Expression of the H<sub<2</sub<O<sub<2</sub< Biosensor roGFP-Tpx1.C169S in Fission and Budding Yeasts and Jurkat Cells to Compare Intracellular H<sub<2</sub<O<sub<2</sub< Levels, Transmembrane Gradients, and Response to Metals
Intracellular hydrogen peroxide (H<sub<2</sub<O<sub<2</sub<) levels can oscillate from low, physiological concentrations, to intermediate, signaling ones, and can participate in toxic reactions when overcoming certain thresholds. Fluorescent protein-based reporters to measure...
Ausführliche Beschreibung
Autor*in: |
Laura de Cubas [verfasserIn] Jorge Mallor [verfasserIn] Víctor Herrera-Fernández [verfasserIn] José Ayté [verfasserIn] Rubén Vicente [verfasserIn] Elena Hidalgo [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Antioxidants - MDPI AG, 2013, 12(2023), 3, p 706 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2023 ; number:3, p 706 |
Links: |
---|
DOI / URN: |
10.3390/antiox12030706 |
---|
Katalog-ID: |
DOAJ087448165 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ087448165 | ||
003 | DE-627 | ||
005 | 20240413053141.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230331s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/antiox12030706 |2 doi | |
035 | |a (DE-627)DOAJ087448165 | ||
035 | |a (DE-599)DOAJddb97ed7f79644bd8919147c056a2382 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a RM1-950 | |
100 | 0 | |a Laura de Cubas |e verfasserin |4 aut | |
245 | 1 | 0 | |a Expression of the H<sub<2</sub<O<sub<2</sub< Biosensor roGFP-Tpx1.C169S in Fission and Budding Yeasts and Jurkat Cells to Compare Intracellular H<sub<2</sub<O<sub<2</sub< Levels, Transmembrane Gradients, and Response to Metals |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Intracellular hydrogen peroxide (H<sub<2</sub<O<sub<2</sub<) levels can oscillate from low, physiological concentrations, to intermediate, signaling ones, and can participate in toxic reactions when overcoming certain thresholds. Fluorescent protein-based reporters to measure intracellular H<sub<2</sub<O<sub<2</sub< have been developed in recent decades. In particular, the redox-sensitive green fluorescent protein (roGFP)-based proteins fused to peroxiredoxins are among the most sensitive H<sub<2</sub<O<sub<2</sub< biosensors. Using fission yeast as a model system, we recently demonstrated that the gradient of extracellular-to-intracellular peroxides through the plasma membrane is around 300:1, and that the concentration of physiological H<sub<2</sub<O<sub<2</sub< is in the low nanomolar range. Here, we have expressed the very sensitive probe roGFP2-Tpx1.C169S in two other model systems, budding yeast and human Jurkat cells. As in fission yeast, the biosensor is ~40–50% oxidized in these cell types, suggesting similar peroxide steady-state levels. Furthermore, probe oxidation upon the addition of extracellular peroxides is also quantitatively similar, suggesting comparable plasma membrane H<sub<2</sub<O<sub<2</sub< gradients. Finally, as a proof of concept, we have applied different concentrations of zinc to all three model systems and have detected probe oxidation, demonstrating that an excess of this metal can cause fluctuations of peroxides, which are moderate in yeasts and severe in mammalian cells. We conclude that the principles governing H<sub<2</sub<O<sub<2</sub< fluxes are very similar in different model organisms. | ||
650 | 4 | |a H<sub<2</sub<O<sub<2</sub< sensor | |
650 | 4 | |a roGFP-Tpx1.C169S | |
650 | 4 | |a Jurkat | |
650 | 4 | |a fission yeast | |
650 | 4 | |a H<sub<2</sub<O<sub<2</sub< concentrations | |
650 | 4 | |a zinc | |
653 | 0 | |a Therapeutics. Pharmacology | |
700 | 0 | |a Jorge Mallor |e verfasserin |4 aut | |
700 | 0 | |a Víctor Herrera-Fernández |e verfasserin |4 aut | |
700 | 0 | |a José Ayté |e verfasserin |4 aut | |
700 | 0 | |a Rubén Vicente |e verfasserin |4 aut | |
700 | 0 | |a Elena Hidalgo |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Antioxidants |d MDPI AG, 2013 |g 12(2023), 3, p 706 |w (DE-627)737287578 |w (DE-600)2704216-9 |x 20763921 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2023 |g number:3, p 706 |
856 | 4 | 0 | |u https://doi.org/10.3390/antiox12030706 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/ddb97ed7f79644bd8919147c056a2382 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2076-3921/12/3/706 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2076-3921 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2023 |e 3, p 706 |
author_variant |
l d c ldc j m jm v h f vhf j a ja r v rv e h eh |
---|---|
matchkey_str |
article:20763921:2023----::xrsinfhhu2uou2uboesroftxc6snisoadudnyatadukteltcmaenrcluahu2uou2ul |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
RM |
publishDate |
2023 |
allfields |
10.3390/antiox12030706 doi (DE-627)DOAJ087448165 (DE-599)DOAJddb97ed7f79644bd8919147c056a2382 DE-627 ger DE-627 rakwb eng RM1-950 Laura de Cubas verfasserin aut Expression of the H<sub<2</sub<O<sub<2</sub< Biosensor roGFP-Tpx1.C169S in Fission and Budding Yeasts and Jurkat Cells to Compare Intracellular H<sub<2</sub<O<sub<2</sub< Levels, Transmembrane Gradients, and Response to Metals 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Intracellular hydrogen peroxide (H<sub<2</sub<O<sub<2</sub<) levels can oscillate from low, physiological concentrations, to intermediate, signaling ones, and can participate in toxic reactions when overcoming certain thresholds. Fluorescent protein-based reporters to measure intracellular H<sub<2</sub<O<sub<2</sub< have been developed in recent decades. In particular, the redox-sensitive green fluorescent protein (roGFP)-based proteins fused to peroxiredoxins are among the most sensitive H<sub<2</sub<O<sub<2</sub< biosensors. Using fission yeast as a model system, we recently demonstrated that the gradient of extracellular-to-intracellular peroxides through the plasma membrane is around 300:1, and that the concentration of physiological H<sub<2</sub<O<sub<2</sub< is in the low nanomolar range. Here, we have expressed the very sensitive probe roGFP2-Tpx1.C169S in two other model systems, budding yeast and human Jurkat cells. As in fission yeast, the biosensor is ~40–50% oxidized in these cell types, suggesting similar peroxide steady-state levels. Furthermore, probe oxidation upon the addition of extracellular peroxides is also quantitatively similar, suggesting comparable plasma membrane H<sub<2</sub<O<sub<2</sub< gradients. Finally, as a proof of concept, we have applied different concentrations of zinc to all three model systems and have detected probe oxidation, demonstrating that an excess of this metal can cause fluctuations of peroxides, which are moderate in yeasts and severe in mammalian cells. We conclude that the principles governing H<sub<2</sub<O<sub<2</sub< fluxes are very similar in different model organisms. H<sub<2</sub<O<sub<2</sub< sensor roGFP-Tpx1.C169S Jurkat fission yeast H<sub<2</sub<O<sub<2</sub< concentrations zinc Therapeutics. Pharmacology Jorge Mallor verfasserin aut Víctor Herrera-Fernández verfasserin aut José Ayté verfasserin aut Rubén Vicente verfasserin aut Elena Hidalgo verfasserin aut In Antioxidants MDPI AG, 2013 12(2023), 3, p 706 (DE-627)737287578 (DE-600)2704216-9 20763921 nnns volume:12 year:2023 number:3, p 706 https://doi.org/10.3390/antiox12030706 kostenfrei https://doaj.org/article/ddb97ed7f79644bd8919147c056a2382 kostenfrei https://www.mdpi.com/2076-3921/12/3/706 kostenfrei https://doaj.org/toc/2076-3921 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 3, p 706 |
spelling |
10.3390/antiox12030706 doi (DE-627)DOAJ087448165 (DE-599)DOAJddb97ed7f79644bd8919147c056a2382 DE-627 ger DE-627 rakwb eng RM1-950 Laura de Cubas verfasserin aut Expression of the H<sub<2</sub<O<sub<2</sub< Biosensor roGFP-Tpx1.C169S in Fission and Budding Yeasts and Jurkat Cells to Compare Intracellular H<sub<2</sub<O<sub<2</sub< Levels, Transmembrane Gradients, and Response to Metals 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Intracellular hydrogen peroxide (H<sub<2</sub<O<sub<2</sub<) levels can oscillate from low, physiological concentrations, to intermediate, signaling ones, and can participate in toxic reactions when overcoming certain thresholds. Fluorescent protein-based reporters to measure intracellular H<sub<2</sub<O<sub<2</sub< have been developed in recent decades. In particular, the redox-sensitive green fluorescent protein (roGFP)-based proteins fused to peroxiredoxins are among the most sensitive H<sub<2</sub<O<sub<2</sub< biosensors. Using fission yeast as a model system, we recently demonstrated that the gradient of extracellular-to-intracellular peroxides through the plasma membrane is around 300:1, and that the concentration of physiological H<sub<2</sub<O<sub<2</sub< is in the low nanomolar range. Here, we have expressed the very sensitive probe roGFP2-Tpx1.C169S in two other model systems, budding yeast and human Jurkat cells. As in fission yeast, the biosensor is ~40–50% oxidized in these cell types, suggesting similar peroxide steady-state levels. Furthermore, probe oxidation upon the addition of extracellular peroxides is also quantitatively similar, suggesting comparable plasma membrane H<sub<2</sub<O<sub<2</sub< gradients. Finally, as a proof of concept, we have applied different concentrations of zinc to all three model systems and have detected probe oxidation, demonstrating that an excess of this metal can cause fluctuations of peroxides, which are moderate in yeasts and severe in mammalian cells. We conclude that the principles governing H<sub<2</sub<O<sub<2</sub< fluxes are very similar in different model organisms. H<sub<2</sub<O<sub<2</sub< sensor roGFP-Tpx1.C169S Jurkat fission yeast H<sub<2</sub<O<sub<2</sub< concentrations zinc Therapeutics. Pharmacology Jorge Mallor verfasserin aut Víctor Herrera-Fernández verfasserin aut José Ayté verfasserin aut Rubén Vicente verfasserin aut Elena Hidalgo verfasserin aut In Antioxidants MDPI AG, 2013 12(2023), 3, p 706 (DE-627)737287578 (DE-600)2704216-9 20763921 nnns volume:12 year:2023 number:3, p 706 https://doi.org/10.3390/antiox12030706 kostenfrei https://doaj.org/article/ddb97ed7f79644bd8919147c056a2382 kostenfrei https://www.mdpi.com/2076-3921/12/3/706 kostenfrei https://doaj.org/toc/2076-3921 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 3, p 706 |
allfields_unstemmed |
10.3390/antiox12030706 doi (DE-627)DOAJ087448165 (DE-599)DOAJddb97ed7f79644bd8919147c056a2382 DE-627 ger DE-627 rakwb eng RM1-950 Laura de Cubas verfasserin aut Expression of the H<sub<2</sub<O<sub<2</sub< Biosensor roGFP-Tpx1.C169S in Fission and Budding Yeasts and Jurkat Cells to Compare Intracellular H<sub<2</sub<O<sub<2</sub< Levels, Transmembrane Gradients, and Response to Metals 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Intracellular hydrogen peroxide (H<sub<2</sub<O<sub<2</sub<) levels can oscillate from low, physiological concentrations, to intermediate, signaling ones, and can participate in toxic reactions when overcoming certain thresholds. Fluorescent protein-based reporters to measure intracellular H<sub<2</sub<O<sub<2</sub< have been developed in recent decades. In particular, the redox-sensitive green fluorescent protein (roGFP)-based proteins fused to peroxiredoxins are among the most sensitive H<sub<2</sub<O<sub<2</sub< biosensors. Using fission yeast as a model system, we recently demonstrated that the gradient of extracellular-to-intracellular peroxides through the plasma membrane is around 300:1, and that the concentration of physiological H<sub<2</sub<O<sub<2</sub< is in the low nanomolar range. Here, we have expressed the very sensitive probe roGFP2-Tpx1.C169S in two other model systems, budding yeast and human Jurkat cells. As in fission yeast, the biosensor is ~40–50% oxidized in these cell types, suggesting similar peroxide steady-state levels. Furthermore, probe oxidation upon the addition of extracellular peroxides is also quantitatively similar, suggesting comparable plasma membrane H<sub<2</sub<O<sub<2</sub< gradients. Finally, as a proof of concept, we have applied different concentrations of zinc to all three model systems and have detected probe oxidation, demonstrating that an excess of this metal can cause fluctuations of peroxides, which are moderate in yeasts and severe in mammalian cells. We conclude that the principles governing H<sub<2</sub<O<sub<2</sub< fluxes are very similar in different model organisms. H<sub<2</sub<O<sub<2</sub< sensor roGFP-Tpx1.C169S Jurkat fission yeast H<sub<2</sub<O<sub<2</sub< concentrations zinc Therapeutics. Pharmacology Jorge Mallor verfasserin aut Víctor Herrera-Fernández verfasserin aut José Ayté verfasserin aut Rubén Vicente verfasserin aut Elena Hidalgo verfasserin aut In Antioxidants MDPI AG, 2013 12(2023), 3, p 706 (DE-627)737287578 (DE-600)2704216-9 20763921 nnns volume:12 year:2023 number:3, p 706 https://doi.org/10.3390/antiox12030706 kostenfrei https://doaj.org/article/ddb97ed7f79644bd8919147c056a2382 kostenfrei https://www.mdpi.com/2076-3921/12/3/706 kostenfrei https://doaj.org/toc/2076-3921 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 3, p 706 |
allfieldsGer |
10.3390/antiox12030706 doi (DE-627)DOAJ087448165 (DE-599)DOAJddb97ed7f79644bd8919147c056a2382 DE-627 ger DE-627 rakwb eng RM1-950 Laura de Cubas verfasserin aut Expression of the H<sub<2</sub<O<sub<2</sub< Biosensor roGFP-Tpx1.C169S in Fission and Budding Yeasts and Jurkat Cells to Compare Intracellular H<sub<2</sub<O<sub<2</sub< Levels, Transmembrane Gradients, and Response to Metals 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Intracellular hydrogen peroxide (H<sub<2</sub<O<sub<2</sub<) levels can oscillate from low, physiological concentrations, to intermediate, signaling ones, and can participate in toxic reactions when overcoming certain thresholds. Fluorescent protein-based reporters to measure intracellular H<sub<2</sub<O<sub<2</sub< have been developed in recent decades. In particular, the redox-sensitive green fluorescent protein (roGFP)-based proteins fused to peroxiredoxins are among the most sensitive H<sub<2</sub<O<sub<2</sub< biosensors. Using fission yeast as a model system, we recently demonstrated that the gradient of extracellular-to-intracellular peroxides through the plasma membrane is around 300:1, and that the concentration of physiological H<sub<2</sub<O<sub<2</sub< is in the low nanomolar range. Here, we have expressed the very sensitive probe roGFP2-Tpx1.C169S in two other model systems, budding yeast and human Jurkat cells. As in fission yeast, the biosensor is ~40–50% oxidized in these cell types, suggesting similar peroxide steady-state levels. Furthermore, probe oxidation upon the addition of extracellular peroxides is also quantitatively similar, suggesting comparable plasma membrane H<sub<2</sub<O<sub<2</sub< gradients. Finally, as a proof of concept, we have applied different concentrations of zinc to all three model systems and have detected probe oxidation, demonstrating that an excess of this metal can cause fluctuations of peroxides, which are moderate in yeasts and severe in mammalian cells. We conclude that the principles governing H<sub<2</sub<O<sub<2</sub< fluxes are very similar in different model organisms. H<sub<2</sub<O<sub<2</sub< sensor roGFP-Tpx1.C169S Jurkat fission yeast H<sub<2</sub<O<sub<2</sub< concentrations zinc Therapeutics. Pharmacology Jorge Mallor verfasserin aut Víctor Herrera-Fernández verfasserin aut José Ayté verfasserin aut Rubén Vicente verfasserin aut Elena Hidalgo verfasserin aut In Antioxidants MDPI AG, 2013 12(2023), 3, p 706 (DE-627)737287578 (DE-600)2704216-9 20763921 nnns volume:12 year:2023 number:3, p 706 https://doi.org/10.3390/antiox12030706 kostenfrei https://doaj.org/article/ddb97ed7f79644bd8919147c056a2382 kostenfrei https://www.mdpi.com/2076-3921/12/3/706 kostenfrei https://doaj.org/toc/2076-3921 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 3, p 706 |
allfieldsSound |
10.3390/antiox12030706 doi (DE-627)DOAJ087448165 (DE-599)DOAJddb97ed7f79644bd8919147c056a2382 DE-627 ger DE-627 rakwb eng RM1-950 Laura de Cubas verfasserin aut Expression of the H<sub<2</sub<O<sub<2</sub< Biosensor roGFP-Tpx1.C169S in Fission and Budding Yeasts and Jurkat Cells to Compare Intracellular H<sub<2</sub<O<sub<2</sub< Levels, Transmembrane Gradients, and Response to Metals 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Intracellular hydrogen peroxide (H<sub<2</sub<O<sub<2</sub<) levels can oscillate from low, physiological concentrations, to intermediate, signaling ones, and can participate in toxic reactions when overcoming certain thresholds. Fluorescent protein-based reporters to measure intracellular H<sub<2</sub<O<sub<2</sub< have been developed in recent decades. In particular, the redox-sensitive green fluorescent protein (roGFP)-based proteins fused to peroxiredoxins are among the most sensitive H<sub<2</sub<O<sub<2</sub< biosensors. Using fission yeast as a model system, we recently demonstrated that the gradient of extracellular-to-intracellular peroxides through the plasma membrane is around 300:1, and that the concentration of physiological H<sub<2</sub<O<sub<2</sub< is in the low nanomolar range. Here, we have expressed the very sensitive probe roGFP2-Tpx1.C169S in two other model systems, budding yeast and human Jurkat cells. As in fission yeast, the biosensor is ~40–50% oxidized in these cell types, suggesting similar peroxide steady-state levels. Furthermore, probe oxidation upon the addition of extracellular peroxides is also quantitatively similar, suggesting comparable plasma membrane H<sub<2</sub<O<sub<2</sub< gradients. Finally, as a proof of concept, we have applied different concentrations of zinc to all three model systems and have detected probe oxidation, demonstrating that an excess of this metal can cause fluctuations of peroxides, which are moderate in yeasts and severe in mammalian cells. We conclude that the principles governing H<sub<2</sub<O<sub<2</sub< fluxes are very similar in different model organisms. H<sub<2</sub<O<sub<2</sub< sensor roGFP-Tpx1.C169S Jurkat fission yeast H<sub<2</sub<O<sub<2</sub< concentrations zinc Therapeutics. Pharmacology Jorge Mallor verfasserin aut Víctor Herrera-Fernández verfasserin aut José Ayté verfasserin aut Rubén Vicente verfasserin aut Elena Hidalgo verfasserin aut In Antioxidants MDPI AG, 2013 12(2023), 3, p 706 (DE-627)737287578 (DE-600)2704216-9 20763921 nnns volume:12 year:2023 number:3, p 706 https://doi.org/10.3390/antiox12030706 kostenfrei https://doaj.org/article/ddb97ed7f79644bd8919147c056a2382 kostenfrei https://www.mdpi.com/2076-3921/12/3/706 kostenfrei https://doaj.org/toc/2076-3921 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 3, p 706 |
language |
English |
source |
In Antioxidants 12(2023), 3, p 706 volume:12 year:2023 number:3, p 706 |
sourceStr |
In Antioxidants 12(2023), 3, p 706 volume:12 year:2023 number:3, p 706 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
H<sub<2</sub<O<sub<2</sub< sensor roGFP-Tpx1.C169S Jurkat fission yeast H<sub<2</sub<O<sub<2</sub< concentrations zinc Therapeutics. Pharmacology |
isfreeaccess_bool |
true |
container_title |
Antioxidants |
authorswithroles_txt_mv |
Laura de Cubas @@aut@@ Jorge Mallor @@aut@@ Víctor Herrera-Fernández @@aut@@ José Ayté @@aut@@ Rubén Vicente @@aut@@ Elena Hidalgo @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
737287578 |
id |
DOAJ087448165 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ087448165</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413053141.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230331s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/antiox12030706</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ087448165</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJddb97ed7f79644bd8919147c056a2382</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RM1-950</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Laura de Cubas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Expression of the H<sub<2</sub<O<sub<2</sub< Biosensor roGFP-Tpx1.C169S in Fission and Budding Yeasts and Jurkat Cells to Compare Intracellular H<sub<2</sub<O<sub<2</sub< Levels, Transmembrane Gradients, and Response to Metals</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Intracellular hydrogen peroxide (H<sub<2</sub<O<sub<2</sub<) levels can oscillate from low, physiological concentrations, to intermediate, signaling ones, and can participate in toxic reactions when overcoming certain thresholds. Fluorescent protein-based reporters to measure intracellular H<sub<2</sub<O<sub<2</sub< have been developed in recent decades. In particular, the redox-sensitive green fluorescent protein (roGFP)-based proteins fused to peroxiredoxins are among the most sensitive H<sub<2</sub<O<sub<2</sub< biosensors. Using fission yeast as a model system, we recently demonstrated that the gradient of extracellular-to-intracellular peroxides through the plasma membrane is around 300:1, and that the concentration of physiological H<sub<2</sub<O<sub<2</sub< is in the low nanomolar range. Here, we have expressed the very sensitive probe roGFP2-Tpx1.C169S in two other model systems, budding yeast and human Jurkat cells. As in fission yeast, the biosensor is ~40–50% oxidized in these cell types, suggesting similar peroxide steady-state levels. Furthermore, probe oxidation upon the addition of extracellular peroxides is also quantitatively similar, suggesting comparable plasma membrane H<sub<2</sub<O<sub<2</sub< gradients. Finally, as a proof of concept, we have applied different concentrations of zinc to all three model systems and have detected probe oxidation, demonstrating that an excess of this metal can cause fluctuations of peroxides, which are moderate in yeasts and severe in mammalian cells. We conclude that the principles governing H<sub<2</sub<O<sub<2</sub< fluxes are very similar in different model organisms.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">H<sub<2</sub<O<sub<2</sub< sensor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">roGFP-Tpx1.C169S</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Jurkat</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fission yeast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">H<sub<2</sub<O<sub<2</sub< concentrations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">zinc</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Therapeutics. Pharmacology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jorge Mallor</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Víctor Herrera-Fernández</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">José Ayté</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rubén Vicente</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Elena Hidalgo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Antioxidants</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">12(2023), 3, p 706</subfield><subfield code="w">(DE-627)737287578</subfield><subfield code="w">(DE-600)2704216-9</subfield><subfield code="x">20763921</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:3, p 706</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/antiox12030706</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ddb97ed7f79644bd8919147c056a2382</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2076-3921/12/3/706</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-3921</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2023</subfield><subfield code="e">3, p 706</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Laura de Cubas |
spellingShingle |
Laura de Cubas misc RM1-950 misc H<sub<2</sub<O<sub<2</sub< sensor misc roGFP-Tpx1.C169S misc Jurkat misc fission yeast misc H<sub<2</sub<O<sub<2</sub< concentrations misc zinc misc Therapeutics. Pharmacology Expression of the H<sub<2</sub<O<sub<2</sub< Biosensor roGFP-Tpx1.C169S in Fission and Budding Yeasts and Jurkat Cells to Compare Intracellular H<sub<2</sub<O<sub<2</sub< Levels, Transmembrane Gradients, and Response to Metals |
authorStr |
Laura de Cubas |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)737287578 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
RM1-950 |
illustrated |
Not Illustrated |
issn |
20763921 |
topic_title |
RM1-950 Expression of the H<sub<2</sub<O<sub<2</sub< Biosensor roGFP-Tpx1.C169S in Fission and Budding Yeasts and Jurkat Cells to Compare Intracellular H<sub<2</sub<O<sub<2</sub< Levels, Transmembrane Gradients, and Response to Metals H<sub<2</sub<O<sub<2</sub< sensor roGFP-Tpx1.C169S Jurkat fission yeast H<sub<2</sub<O<sub<2</sub< concentrations zinc |
topic |
misc RM1-950 misc H<sub<2</sub<O<sub<2</sub< sensor misc roGFP-Tpx1.C169S misc Jurkat misc fission yeast misc H<sub<2</sub<O<sub<2</sub< concentrations misc zinc misc Therapeutics. Pharmacology |
topic_unstemmed |
misc RM1-950 misc H<sub<2</sub<O<sub<2</sub< sensor misc roGFP-Tpx1.C169S misc Jurkat misc fission yeast misc H<sub<2</sub<O<sub<2</sub< concentrations misc zinc misc Therapeutics. Pharmacology |
topic_browse |
misc RM1-950 misc H<sub<2</sub<O<sub<2</sub< sensor misc roGFP-Tpx1.C169S misc Jurkat misc fission yeast misc H<sub<2</sub<O<sub<2</sub< concentrations misc zinc misc Therapeutics. Pharmacology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Antioxidants |
hierarchy_parent_id |
737287578 |
hierarchy_top_title |
Antioxidants |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)737287578 (DE-600)2704216-9 |
title |
Expression of the H<sub<2</sub<O<sub<2</sub< Biosensor roGFP-Tpx1.C169S in Fission and Budding Yeasts and Jurkat Cells to Compare Intracellular H<sub<2</sub<O<sub<2</sub< Levels, Transmembrane Gradients, and Response to Metals |
ctrlnum |
(DE-627)DOAJ087448165 (DE-599)DOAJddb97ed7f79644bd8919147c056a2382 |
title_full |
Expression of the H<sub<2</sub<O<sub<2</sub< Biosensor roGFP-Tpx1.C169S in Fission and Budding Yeasts and Jurkat Cells to Compare Intracellular H<sub<2</sub<O<sub<2</sub< Levels, Transmembrane Gradients, and Response to Metals |
author_sort |
Laura de Cubas |
journal |
Antioxidants |
journalStr |
Antioxidants |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Laura de Cubas Jorge Mallor Víctor Herrera-Fernández José Ayté Rubén Vicente Elena Hidalgo |
container_volume |
12 |
class |
RM1-950 |
format_se |
Elektronische Aufsätze |
author-letter |
Laura de Cubas |
doi_str_mv |
10.3390/antiox12030706 |
author2-role |
verfasserin |
title_sort |
expression of the h<sub<2</sub<o<sub<2</sub< biosensor rogfp-tpx1.c169s in fission and budding yeasts and jurkat cells to compare intracellular h<sub<2</sub<o<sub<2</sub< levels, transmembrane gradients, and response to metals |
callnumber |
RM1-950 |
title_auth |
Expression of the H<sub<2</sub<O<sub<2</sub< Biosensor roGFP-Tpx1.C169S in Fission and Budding Yeasts and Jurkat Cells to Compare Intracellular H<sub<2</sub<O<sub<2</sub< Levels, Transmembrane Gradients, and Response to Metals |
abstract |
Intracellular hydrogen peroxide (H<sub<2</sub<O<sub<2</sub<) levels can oscillate from low, physiological concentrations, to intermediate, signaling ones, and can participate in toxic reactions when overcoming certain thresholds. Fluorescent protein-based reporters to measure intracellular H<sub<2</sub<O<sub<2</sub< have been developed in recent decades. In particular, the redox-sensitive green fluorescent protein (roGFP)-based proteins fused to peroxiredoxins are among the most sensitive H<sub<2</sub<O<sub<2</sub< biosensors. Using fission yeast as a model system, we recently demonstrated that the gradient of extracellular-to-intracellular peroxides through the plasma membrane is around 300:1, and that the concentration of physiological H<sub<2</sub<O<sub<2</sub< is in the low nanomolar range. Here, we have expressed the very sensitive probe roGFP2-Tpx1.C169S in two other model systems, budding yeast and human Jurkat cells. As in fission yeast, the biosensor is ~40–50% oxidized in these cell types, suggesting similar peroxide steady-state levels. Furthermore, probe oxidation upon the addition of extracellular peroxides is also quantitatively similar, suggesting comparable plasma membrane H<sub<2</sub<O<sub<2</sub< gradients. Finally, as a proof of concept, we have applied different concentrations of zinc to all three model systems and have detected probe oxidation, demonstrating that an excess of this metal can cause fluctuations of peroxides, which are moderate in yeasts and severe in mammalian cells. We conclude that the principles governing H<sub<2</sub<O<sub<2</sub< fluxes are very similar in different model organisms. |
abstractGer |
Intracellular hydrogen peroxide (H<sub<2</sub<O<sub<2</sub<) levels can oscillate from low, physiological concentrations, to intermediate, signaling ones, and can participate in toxic reactions when overcoming certain thresholds. Fluorescent protein-based reporters to measure intracellular H<sub<2</sub<O<sub<2</sub< have been developed in recent decades. In particular, the redox-sensitive green fluorescent protein (roGFP)-based proteins fused to peroxiredoxins are among the most sensitive H<sub<2</sub<O<sub<2</sub< biosensors. Using fission yeast as a model system, we recently demonstrated that the gradient of extracellular-to-intracellular peroxides through the plasma membrane is around 300:1, and that the concentration of physiological H<sub<2</sub<O<sub<2</sub< is in the low nanomolar range. Here, we have expressed the very sensitive probe roGFP2-Tpx1.C169S in two other model systems, budding yeast and human Jurkat cells. As in fission yeast, the biosensor is ~40–50% oxidized in these cell types, suggesting similar peroxide steady-state levels. Furthermore, probe oxidation upon the addition of extracellular peroxides is also quantitatively similar, suggesting comparable plasma membrane H<sub<2</sub<O<sub<2</sub< gradients. Finally, as a proof of concept, we have applied different concentrations of zinc to all three model systems and have detected probe oxidation, demonstrating that an excess of this metal can cause fluctuations of peroxides, which are moderate in yeasts and severe in mammalian cells. We conclude that the principles governing H<sub<2</sub<O<sub<2</sub< fluxes are very similar in different model organisms. |
abstract_unstemmed |
Intracellular hydrogen peroxide (H<sub<2</sub<O<sub<2</sub<) levels can oscillate from low, physiological concentrations, to intermediate, signaling ones, and can participate in toxic reactions when overcoming certain thresholds. Fluorescent protein-based reporters to measure intracellular H<sub<2</sub<O<sub<2</sub< have been developed in recent decades. In particular, the redox-sensitive green fluorescent protein (roGFP)-based proteins fused to peroxiredoxins are among the most sensitive H<sub<2</sub<O<sub<2</sub< biosensors. Using fission yeast as a model system, we recently demonstrated that the gradient of extracellular-to-intracellular peroxides through the plasma membrane is around 300:1, and that the concentration of physiological H<sub<2</sub<O<sub<2</sub< is in the low nanomolar range. Here, we have expressed the very sensitive probe roGFP2-Tpx1.C169S in two other model systems, budding yeast and human Jurkat cells. As in fission yeast, the biosensor is ~40–50% oxidized in these cell types, suggesting similar peroxide steady-state levels. Furthermore, probe oxidation upon the addition of extracellular peroxides is also quantitatively similar, suggesting comparable plasma membrane H<sub<2</sub<O<sub<2</sub< gradients. Finally, as a proof of concept, we have applied different concentrations of zinc to all three model systems and have detected probe oxidation, demonstrating that an excess of this metal can cause fluctuations of peroxides, which are moderate in yeasts and severe in mammalian cells. We conclude that the principles governing H<sub<2</sub<O<sub<2</sub< fluxes are very similar in different model organisms. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
3, p 706 |
title_short |
Expression of the H<sub<2</sub<O<sub<2</sub< Biosensor roGFP-Tpx1.C169S in Fission and Budding Yeasts and Jurkat Cells to Compare Intracellular H<sub<2</sub<O<sub<2</sub< Levels, Transmembrane Gradients, and Response to Metals |
url |
https://doi.org/10.3390/antiox12030706 https://doaj.org/article/ddb97ed7f79644bd8919147c056a2382 https://www.mdpi.com/2076-3921/12/3/706 https://doaj.org/toc/2076-3921 |
remote_bool |
true |
author2 |
Jorge Mallor Víctor Herrera-Fernández José Ayté Rubén Vicente Elena Hidalgo |
author2Str |
Jorge Mallor Víctor Herrera-Fernández José Ayté Rubén Vicente Elena Hidalgo |
ppnlink |
737287578 |
callnumber-subject |
RM - Therapeutics and Pharmacology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/antiox12030706 |
callnumber-a |
RM1-950 |
up_date |
2024-07-04T01:44:11.581Z |
_version_ |
1803610962350047232 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ087448165</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413053141.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230331s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/antiox12030706</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ087448165</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJddb97ed7f79644bd8919147c056a2382</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RM1-950</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Laura de Cubas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Expression of the H<sub<2</sub<O<sub<2</sub< Biosensor roGFP-Tpx1.C169S in Fission and Budding Yeasts and Jurkat Cells to Compare Intracellular H<sub<2</sub<O<sub<2</sub< Levels, Transmembrane Gradients, and Response to Metals</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Intracellular hydrogen peroxide (H<sub<2</sub<O<sub<2</sub<) levels can oscillate from low, physiological concentrations, to intermediate, signaling ones, and can participate in toxic reactions when overcoming certain thresholds. Fluorescent protein-based reporters to measure intracellular H<sub<2</sub<O<sub<2</sub< have been developed in recent decades. In particular, the redox-sensitive green fluorescent protein (roGFP)-based proteins fused to peroxiredoxins are among the most sensitive H<sub<2</sub<O<sub<2</sub< biosensors. Using fission yeast as a model system, we recently demonstrated that the gradient of extracellular-to-intracellular peroxides through the plasma membrane is around 300:1, and that the concentration of physiological H<sub<2</sub<O<sub<2</sub< is in the low nanomolar range. Here, we have expressed the very sensitive probe roGFP2-Tpx1.C169S in two other model systems, budding yeast and human Jurkat cells. As in fission yeast, the biosensor is ~40–50% oxidized in these cell types, suggesting similar peroxide steady-state levels. Furthermore, probe oxidation upon the addition of extracellular peroxides is also quantitatively similar, suggesting comparable plasma membrane H<sub<2</sub<O<sub<2</sub< gradients. Finally, as a proof of concept, we have applied different concentrations of zinc to all three model systems and have detected probe oxidation, demonstrating that an excess of this metal can cause fluctuations of peroxides, which are moderate in yeasts and severe in mammalian cells. We conclude that the principles governing H<sub<2</sub<O<sub<2</sub< fluxes are very similar in different model organisms.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">H<sub<2</sub<O<sub<2</sub< sensor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">roGFP-Tpx1.C169S</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Jurkat</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fission yeast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">H<sub<2</sub<O<sub<2</sub< concentrations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">zinc</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Therapeutics. Pharmacology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jorge Mallor</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Víctor Herrera-Fernández</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">José Ayté</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rubén Vicente</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Elena Hidalgo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Antioxidants</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">12(2023), 3, p 706</subfield><subfield code="w">(DE-627)737287578</subfield><subfield code="w">(DE-600)2704216-9</subfield><subfield code="x">20763921</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:3, p 706</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/antiox12030706</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ddb97ed7f79644bd8919147c056a2382</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2076-3921/12/3/706</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-3921</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2023</subfield><subfield code="e">3, p 706</subfield></datafield></record></collection>
|
score |
7.403097 |