INFOGEST 2.0 Digestion Method: Characterization of the Sterol Content in the Digestion Reagents
The INFOGEST digestion method was adapted for the evaluation of sterol bioaccessibility in a plant sterol (PS)-enriched beverage [<sup<1</sup<]. Recent modifications of the method, such as the addition of gastric lipase and cholesterol esterase, showed that the presence of sterols in dig...
Ausführliche Beschreibung
Autor*in: |
Manuel Muñoz-Checa [verfasserIn] Mussa Makran [verfasserIn] Gabriel López-García [verfasserIn] Antonio Cilla [verfasserIn] Reyes Barberá [verfasserIn] Amparo Alegría [verfasserIn] Guadalupe García-Llatas [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Biology and Life Sciences Forum - MDPI AG, 2023, 6(2021), 1, p 108 |
---|---|
Übergeordnetes Werk: |
volume:6 ; year:2021 ; number:1, p 108 |
Links: |
---|
DOI / URN: |
10.3390/Foods2021-10932 |
---|
Katalog-ID: |
DOAJ087420163 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ087420163 | ||
003 | DE-627 | ||
005 | 20240413052621.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230331s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/Foods2021-10932 |2 doi | |
035 | |a (DE-627)DOAJ087420163 | ||
035 | |a (DE-599)DOAJ76b8e75a4e094d958355a61be9f0011d | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QK900-989 | |
050 | 0 | |a QP501-801 | |
050 | 0 | |a QH301-705.5 | |
100 | 0 | |a Manuel Muñoz-Checa |e verfasserin |4 aut | |
245 | 1 | 0 | |a INFOGEST 2.0 Digestion Method: Characterization of the Sterol Content in the Digestion Reagents |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The INFOGEST digestion method was adapted for the evaluation of sterol bioaccessibility in a plant sterol (PS)-enriched beverage [<sup<1</sup<]. Recent modifications of the method, such as the addition of gastric lipase and cholesterol esterase, showed that the presence of sterols in digestion reagents has an important role on sterol bioaccessibility [<sup<2</sup<]. However, the specific sterol contribution from these extracts is unknown. Therefore, in the present study, the sterol content of the extracts used in the INFOGEST 2.0 digestion method (rabbit gastric extract—RGE, porcine pancreatin and bovine bile) is determined via GC-FID. The results show that the cholesterol content of the extracts is as follows: bovine bile < porcine pancreatin < RGE (4.07 ± 0.18, 1.41 ± 0.07 and 0.57 ± 0.05 mg/g extract, respectively). Considering the amount of each extract added to the digestion, the greatest cholesterol contributor is porcine pancreatin, followed by bovine bile and RGE (1.72 ± 0.08, 1.00 ± 0.04, and 0.046 ± 0.004 mg, respectively). However, cholesterol in bile is found in pre-formed micelles that increase its solubility, and, therefore, it would compete for sterol micellarization against sterol provided by the digested foods. This fact has been observed in previous studies in which the cholesterol content of the blanks of digestion was inversely correlated with PS bioaccessibility [<sup<2</sup<]. On the other hand, bovine bile contains stigmasterol, β-sitosterol and sitostanol (0.14 ± 0.01, 0.93 ± 0.07 and 0.18 ± 0.01 mg/g extract, respectively), while porcine pancreatin contains campesterol, stigmasterol, β-sitosterol and sitostanol (0.103 ± 0.004, 0.25 ± 0.02, 2.17 ± 0.42 and 0.32 ± 0.01 mg/g extract, respectively). Nevertheless, these PSs present in the extracts appear in negligible amounts in the digestion blank, reflecting their low solubility vs. cholesterol. In conclusion, in order to optimize the INFOGEST 2.0 gastrointestinal method for the evaluation of sterol bioaccessibility, the characterization of the sterol content in digestion reagents provides valuable information since it may affect their solubility. | ||
650 | 4 | |a bovine bile | |
650 | 4 | |a in vitro digestion | |
650 | 4 | |a porcine pancreatin | |
650 | 4 | |a rabbit gastric extract | |
650 | 4 | |a sterols | |
653 | 0 | |a Plant ecology | |
653 | 0 | |a Animal biochemistry | |
653 | 0 | |a Biology (General) | |
700 | 0 | |a Mussa Makran |e verfasserin |4 aut | |
700 | 0 | |a Gabriel López-García |e verfasserin |4 aut | |
700 | 0 | |a Antonio Cilla |e verfasserin |4 aut | |
700 | 0 | |a Reyes Barberá |e verfasserin |4 aut | |
700 | 0 | |a Amparo Alegría |e verfasserin |4 aut | |
700 | 0 | |a Guadalupe García-Llatas |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Biology and Life Sciences Forum |d MDPI AG, 2023 |g 6(2021), 1, p 108 |w (DE-627)1815526661 |x 26739976 |7 nnns |
773 | 1 | 8 | |g volume:6 |g year:2021 |g number:1, p 108 |
856 | 4 | 0 | |u https://doi.org/10.3390/Foods2021-10932 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/76b8e75a4e094d958355a61be9f0011d |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2673-9976/6/1/108 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2673-9976 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 6 |j 2021 |e 1, p 108 |
author_variant |
m m c mmc m m mm g l g glg a c ac r b rb a a aa g g l ggl |
---|---|
matchkey_str |
article:26739976:2021----::noet0ietomtocaatrztootetrlotni |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
QK |
publishDate |
2021 |
allfields |
10.3390/Foods2021-10932 doi (DE-627)DOAJ087420163 (DE-599)DOAJ76b8e75a4e094d958355a61be9f0011d DE-627 ger DE-627 rakwb eng QK900-989 QP501-801 QH301-705.5 Manuel Muñoz-Checa verfasserin aut INFOGEST 2.0 Digestion Method: Characterization of the Sterol Content in the Digestion Reagents 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The INFOGEST digestion method was adapted for the evaluation of sterol bioaccessibility in a plant sterol (PS)-enriched beverage [<sup<1</sup<]. Recent modifications of the method, such as the addition of gastric lipase and cholesterol esterase, showed that the presence of sterols in digestion reagents has an important role on sterol bioaccessibility [<sup<2</sup<]. However, the specific sterol contribution from these extracts is unknown. Therefore, in the present study, the sterol content of the extracts used in the INFOGEST 2.0 digestion method (rabbit gastric extract—RGE, porcine pancreatin and bovine bile) is determined via GC-FID. The results show that the cholesterol content of the extracts is as follows: bovine bile < porcine pancreatin < RGE (4.07 ± 0.18, 1.41 ± 0.07 and 0.57 ± 0.05 mg/g extract, respectively). Considering the amount of each extract added to the digestion, the greatest cholesterol contributor is porcine pancreatin, followed by bovine bile and RGE (1.72 ± 0.08, 1.00 ± 0.04, and 0.046 ± 0.004 mg, respectively). However, cholesterol in bile is found in pre-formed micelles that increase its solubility, and, therefore, it would compete for sterol micellarization against sterol provided by the digested foods. This fact has been observed in previous studies in which the cholesterol content of the blanks of digestion was inversely correlated with PS bioaccessibility [<sup<2</sup<]. On the other hand, bovine bile contains stigmasterol, β-sitosterol and sitostanol (0.14 ± 0.01, 0.93 ± 0.07 and 0.18 ± 0.01 mg/g extract, respectively), while porcine pancreatin contains campesterol, stigmasterol, β-sitosterol and sitostanol (0.103 ± 0.004, 0.25 ± 0.02, 2.17 ± 0.42 and 0.32 ± 0.01 mg/g extract, respectively). Nevertheless, these PSs present in the extracts appear in negligible amounts in the digestion blank, reflecting their low solubility vs. cholesterol. In conclusion, in order to optimize the INFOGEST 2.0 gastrointestinal method for the evaluation of sterol bioaccessibility, the characterization of the sterol content in digestion reagents provides valuable information since it may affect their solubility. bovine bile in vitro digestion porcine pancreatin rabbit gastric extract sterols Plant ecology Animal biochemistry Biology (General) Mussa Makran verfasserin aut Gabriel López-García verfasserin aut Antonio Cilla verfasserin aut Reyes Barberá verfasserin aut Amparo Alegría verfasserin aut Guadalupe García-Llatas verfasserin aut In Biology and Life Sciences Forum MDPI AG, 2023 6(2021), 1, p 108 (DE-627)1815526661 26739976 nnns volume:6 year:2021 number:1, p 108 https://doi.org/10.3390/Foods2021-10932 kostenfrei https://doaj.org/article/76b8e75a4e094d958355a61be9f0011d kostenfrei https://www.mdpi.com/2673-9976/6/1/108 kostenfrei https://doaj.org/toc/2673-9976 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2021 1, p 108 |
spelling |
10.3390/Foods2021-10932 doi (DE-627)DOAJ087420163 (DE-599)DOAJ76b8e75a4e094d958355a61be9f0011d DE-627 ger DE-627 rakwb eng QK900-989 QP501-801 QH301-705.5 Manuel Muñoz-Checa verfasserin aut INFOGEST 2.0 Digestion Method: Characterization of the Sterol Content in the Digestion Reagents 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The INFOGEST digestion method was adapted for the evaluation of sterol bioaccessibility in a plant sterol (PS)-enriched beverage [<sup<1</sup<]. Recent modifications of the method, such as the addition of gastric lipase and cholesterol esterase, showed that the presence of sterols in digestion reagents has an important role on sterol bioaccessibility [<sup<2</sup<]. However, the specific sterol contribution from these extracts is unknown. Therefore, in the present study, the sterol content of the extracts used in the INFOGEST 2.0 digestion method (rabbit gastric extract—RGE, porcine pancreatin and bovine bile) is determined via GC-FID. The results show that the cholesterol content of the extracts is as follows: bovine bile < porcine pancreatin < RGE (4.07 ± 0.18, 1.41 ± 0.07 and 0.57 ± 0.05 mg/g extract, respectively). Considering the amount of each extract added to the digestion, the greatest cholesterol contributor is porcine pancreatin, followed by bovine bile and RGE (1.72 ± 0.08, 1.00 ± 0.04, and 0.046 ± 0.004 mg, respectively). However, cholesterol in bile is found in pre-formed micelles that increase its solubility, and, therefore, it would compete for sterol micellarization against sterol provided by the digested foods. This fact has been observed in previous studies in which the cholesterol content of the blanks of digestion was inversely correlated with PS bioaccessibility [<sup<2</sup<]. On the other hand, bovine bile contains stigmasterol, β-sitosterol and sitostanol (0.14 ± 0.01, 0.93 ± 0.07 and 0.18 ± 0.01 mg/g extract, respectively), while porcine pancreatin contains campesterol, stigmasterol, β-sitosterol and sitostanol (0.103 ± 0.004, 0.25 ± 0.02, 2.17 ± 0.42 and 0.32 ± 0.01 mg/g extract, respectively). Nevertheless, these PSs present in the extracts appear in negligible amounts in the digestion blank, reflecting their low solubility vs. cholesterol. In conclusion, in order to optimize the INFOGEST 2.0 gastrointestinal method for the evaluation of sterol bioaccessibility, the characterization of the sterol content in digestion reagents provides valuable information since it may affect their solubility. bovine bile in vitro digestion porcine pancreatin rabbit gastric extract sterols Plant ecology Animal biochemistry Biology (General) Mussa Makran verfasserin aut Gabriel López-García verfasserin aut Antonio Cilla verfasserin aut Reyes Barberá verfasserin aut Amparo Alegría verfasserin aut Guadalupe García-Llatas verfasserin aut In Biology and Life Sciences Forum MDPI AG, 2023 6(2021), 1, p 108 (DE-627)1815526661 26739976 nnns volume:6 year:2021 number:1, p 108 https://doi.org/10.3390/Foods2021-10932 kostenfrei https://doaj.org/article/76b8e75a4e094d958355a61be9f0011d kostenfrei https://www.mdpi.com/2673-9976/6/1/108 kostenfrei https://doaj.org/toc/2673-9976 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2021 1, p 108 |
allfields_unstemmed |
10.3390/Foods2021-10932 doi (DE-627)DOAJ087420163 (DE-599)DOAJ76b8e75a4e094d958355a61be9f0011d DE-627 ger DE-627 rakwb eng QK900-989 QP501-801 QH301-705.5 Manuel Muñoz-Checa verfasserin aut INFOGEST 2.0 Digestion Method: Characterization of the Sterol Content in the Digestion Reagents 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The INFOGEST digestion method was adapted for the evaluation of sterol bioaccessibility in a plant sterol (PS)-enriched beverage [<sup<1</sup<]. Recent modifications of the method, such as the addition of gastric lipase and cholesterol esterase, showed that the presence of sterols in digestion reagents has an important role on sterol bioaccessibility [<sup<2</sup<]. However, the specific sterol contribution from these extracts is unknown. Therefore, in the present study, the sterol content of the extracts used in the INFOGEST 2.0 digestion method (rabbit gastric extract—RGE, porcine pancreatin and bovine bile) is determined via GC-FID. The results show that the cholesterol content of the extracts is as follows: bovine bile < porcine pancreatin < RGE (4.07 ± 0.18, 1.41 ± 0.07 and 0.57 ± 0.05 mg/g extract, respectively). Considering the amount of each extract added to the digestion, the greatest cholesterol contributor is porcine pancreatin, followed by bovine bile and RGE (1.72 ± 0.08, 1.00 ± 0.04, and 0.046 ± 0.004 mg, respectively). However, cholesterol in bile is found in pre-formed micelles that increase its solubility, and, therefore, it would compete for sterol micellarization against sterol provided by the digested foods. This fact has been observed in previous studies in which the cholesterol content of the blanks of digestion was inversely correlated with PS bioaccessibility [<sup<2</sup<]. On the other hand, bovine bile contains stigmasterol, β-sitosterol and sitostanol (0.14 ± 0.01, 0.93 ± 0.07 and 0.18 ± 0.01 mg/g extract, respectively), while porcine pancreatin contains campesterol, stigmasterol, β-sitosterol and sitostanol (0.103 ± 0.004, 0.25 ± 0.02, 2.17 ± 0.42 and 0.32 ± 0.01 mg/g extract, respectively). Nevertheless, these PSs present in the extracts appear in negligible amounts in the digestion blank, reflecting their low solubility vs. cholesterol. In conclusion, in order to optimize the INFOGEST 2.0 gastrointestinal method for the evaluation of sterol bioaccessibility, the characterization of the sterol content in digestion reagents provides valuable information since it may affect their solubility. bovine bile in vitro digestion porcine pancreatin rabbit gastric extract sterols Plant ecology Animal biochemistry Biology (General) Mussa Makran verfasserin aut Gabriel López-García verfasserin aut Antonio Cilla verfasserin aut Reyes Barberá verfasserin aut Amparo Alegría verfasserin aut Guadalupe García-Llatas verfasserin aut In Biology and Life Sciences Forum MDPI AG, 2023 6(2021), 1, p 108 (DE-627)1815526661 26739976 nnns volume:6 year:2021 number:1, p 108 https://doi.org/10.3390/Foods2021-10932 kostenfrei https://doaj.org/article/76b8e75a4e094d958355a61be9f0011d kostenfrei https://www.mdpi.com/2673-9976/6/1/108 kostenfrei https://doaj.org/toc/2673-9976 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2021 1, p 108 |
allfieldsGer |
10.3390/Foods2021-10932 doi (DE-627)DOAJ087420163 (DE-599)DOAJ76b8e75a4e094d958355a61be9f0011d DE-627 ger DE-627 rakwb eng QK900-989 QP501-801 QH301-705.5 Manuel Muñoz-Checa verfasserin aut INFOGEST 2.0 Digestion Method: Characterization of the Sterol Content in the Digestion Reagents 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The INFOGEST digestion method was adapted for the evaluation of sterol bioaccessibility in a plant sterol (PS)-enriched beverage [<sup<1</sup<]. Recent modifications of the method, such as the addition of gastric lipase and cholesterol esterase, showed that the presence of sterols in digestion reagents has an important role on sterol bioaccessibility [<sup<2</sup<]. However, the specific sterol contribution from these extracts is unknown. Therefore, in the present study, the sterol content of the extracts used in the INFOGEST 2.0 digestion method (rabbit gastric extract—RGE, porcine pancreatin and bovine bile) is determined via GC-FID. The results show that the cholesterol content of the extracts is as follows: bovine bile < porcine pancreatin < RGE (4.07 ± 0.18, 1.41 ± 0.07 and 0.57 ± 0.05 mg/g extract, respectively). Considering the amount of each extract added to the digestion, the greatest cholesterol contributor is porcine pancreatin, followed by bovine bile and RGE (1.72 ± 0.08, 1.00 ± 0.04, and 0.046 ± 0.004 mg, respectively). However, cholesterol in bile is found in pre-formed micelles that increase its solubility, and, therefore, it would compete for sterol micellarization against sterol provided by the digested foods. This fact has been observed in previous studies in which the cholesterol content of the blanks of digestion was inversely correlated with PS bioaccessibility [<sup<2</sup<]. On the other hand, bovine bile contains stigmasterol, β-sitosterol and sitostanol (0.14 ± 0.01, 0.93 ± 0.07 and 0.18 ± 0.01 mg/g extract, respectively), while porcine pancreatin contains campesterol, stigmasterol, β-sitosterol and sitostanol (0.103 ± 0.004, 0.25 ± 0.02, 2.17 ± 0.42 and 0.32 ± 0.01 mg/g extract, respectively). Nevertheless, these PSs present in the extracts appear in negligible amounts in the digestion blank, reflecting their low solubility vs. cholesterol. In conclusion, in order to optimize the INFOGEST 2.0 gastrointestinal method for the evaluation of sterol bioaccessibility, the characterization of the sterol content in digestion reagents provides valuable information since it may affect their solubility. bovine bile in vitro digestion porcine pancreatin rabbit gastric extract sterols Plant ecology Animal biochemistry Biology (General) Mussa Makran verfasserin aut Gabriel López-García verfasserin aut Antonio Cilla verfasserin aut Reyes Barberá verfasserin aut Amparo Alegría verfasserin aut Guadalupe García-Llatas verfasserin aut In Biology and Life Sciences Forum MDPI AG, 2023 6(2021), 1, p 108 (DE-627)1815526661 26739976 nnns volume:6 year:2021 number:1, p 108 https://doi.org/10.3390/Foods2021-10932 kostenfrei https://doaj.org/article/76b8e75a4e094d958355a61be9f0011d kostenfrei https://www.mdpi.com/2673-9976/6/1/108 kostenfrei https://doaj.org/toc/2673-9976 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2021 1, p 108 |
allfieldsSound |
10.3390/Foods2021-10932 doi (DE-627)DOAJ087420163 (DE-599)DOAJ76b8e75a4e094d958355a61be9f0011d DE-627 ger DE-627 rakwb eng QK900-989 QP501-801 QH301-705.5 Manuel Muñoz-Checa verfasserin aut INFOGEST 2.0 Digestion Method: Characterization of the Sterol Content in the Digestion Reagents 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The INFOGEST digestion method was adapted for the evaluation of sterol bioaccessibility in a plant sterol (PS)-enriched beverage [<sup<1</sup<]. Recent modifications of the method, such as the addition of gastric lipase and cholesterol esterase, showed that the presence of sterols in digestion reagents has an important role on sterol bioaccessibility [<sup<2</sup<]. However, the specific sterol contribution from these extracts is unknown. Therefore, in the present study, the sterol content of the extracts used in the INFOGEST 2.0 digestion method (rabbit gastric extract—RGE, porcine pancreatin and bovine bile) is determined via GC-FID. The results show that the cholesterol content of the extracts is as follows: bovine bile < porcine pancreatin < RGE (4.07 ± 0.18, 1.41 ± 0.07 and 0.57 ± 0.05 mg/g extract, respectively). Considering the amount of each extract added to the digestion, the greatest cholesterol contributor is porcine pancreatin, followed by bovine bile and RGE (1.72 ± 0.08, 1.00 ± 0.04, and 0.046 ± 0.004 mg, respectively). However, cholesterol in bile is found in pre-formed micelles that increase its solubility, and, therefore, it would compete for sterol micellarization against sterol provided by the digested foods. This fact has been observed in previous studies in which the cholesterol content of the blanks of digestion was inversely correlated with PS bioaccessibility [<sup<2</sup<]. On the other hand, bovine bile contains stigmasterol, β-sitosterol and sitostanol (0.14 ± 0.01, 0.93 ± 0.07 and 0.18 ± 0.01 mg/g extract, respectively), while porcine pancreatin contains campesterol, stigmasterol, β-sitosterol and sitostanol (0.103 ± 0.004, 0.25 ± 0.02, 2.17 ± 0.42 and 0.32 ± 0.01 mg/g extract, respectively). Nevertheless, these PSs present in the extracts appear in negligible amounts in the digestion blank, reflecting their low solubility vs. cholesterol. In conclusion, in order to optimize the INFOGEST 2.0 gastrointestinal method for the evaluation of sterol bioaccessibility, the characterization of the sterol content in digestion reagents provides valuable information since it may affect their solubility. bovine bile in vitro digestion porcine pancreatin rabbit gastric extract sterols Plant ecology Animal biochemistry Biology (General) Mussa Makran verfasserin aut Gabriel López-García verfasserin aut Antonio Cilla verfasserin aut Reyes Barberá verfasserin aut Amparo Alegría verfasserin aut Guadalupe García-Llatas verfasserin aut In Biology and Life Sciences Forum MDPI AG, 2023 6(2021), 1, p 108 (DE-627)1815526661 26739976 nnns volume:6 year:2021 number:1, p 108 https://doi.org/10.3390/Foods2021-10932 kostenfrei https://doaj.org/article/76b8e75a4e094d958355a61be9f0011d kostenfrei https://www.mdpi.com/2673-9976/6/1/108 kostenfrei https://doaj.org/toc/2673-9976 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2021 1, p 108 |
language |
English |
source |
In Biology and Life Sciences Forum 6(2021), 1, p 108 volume:6 year:2021 number:1, p 108 |
sourceStr |
In Biology and Life Sciences Forum 6(2021), 1, p 108 volume:6 year:2021 number:1, p 108 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
bovine bile in vitro digestion porcine pancreatin rabbit gastric extract sterols Plant ecology Animal biochemistry Biology (General) |
isfreeaccess_bool |
true |
container_title |
Biology and Life Sciences Forum |
authorswithroles_txt_mv |
Manuel Muñoz-Checa @@aut@@ Mussa Makran @@aut@@ Gabriel López-García @@aut@@ Antonio Cilla @@aut@@ Reyes Barberá @@aut@@ Amparo Alegría @@aut@@ Guadalupe García-Llatas @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
1815526661 |
id |
DOAJ087420163 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ087420163</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413052621.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230331s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/Foods2021-10932</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ087420163</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ76b8e75a4e094d958355a61be9f0011d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QK900-989</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QP501-801</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Manuel Muñoz-Checa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">INFOGEST 2.0 Digestion Method: Characterization of the Sterol Content in the Digestion Reagents</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The INFOGEST digestion method was adapted for the evaluation of sterol bioaccessibility in a plant sterol (PS)-enriched beverage [<sup<1</sup<]. Recent modifications of the method, such as the addition of gastric lipase and cholesterol esterase, showed that the presence of sterols in digestion reagents has an important role on sterol bioaccessibility [<sup<2</sup<]. However, the specific sterol contribution from these extracts is unknown. Therefore, in the present study, the sterol content of the extracts used in the INFOGEST 2.0 digestion method (rabbit gastric extract—RGE, porcine pancreatin and bovine bile) is determined via GC-FID. The results show that the cholesterol content of the extracts is as follows: bovine bile < porcine pancreatin < RGE (4.07 ± 0.18, 1.41 ± 0.07 and 0.57 ± 0.05 mg/g extract, respectively). Considering the amount of each extract added to the digestion, the greatest cholesterol contributor is porcine pancreatin, followed by bovine bile and RGE (1.72 ± 0.08, 1.00 ± 0.04, and 0.046 ± 0.004 mg, respectively). However, cholesterol in bile is found in pre-formed micelles that increase its solubility, and, therefore, it would compete for sterol micellarization against sterol provided by the digested foods. This fact has been observed in previous studies in which the cholesterol content of the blanks of digestion was inversely correlated with PS bioaccessibility [<sup<2</sup<]. On the other hand, bovine bile contains stigmasterol, β-sitosterol and sitostanol (0.14 ± 0.01, 0.93 ± 0.07 and 0.18 ± 0.01 mg/g extract, respectively), while porcine pancreatin contains campesterol, stigmasterol, β-sitosterol and sitostanol (0.103 ± 0.004, 0.25 ± 0.02, 2.17 ± 0.42 and 0.32 ± 0.01 mg/g extract, respectively). Nevertheless, these PSs present in the extracts appear in negligible amounts in the digestion blank, reflecting their low solubility vs. cholesterol. In conclusion, in order to optimize the INFOGEST 2.0 gastrointestinal method for the evaluation of sterol bioaccessibility, the characterization of the sterol content in digestion reagents provides valuable information since it may affect their solubility.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bovine bile</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">in vitro digestion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">porcine pancreatin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">rabbit gastric extract</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sterols</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Plant ecology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Animal biochemistry</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mussa Makran</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gabriel López-García</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Antonio Cilla</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Reyes Barberá</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Amparo Alegría</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guadalupe García-Llatas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Biology and Life Sciences Forum</subfield><subfield code="d">MDPI AG, 2023</subfield><subfield code="g">6(2021), 1, p 108</subfield><subfield code="w">(DE-627)1815526661</subfield><subfield code="x">26739976</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1, p 108</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/Foods2021-10932</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/76b8e75a4e094d958355a61be9f0011d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2673-9976/6/1/108</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2673-9976</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2021</subfield><subfield code="e">1, p 108</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Manuel Muñoz-Checa |
spellingShingle |
Manuel Muñoz-Checa misc QK900-989 misc QP501-801 misc QH301-705.5 misc bovine bile misc in vitro digestion misc porcine pancreatin misc rabbit gastric extract misc sterols misc Plant ecology misc Animal biochemistry misc Biology (General) INFOGEST 2.0 Digestion Method: Characterization of the Sterol Content in the Digestion Reagents |
authorStr |
Manuel Muñoz-Checa |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1815526661 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QK900-989 |
illustrated |
Not Illustrated |
issn |
26739976 |
topic_title |
QK900-989 QP501-801 QH301-705.5 INFOGEST 2.0 Digestion Method: Characterization of the Sterol Content in the Digestion Reagents bovine bile in vitro digestion porcine pancreatin rabbit gastric extract sterols |
topic |
misc QK900-989 misc QP501-801 misc QH301-705.5 misc bovine bile misc in vitro digestion misc porcine pancreatin misc rabbit gastric extract misc sterols misc Plant ecology misc Animal biochemistry misc Biology (General) |
topic_unstemmed |
misc QK900-989 misc QP501-801 misc QH301-705.5 misc bovine bile misc in vitro digestion misc porcine pancreatin misc rabbit gastric extract misc sterols misc Plant ecology misc Animal biochemistry misc Biology (General) |
topic_browse |
misc QK900-989 misc QP501-801 misc QH301-705.5 misc bovine bile misc in vitro digestion misc porcine pancreatin misc rabbit gastric extract misc sterols misc Plant ecology misc Animal biochemistry misc Biology (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Biology and Life Sciences Forum |
hierarchy_parent_id |
1815526661 |
hierarchy_top_title |
Biology and Life Sciences Forum |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1815526661 |
title |
INFOGEST 2.0 Digestion Method: Characterization of the Sterol Content in the Digestion Reagents |
ctrlnum |
(DE-627)DOAJ087420163 (DE-599)DOAJ76b8e75a4e094d958355a61be9f0011d |
title_full |
INFOGEST 2.0 Digestion Method: Characterization of the Sterol Content in the Digestion Reagents |
author_sort |
Manuel Muñoz-Checa |
journal |
Biology and Life Sciences Forum |
journalStr |
Biology and Life Sciences Forum |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Manuel Muñoz-Checa Mussa Makran Gabriel López-García Antonio Cilla Reyes Barberá Amparo Alegría Guadalupe García-Llatas |
container_volume |
6 |
class |
QK900-989 QP501-801 QH301-705.5 |
format_se |
Elektronische Aufsätze |
author-letter |
Manuel Muñoz-Checa |
doi_str_mv |
10.3390/Foods2021-10932 |
author2-role |
verfasserin |
title_sort |
infogest 2.0 digestion method: characterization of the sterol content in the digestion reagents |
callnumber |
QK900-989 |
title_auth |
INFOGEST 2.0 Digestion Method: Characterization of the Sterol Content in the Digestion Reagents |
abstract |
The INFOGEST digestion method was adapted for the evaluation of sterol bioaccessibility in a plant sterol (PS)-enriched beverage [<sup<1</sup<]. Recent modifications of the method, such as the addition of gastric lipase and cholesterol esterase, showed that the presence of sterols in digestion reagents has an important role on sterol bioaccessibility [<sup<2</sup<]. However, the specific sterol contribution from these extracts is unknown. Therefore, in the present study, the sterol content of the extracts used in the INFOGEST 2.0 digestion method (rabbit gastric extract—RGE, porcine pancreatin and bovine bile) is determined via GC-FID. The results show that the cholesterol content of the extracts is as follows: bovine bile < porcine pancreatin < RGE (4.07 ± 0.18, 1.41 ± 0.07 and 0.57 ± 0.05 mg/g extract, respectively). Considering the amount of each extract added to the digestion, the greatest cholesterol contributor is porcine pancreatin, followed by bovine bile and RGE (1.72 ± 0.08, 1.00 ± 0.04, and 0.046 ± 0.004 mg, respectively). However, cholesterol in bile is found in pre-formed micelles that increase its solubility, and, therefore, it would compete for sterol micellarization against sterol provided by the digested foods. This fact has been observed in previous studies in which the cholesterol content of the blanks of digestion was inversely correlated with PS bioaccessibility [<sup<2</sup<]. On the other hand, bovine bile contains stigmasterol, β-sitosterol and sitostanol (0.14 ± 0.01, 0.93 ± 0.07 and 0.18 ± 0.01 mg/g extract, respectively), while porcine pancreatin contains campesterol, stigmasterol, β-sitosterol and sitostanol (0.103 ± 0.004, 0.25 ± 0.02, 2.17 ± 0.42 and 0.32 ± 0.01 mg/g extract, respectively). Nevertheless, these PSs present in the extracts appear in negligible amounts in the digestion blank, reflecting their low solubility vs. cholesterol. In conclusion, in order to optimize the INFOGEST 2.0 gastrointestinal method for the evaluation of sterol bioaccessibility, the characterization of the sterol content in digestion reagents provides valuable information since it may affect their solubility. |
abstractGer |
The INFOGEST digestion method was adapted for the evaluation of sterol bioaccessibility in a plant sterol (PS)-enriched beverage [<sup<1</sup<]. Recent modifications of the method, such as the addition of gastric lipase and cholesterol esterase, showed that the presence of sterols in digestion reagents has an important role on sterol bioaccessibility [<sup<2</sup<]. However, the specific sterol contribution from these extracts is unknown. Therefore, in the present study, the sterol content of the extracts used in the INFOGEST 2.0 digestion method (rabbit gastric extract—RGE, porcine pancreatin and bovine bile) is determined via GC-FID. The results show that the cholesterol content of the extracts is as follows: bovine bile < porcine pancreatin < RGE (4.07 ± 0.18, 1.41 ± 0.07 and 0.57 ± 0.05 mg/g extract, respectively). Considering the amount of each extract added to the digestion, the greatest cholesterol contributor is porcine pancreatin, followed by bovine bile and RGE (1.72 ± 0.08, 1.00 ± 0.04, and 0.046 ± 0.004 mg, respectively). However, cholesterol in bile is found in pre-formed micelles that increase its solubility, and, therefore, it would compete for sterol micellarization against sterol provided by the digested foods. This fact has been observed in previous studies in which the cholesterol content of the blanks of digestion was inversely correlated with PS bioaccessibility [<sup<2</sup<]. On the other hand, bovine bile contains stigmasterol, β-sitosterol and sitostanol (0.14 ± 0.01, 0.93 ± 0.07 and 0.18 ± 0.01 mg/g extract, respectively), while porcine pancreatin contains campesterol, stigmasterol, β-sitosterol and sitostanol (0.103 ± 0.004, 0.25 ± 0.02, 2.17 ± 0.42 and 0.32 ± 0.01 mg/g extract, respectively). Nevertheless, these PSs present in the extracts appear in negligible amounts in the digestion blank, reflecting their low solubility vs. cholesterol. In conclusion, in order to optimize the INFOGEST 2.0 gastrointestinal method for the evaluation of sterol bioaccessibility, the characterization of the sterol content in digestion reagents provides valuable information since it may affect their solubility. |
abstract_unstemmed |
The INFOGEST digestion method was adapted for the evaluation of sterol bioaccessibility in a plant sterol (PS)-enriched beverage [<sup<1</sup<]. Recent modifications of the method, such as the addition of gastric lipase and cholesterol esterase, showed that the presence of sterols in digestion reagents has an important role on sterol bioaccessibility [<sup<2</sup<]. However, the specific sterol contribution from these extracts is unknown. Therefore, in the present study, the sterol content of the extracts used in the INFOGEST 2.0 digestion method (rabbit gastric extract—RGE, porcine pancreatin and bovine bile) is determined via GC-FID. The results show that the cholesterol content of the extracts is as follows: bovine bile < porcine pancreatin < RGE (4.07 ± 0.18, 1.41 ± 0.07 and 0.57 ± 0.05 mg/g extract, respectively). Considering the amount of each extract added to the digestion, the greatest cholesterol contributor is porcine pancreatin, followed by bovine bile and RGE (1.72 ± 0.08, 1.00 ± 0.04, and 0.046 ± 0.004 mg, respectively). However, cholesterol in bile is found in pre-formed micelles that increase its solubility, and, therefore, it would compete for sterol micellarization against sterol provided by the digested foods. This fact has been observed in previous studies in which the cholesterol content of the blanks of digestion was inversely correlated with PS bioaccessibility [<sup<2</sup<]. On the other hand, bovine bile contains stigmasterol, β-sitosterol and sitostanol (0.14 ± 0.01, 0.93 ± 0.07 and 0.18 ± 0.01 mg/g extract, respectively), while porcine pancreatin contains campesterol, stigmasterol, β-sitosterol and sitostanol (0.103 ± 0.004, 0.25 ± 0.02, 2.17 ± 0.42 and 0.32 ± 0.01 mg/g extract, respectively). Nevertheless, these PSs present in the extracts appear in negligible amounts in the digestion blank, reflecting their low solubility vs. cholesterol. In conclusion, in order to optimize the INFOGEST 2.0 gastrointestinal method for the evaluation of sterol bioaccessibility, the characterization of the sterol content in digestion reagents provides valuable information since it may affect their solubility. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1, p 108 |
title_short |
INFOGEST 2.0 Digestion Method: Characterization of the Sterol Content in the Digestion Reagents |
url |
https://doi.org/10.3390/Foods2021-10932 https://doaj.org/article/76b8e75a4e094d958355a61be9f0011d https://www.mdpi.com/2673-9976/6/1/108 https://doaj.org/toc/2673-9976 |
remote_bool |
true |
author2 |
Mussa Makran Gabriel López-García Antonio Cilla Reyes Barberá Amparo Alegría Guadalupe García-Llatas |
author2Str |
Mussa Makran Gabriel López-García Antonio Cilla Reyes Barberá Amparo Alegría Guadalupe García-Llatas |
ppnlink |
1815526661 |
callnumber-subject |
QK - Botany |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/Foods2021-10932 |
callnumber-a |
QK900-989 |
up_date |
2024-07-04T01:36:55.611Z |
_version_ |
1803610505205514240 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ087420163</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413052621.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230331s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/Foods2021-10932</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ087420163</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ76b8e75a4e094d958355a61be9f0011d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QK900-989</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QP501-801</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Manuel Muñoz-Checa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">INFOGEST 2.0 Digestion Method: Characterization of the Sterol Content in the Digestion Reagents</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The INFOGEST digestion method was adapted for the evaluation of sterol bioaccessibility in a plant sterol (PS)-enriched beverage [<sup<1</sup<]. Recent modifications of the method, such as the addition of gastric lipase and cholesterol esterase, showed that the presence of sterols in digestion reagents has an important role on sterol bioaccessibility [<sup<2</sup<]. However, the specific sterol contribution from these extracts is unknown. Therefore, in the present study, the sterol content of the extracts used in the INFOGEST 2.0 digestion method (rabbit gastric extract—RGE, porcine pancreatin and bovine bile) is determined via GC-FID. The results show that the cholesterol content of the extracts is as follows: bovine bile < porcine pancreatin < RGE (4.07 ± 0.18, 1.41 ± 0.07 and 0.57 ± 0.05 mg/g extract, respectively). Considering the amount of each extract added to the digestion, the greatest cholesterol contributor is porcine pancreatin, followed by bovine bile and RGE (1.72 ± 0.08, 1.00 ± 0.04, and 0.046 ± 0.004 mg, respectively). However, cholesterol in bile is found in pre-formed micelles that increase its solubility, and, therefore, it would compete for sterol micellarization against sterol provided by the digested foods. This fact has been observed in previous studies in which the cholesterol content of the blanks of digestion was inversely correlated with PS bioaccessibility [<sup<2</sup<]. On the other hand, bovine bile contains stigmasterol, β-sitosterol and sitostanol (0.14 ± 0.01, 0.93 ± 0.07 and 0.18 ± 0.01 mg/g extract, respectively), while porcine pancreatin contains campesterol, stigmasterol, β-sitosterol and sitostanol (0.103 ± 0.004, 0.25 ± 0.02, 2.17 ± 0.42 and 0.32 ± 0.01 mg/g extract, respectively). Nevertheless, these PSs present in the extracts appear in negligible amounts in the digestion blank, reflecting their low solubility vs. cholesterol. In conclusion, in order to optimize the INFOGEST 2.0 gastrointestinal method for the evaluation of sterol bioaccessibility, the characterization of the sterol content in digestion reagents provides valuable information since it may affect their solubility.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bovine bile</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">in vitro digestion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">porcine pancreatin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">rabbit gastric extract</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sterols</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Plant ecology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Animal biochemistry</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mussa Makran</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gabriel López-García</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Antonio Cilla</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Reyes Barberá</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Amparo Alegría</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guadalupe García-Llatas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Biology and Life Sciences Forum</subfield><subfield code="d">MDPI AG, 2023</subfield><subfield code="g">6(2021), 1, p 108</subfield><subfield code="w">(DE-627)1815526661</subfield><subfield code="x">26739976</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1, p 108</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/Foods2021-10932</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/76b8e75a4e094d958355a61be9f0011d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2673-9976/6/1/108</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2673-9976</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2021</subfield><subfield code="e">1, p 108</subfield></datafield></record></collection>
|
score |
7.4019012 |