Blagojević verfasserin aut Atila Bezdan verfasserin aut Bojana Ivošević verfasserin aut Bojan Tubić verfasserin aut Milica Vranešević verfasserin aut Branislav Pejak verfasserin aut Vladimir Crnojević verfasserin aut Oskar Marko verfasserin aut In Drones MDPI AG, 2018 7(2023), 3, p 179 (DE-627)1025498356 2504446X nnns volume:7 year:2023 number:3, p 179 https://doi.org/10.3390/drones7030179 kostenfrei https://doaj.org/article/9021cf399fc9421db5f7cc9ae50808d4 kostenfrei https://www.mdpi.com/2504-446X/7/3/179 kostenfrei https://doaj.org/toc/2504-446X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2023 3, p 179 |
allfieldsGer |
10.3390/drones7030179 doi (DE-627)DOAJ087388995 (DE-599)DOAJ9021cf399fc9421db5f7cc9ae50808d4 DE-627 ger DE-627 rakwb eng TL1-4050 Kristina Rančić verfasserin aut Animal Detection and Counting from UAV Images Using Convolutional Neural Networks 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the last decade, small unmanned aerial vehicles (UAVs/drones) have become increasingly popular in the airborne observation of large areas for many purposes, such as the monitoring of agricultural areas, the tracking of wild animals in their natural habitats, and the counting of livestock. Coupled with deep learning, they allow for automatic image processing and recognition. The aim of this work was to detect and count the deer population in northwestern Serbia from such images using deep neural networks, a tedious process that otherwise requires a lot of time and effort. In this paper, we present and compare the performance of several state-of-the-art network architectures, trained on a manually annotated set of images, and use it to predict the presence of objects in the rest of the dataset. We implemented three versions of the You Only Look Once (YOLO) architecture and a Single Shot Multibox Detector (SSD) to detect deer in a dense forest environment and measured their performance based on mean average precision (mAP), precision, recall, and F1 score. Moreover, we also evaluated the models based on their real-time performance. The results showed that the selected models were able to detect deer with a mean average precision of up to 70.45% and a confidence score of up to a 99%. The highest precision was achieved by the fourth version of YOLO with 86%, as well as the highest recall value of 75%. Its compressed version achieved slightly lower results, with 83% mAP in its best case, but it demonstrated four times better real-time performance. The counting function was applied on the best-performing models, providing us with the exact distribution of deer over all images. Yolov4 obtained an error of 8.3% in counting, while Yolov4-tiny mistook 12 deer, which accounted for an error of 7.1%. convolutional neural networks deer animal counting deep learning YOLO SSD Motor vehicles. Aeronautics. Astronautics Boško Blagojević verfasserin aut Atila Bezdan verfasserin aut Bojana Ivošević verfasserin aut Bojan Tubić verfasserin aut Milica Vranešević verfasserin aut Branislav Pejak verfasserin aut Vladimir Crnojević verfasserin aut Oskar Marko verfasserin aut In Drones MDPI AG, 2018 7(2023), 3, p 179 (DE-627)1025498356 2504446X nnns volume:7 year:2023 number:3, p 179 https://doi.org/10.3390/drones7030179 kostenfrei https://doaj.org/article/9021cf399fc9421db5f7cc9ae50808d4 kostenfrei https://www.mdpi.com/2504-446X/7/3/179 kostenfrei https://doaj.org/toc/2504-446X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2023 3, p 179 |
allfieldsSound |
10.3390/drones7030179 doi (DE-627)DOAJ087388995 (DE-599)DOAJ9021cf399fc9421db5f7cc9ae50808d4 DE-627 ger DE-627 rakwb eng TL1-4050 Kristina Rančić verfasserin aut Animal Detection and Counting from UAV Images Using Convolutional Neural Networks 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the last decade, small unmanned aerial vehicles (UAVs/drones) have become increasingly popular in the airborne observation of large areas for many purposes, such as the monitoring of agricultural areas, the tracking of wild animals in their natural habitats, and the counting of livestock. Coupled with deep learning, they allow for automatic image processing and recognition. The aim of this work was to detect and count the deer population in northwestern Serbia from such images using deep neural networks, a tedious process that otherwise requires a lot of time and effort. In this paper, we present and compare the performance of several state-of-the-art network architectures, trained on a manually annotated set of images, and use it to predict the presence of objects in the rest of the dataset. We implemented three versions of the You Only Look Once (YOLO) architecture and a Single Shot Multibox Detector (SSD) to detect deer in a dense forest environment and measured their performance based on mean average precision (mAP), precision, recall, and F1 score. Moreover, we also evaluated the models based on their real-time performance. The results showed that the selected models were able to detect deer with a mean average precision of up to 70.45% and a confidence score of up to a 99%. The highest precision was achieved by the fourth version of YOLO with 86%, as well as the highest recall value of 75%. Its compressed version achieved slightly lower results, with 83% mAP in its best case, but it demonstrated four times better real-time performance. The counting function was applied on the best-performing models, providing us with the exact distribution of deer over all images. Yolov4 obtained an error of 8.3% in counting, while Yolov4-tiny mistook 12 deer, which accounted for an error of 7.1%. convolutional neural networks deer animal counting deep learning YOLO SSD Motor vehicles. Aeronautics. Astronautics Boško Blagojević verfasserin aut Atila Bezdan verfasserin aut Bojana Ivošević verfasserin aut Bojan Tubić verfasserin aut Milica Vranešević verfasserin aut Branislav Pejak verfasserin aut Vladimir Crnojević verfasserin aut Oskar Marko verfasserin aut In Drones MDPI AG, 2018 7(2023), 3, p 179 (DE-627)1025498356 2504446X nnns volume:7 year:2023 number:3, p 179 https://doi.org/10.3390/drones7030179 kostenfrei https://doaj.org/article/9021cf399fc9421db5f7cc9ae50808d4 kostenfrei https://www.mdpi.com/2504-446X/7/3/179 kostenfrei https://doaj.org/toc/2504-446X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2023 3, p 179 |
language |
English |
source |
In Drones 7(2023), 3, p 179 volume:7 year:2023 number:3, p 179 |
sourceStr |
In Drones 7(2023), 3, p 179 volume:7 year:2023 number:3, p 179 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
convolutional neural networks deer animal counting deep learning YOLO SSD Motor vehicles. Aeronautics. Astronautics |
isfreeaccess_bool |
true |
container_title |
Drones |
authorswithroles_txt_mv |
Kristina Rančić @@aut@@ Boško Blagojević @@aut@@ Atila Bezdan @@aut@@ Bojana Ivošević @@aut@@ Bojan Tubić @@aut@@ Milica Vranešević @@aut@@ Branislav Pejak @@aut@@ Vladimir Crnojević @@aut@@ Oskar Marko @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
1025498356 |
id |
DOAJ087388995 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ087388995</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413052020.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230331s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/drones7030179</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ087388995</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ9021cf399fc9421db5f7cc9ae50808d4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TL1-4050</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Kristina Rančić</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Animal Detection and Counting from UAV Images Using Convolutional Neural Networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In the last decade, small unmanned aerial vehicles (UAVs/drones) have become increasingly popular in the airborne observation of large areas for many purposes, such as the monitoring of agricultural areas, the tracking of wild animals in their natural habitats, and the counting of livestock. Coupled with deep learning, they allow for automatic image processing and recognition. The aim of this work was to detect and count the deer population in northwestern Serbia from such images using deep neural networks, a tedious process that otherwise requires a lot of time and effort. In this paper, we present and compare the performance of several state-of-the-art network architectures, trained on a manually annotated set of images, and use it to predict the presence of objects in the rest of the dataset. We implemented three versions of the You Only Look Once (YOLO) architecture and a Single Shot Multibox Detector (SSD) to detect deer in a dense forest environment and measured their performance based on mean average precision (mAP), precision, recall, and F1 score. Moreover, we also evaluated the models based on their real-time performance. The results showed that the selected models were able to detect deer with a mean average precision of up to 70.45% and a confidence score of up to a 99%. The highest precision was achieved by the fourth version of YOLO with 86%, as well as the highest recall value of 75%. Its compressed version achieved slightly lower results, with 83% mAP in its best case, but it demonstrated four times better real-time performance. The counting function was applied on the best-performing models, providing us with the exact distribution of deer over all images. Yolov4 obtained an error of 8.3% in counting, while Yolov4-tiny mistook 12 deer, which accounted for an error of 7.1%.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">convolutional neural networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">animal counting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deep learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">YOLO</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SSD</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Motor vehicles. Aeronautics. Astronautics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Boško Blagojević</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Atila Bezdan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bojana Ivošević</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bojan Tubić</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Milica Vranešević</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Branislav Pejak</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vladimir Crnojević</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Oskar Marko</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Drones</subfield><subfield code="d">MDPI AG, 2018</subfield><subfield code="g">7(2023), 3, p 179</subfield><subfield code="w">(DE-627)1025498356</subfield><subfield code="x">2504446X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:3, p 179</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/drones7030179</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/9021cf399fc9421db5f7cc9ae50808d4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2504-446X/7/3/179</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2504-446X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2023</subfield><subfield code="e">3, p 179</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Kristina Rančić |
spellingShingle |
Kristina Rančić misc TL1-4050 misc convolutional neural networks misc deer misc animal counting misc deep learning misc YOLO misc SSD misc Motor vehicles. Aeronautics. Astronautics Animal Detection and Counting from UAV Images Using Convolutional Neural Networks |
authorStr |
Kristina Rančić |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1025498356 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TL1-4050 |
illustrated |
Not Illustrated |
issn |
2504446X |
topic_title |
TL1-4050 Animal Detection and Counting from UAV Images Using Convolutional Neural Networks convolutional neural networks deer animal counting deep learning YOLO SSD |
topic |
misc TL1-4050 misc convolutional neural networks misc deer misc animal counting misc deep learning misc YOLO misc SSD misc Motor vehicles. Aeronautics. Astronautics |
topic_unstemmed |
misc TL1-4050 misc convolutional neural networks misc deer misc animal counting misc deep learning misc YOLO misc SSD misc Motor vehicles. Aeronautics. Astronautics |
topic_browse |
misc TL1-4050 misc convolutional neural networks misc deer misc animal counting misc deep learning misc YOLO misc SSD misc Motor vehicles. Aeronautics. Astronautics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Drones |
hierarchy_parent_id |
1025498356 |
hierarchy_top_title |
Drones |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1025498356 |
title |
Animal Detection and Counting from UAV Images Using Convolutional Neural Networks |
ctrlnum |
(DE-627)DOAJ087388995 (DE-599)DOAJ9021cf399fc9421db5f7cc9ae50808d4 |
title_full |
Animal Detection and Counting from UAV Images Using Convolutional Neural Networks |
author_sort |
Kristina Rančić |
journal |
Drones |
journalStr |
Drones |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Kristina Rančić Boško Blagojević Atila Bezdan Bojana Ivošević Bojan Tubić Milica Vranešević Branislav Pejak Vladimir Crnojević Oskar Marko |
container_volume |
7 |
class |
TL1-4050 |
format_se |
Elektronische Aufsätze |
author-letter |
Kristina Rančić |
doi_str_mv |
10.3390/drones7030179 |
author2-role |
verfasserin |
title_sort |
animal detection and counting from uav images using convolutional neural networks |
callnumber |
TL1-4050 |
title_auth |
Animal Detection and Counting from UAV Images Using Convolutional Neural Networks |
abstract |
In the last decade, small unmanned aerial vehicles (UAVs/drones) have become increasingly popular in the airborne observation of large areas for many purposes, such as the monitoring of agricultural areas, the tracking of wild animals in their natural habitats, and the counting of livestock. Coupled with deep learning, they allow for automatic image processing and recognition. The aim of this work was to detect and count the deer population in northwestern Serbia from such images using deep neural networks, a tedious process that otherwise requires a lot of time and effort. In this paper, we present and compare the performance of several state-of-the-art network architectures, trained on a manually annotated set of images, and use it to predict the presence of objects in the rest of the dataset. We implemented three versions of the You Only Look Once (YOLO) architecture and a Single Shot Multibox Detector (SSD) to detect deer in a dense forest environment and measured their performance based on mean average precision (mAP), precision, recall, and F1 score. Moreover, we also evaluated the models based on their real-time performance. The results showed that the selected models were able to detect deer with a mean average precision of up to 70.45% and a confidence score of up to a 99%. The highest precision was achieved by the fourth version of YOLO with 86%, as well as the highest recall value of 75%. Its compressed version achieved slightly lower results, with 83% mAP in its best case, but it demonstrated four times better real-time performance. The counting function was applied on the best-performing models, providing us with the exact distribution of deer over all images. Yolov4 obtained an error of 8.3% in counting, while Yolov4-tiny mistook 12 deer, which accounted for an error of 7.1%. |
abstractGer |
In the last decade, small unmanned aerial vehicles (UAVs/drones) have become increasingly popular in the airborne observation of large areas for many purposes, such as the monitoring of agricultural areas, the tracking of wild animals in their natural habitats, and the counting of livestock. Coupled with deep learning, they allow for automatic image processing and recognition. The aim of this work was to detect and count the deer population in northwestern Serbia from such images using deep neural networks, a tedious process that otherwise requires a lot of time and effort. In this paper, we present and compare the performance of several state-of-the-art network architectures, trained on a manually annotated set of images, and use it to predict the presence of objects in the rest of the dataset. We implemented three versions of the You Only Look Once (YOLO) architecture and a Single Shot Multibox Detector (SSD) to detect deer in a dense forest environment and measured their performance based on mean average precision (mAP), precision, recall, and F1 score. Moreover, we also evaluated the models based on their real-time performance. The results showed that the selected models were able to detect deer with a mean average precision of up to 70.45% and a confidence score of up to a 99%. The highest precision was achieved by the fourth version of YOLO with 86%, as well as the highest recall value of 75%. Its compressed version achieved slightly lower results, with 83% mAP in its best case, but it demonstrated four times better real-time performance. The counting function was applied on the best-performing models, providing us with the exact distribution of deer over all images. Yolov4 obtained an error of 8.3% in counting, while Yolov4-tiny mistook 12 deer, which accounted for an error of 7.1%. |
abstract_unstemmed |
In the last decade, small unmanned aerial vehicles (UAVs/drones) have become increasingly popular in the airborne observation of large areas for many purposes, such as the monitoring of agricultural areas, the tracking of wild animals in their natural habitats, and the counting of livestock. Coupled with deep learning, they allow for automatic image processing and recognition. The aim of this work was to detect and count the deer population in northwestern Serbia from such images using deep neural networks, a tedious process that otherwise requires a lot of time and effort. In this paper, we present and compare the performance of several state-of-the-art network architectures, trained on a manually annotated set of images, and use it to predict the presence of objects in the rest of the dataset. We implemented three versions of the You Only Look Once (YOLO) architecture and a Single Shot Multibox Detector (SSD) to detect deer in a dense forest environment and measured their performance based on mean average precision (mAP), precision, recall, and F1 score. Moreover, we also evaluated the models based on their real-time performance. The results showed that the selected models were able to detect deer with a mean average precision of up to 70.45% and a confidence score of up to a 99%. The highest precision was achieved by the fourth version of YOLO with 86%, as well as the highest recall value of 75%. Its compressed version achieved slightly lower results, with 83% mAP in its best case, but it demonstrated four times better real-time performance. The counting function was applied on the best-performing models, providing us with the exact distribution of deer over all images. Yolov4 obtained an error of 8.3% in counting, while Yolov4-tiny mistook 12 deer, which accounted for an error of 7.1%. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
3, p 179 |
title_short |
Animal Detection and Counting from UAV Images Using Convolutional Neural Networks |
url |
https://doi.org/10.3390/drones7030179 https://doaj.org/article/9021cf399fc9421db5f7cc9ae50808d4 https://www.mdpi.com/2504-446X/7/3/179 https://doaj.org/toc/2504-446X |
remote_bool |
true |
author2 |
Boško Blagojević Atila Bezdan Bojana Ivošević Bojan Tubić Milica Vranešević Branislav Pejak Vladimir Crnojević Oskar Marko |
author2Str |
Boško Blagojević Atila Bezdan Bojana Ivošević Bojan Tubić Milica Vranešević Branislav Pejak Vladimir Crnojević Oskar Marko |
ppnlink |
1025498356 |
callnumber-subject |
TL - Motor Vehicles and Aeronautics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/drones7030179 |
callnumber-a |
TL1-4050 |
up_date |
2024-07-04T01:28:44.950Z |
_version_ |
1803609990713311232 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ087388995</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413052020.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230331s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/drones7030179</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ087388995</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ9021cf399fc9421db5f7cc9ae50808d4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TL1-4050</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Kristina Rančić</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Animal Detection and Counting from UAV Images Using Convolutional Neural Networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In the last decade, small unmanned aerial vehicles (UAVs/drones) have become increasingly popular in the airborne observation of large areas for many purposes, such as the monitoring of agricultural areas, the tracking of wild animals in their natural habitats, and the counting of livestock. Coupled with deep learning, they allow for automatic image processing and recognition. The aim of this work was to detect and count the deer population in northwestern Serbia from such images using deep neural networks, a tedious process that otherwise requires a lot of time and effort. In this paper, we present and compare the performance of several state-of-the-art network architectures, trained on a manually annotated set of images, and use it to predict the presence of objects in the rest of the dataset. We implemented three versions of the You Only Look Once (YOLO) architecture and a Single Shot Multibox Detector (SSD) to detect deer in a dense forest environment and measured their performance based on mean average precision (mAP), precision, recall, and F1 score. Moreover, we also evaluated the models based on their real-time performance. The results showed that the selected models were able to detect deer with a mean average precision of up to 70.45% and a confidence score of up to a 99%. The highest precision was achieved by the fourth version of YOLO with 86%, as well as the highest recall value of 75%. Its compressed version achieved slightly lower results, with 83% mAP in its best case, but it demonstrated four times better real-time performance. The counting function was applied on the best-performing models, providing us with the exact distribution of deer over all images. Yolov4 obtained an error of 8.3% in counting, while Yolov4-tiny mistook 12 deer, which accounted for an error of 7.1%.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">convolutional neural networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">animal counting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deep learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">YOLO</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SSD</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Motor vehicles. Aeronautics. Astronautics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Boško Blagojević</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Atila Bezdan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bojana Ivošević</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bojan Tubić</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Milica Vranešević</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Branislav Pejak</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vladimir Crnojević</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Oskar Marko</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Drones</subfield><subfield code="d">MDPI AG, 2018</subfield><subfield code="g">7(2023), 3, p 179</subfield><subfield code="w">(DE-627)1025498356</subfield><subfield code="x">2504446X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:3, p 179</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/drones7030179</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/9021cf399fc9421db5f7cc9ae50808d4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2504-446X/7/3/179</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2504-446X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2023</subfield><subfield code="e">3, p 179</subfield></datafield></record></collection>
|
score |
7.400923 |