Effect of carbonation and foam content on CO2 foamed concrete behavior
Coal and electricity integration plays an important role in ensuring national energy security, but it still faces the challenge of carbon emission reduction. The development of in-situ CO2 sequestration and utilization technology for pithead power plants is an effective way to achieve low-carbon and...
Ausführliche Beschreibung
Autor*in: |
Xupeng Ta [verfasserIn] Zhijun Wan [verfasserIn] Yuan Zhang [verfasserIn] Shubing Qin [verfasserIn] Jiale Zhou [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Journal of Materials Research and Technology - Elsevier, 2015, 23(2023), Seite 6014-6022 |
---|---|
Übergeordnetes Werk: |
volume:23 ; year:2023 ; pages:6014-6022 |
Links: |
---|
DOI / URN: |
10.1016/j.jmrt.2023.02.178 |
---|
Katalog-ID: |
DOAJ087475944 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ087475944 | ||
003 | DE-627 | ||
005 | 20230503013233.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230331s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jmrt.2023.02.178 |2 doi | |
035 | |a (DE-627)DOAJ087475944 | ||
035 | |a (DE-599)DOAJ9393185c6c914d9faafc68213c7c1719 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TN1-997 | |
100 | 0 | |a Xupeng Ta |e verfasserin |4 aut | |
245 | 1 | 0 | |a Effect of carbonation and foam content on CO2 foamed concrete behavior |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Coal and electricity integration plays an important role in ensuring national energy security, but it still faces the challenge of carbon emission reduction. The development of in-situ CO2 sequestration and utilization technology for pithead power plants is an effective way to achieve low-carbon and efficient utilization of coal power. The preparation of foam concrete for mining using CO2 is a type of carbon capture, utilization, and storage technology featuring in-situ CO2 sequestration and utilization in pithead power plants and mine filling and sequestration. The purpose of this study is to evaluate the basic performance and carbon sequestration potential of Portland cement-based CO2 foam concrete (PC-CFC) as a mining material. In this study, PC-CFC was prepared through physical foaming and the carbonation pretreatment cement process. The influence of carbonation pretreatment time and CO2 foam content on density, strength, and carbon sequestration of PC-CFC was investigated. The experimental results showed that carbonation pretreatment could enhance the stability of CO2 foam in Portland cement and improve the CO2 foaming performance. With the extension of carbonation pretreatment time, the extend of dry density reduction decreases from 16.6% to 0.8%. A 60 min–90 min of carbonation pretreatment can achieve the best treatment performance. Carbonation pretreatment and CO2 foam can promote the degree of cement hydration, optimize the PC-CFC pore structure, and improve the compressive strength of PC-CFC. However, the PC-CFC material strength owing to the extended carbonation treatment time, which leads to well-developed vesicle distribution, has an overall decreasing trend. In addition, the 7 day (d) compressive strength of PC-CFC can reach more than 60% of the 28 d compressive strength, which has evident early strength characteristics. Extending the carbonation pretreatment time and CO2 foam content increased the PC-CFC carbon sequestration that ranged from 61.0 kg/ton to 85.7 kg/ton. The dry density of the PC-CFC material was significantly and positively correlated to the 28 d compressive strength and negatively correlated to the amount of carbon sequestration. In the case in which the best carbon sequestration effects is achieved, a single filling of the working face end can store ∼3929.31 kg of CO2; in the most economical condition, it can store ∼3642.79 kg of CO2. The conducted research provides new ideas for the low-carbon and green development of coal and electricity integration. | ||
650 | 4 | |a Foam concrete | |
650 | 4 | |a Carbon sequestration | |
650 | 4 | |a Coal and electricity integration | |
650 | 4 | |a Mine filling | |
653 | 0 | |a Mining engineering. Metallurgy | |
700 | 0 | |a Zhijun Wan |e verfasserin |4 aut | |
700 | 0 | |a Yuan Zhang |e verfasserin |4 aut | |
700 | 0 | |a Shubing Qin |e verfasserin |4 aut | |
700 | 0 | |a Jiale Zhou |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Journal of Materials Research and Technology |d Elsevier, 2015 |g 23(2023), Seite 6014-6022 |w (DE-627)768093163 |w (DE-600)2732709-7 |x 22140697 |7 nnns |
773 | 1 | 8 | |g volume:23 |g year:2023 |g pages:6014-6022 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jmrt.2023.02.178 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/9393185c6c914d9faafc68213c7c1719 |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S223878542300412X |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2238-7854 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 23 |j 2023 |h 6014-6022 |
author_variant |
x t xt z w zw y z yz s q sq j z jz |
---|---|
matchkey_str |
article:22140697:2023----::fetfabntoadomotnoc2omd |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TN |
publishDate |
2023 |
allfields |
10.1016/j.jmrt.2023.02.178 doi (DE-627)DOAJ087475944 (DE-599)DOAJ9393185c6c914d9faafc68213c7c1719 DE-627 ger DE-627 rakwb eng TN1-997 Xupeng Ta verfasserin aut Effect of carbonation and foam content on CO2 foamed concrete behavior 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Coal and electricity integration plays an important role in ensuring national energy security, but it still faces the challenge of carbon emission reduction. The development of in-situ CO2 sequestration and utilization technology for pithead power plants is an effective way to achieve low-carbon and efficient utilization of coal power. The preparation of foam concrete for mining using CO2 is a type of carbon capture, utilization, and storage technology featuring in-situ CO2 sequestration and utilization in pithead power plants and mine filling and sequestration. The purpose of this study is to evaluate the basic performance and carbon sequestration potential of Portland cement-based CO2 foam concrete (PC-CFC) as a mining material. In this study, PC-CFC was prepared through physical foaming and the carbonation pretreatment cement process. The influence of carbonation pretreatment time and CO2 foam content on density, strength, and carbon sequestration of PC-CFC was investigated. The experimental results showed that carbonation pretreatment could enhance the stability of CO2 foam in Portland cement and improve the CO2 foaming performance. With the extension of carbonation pretreatment time, the extend of dry density reduction decreases from 16.6% to 0.8%. A 60 min–90 min of carbonation pretreatment can achieve the best treatment performance. Carbonation pretreatment and CO2 foam can promote the degree of cement hydration, optimize the PC-CFC pore structure, and improve the compressive strength of PC-CFC. However, the PC-CFC material strength owing to the extended carbonation treatment time, which leads to well-developed vesicle distribution, has an overall decreasing trend. In addition, the 7 day (d) compressive strength of PC-CFC can reach more than 60% of the 28 d compressive strength, which has evident early strength characteristics. Extending the carbonation pretreatment time and CO2 foam content increased the PC-CFC carbon sequestration that ranged from 61.0 kg/ton to 85.7 kg/ton. The dry density of the PC-CFC material was significantly and positively correlated to the 28 d compressive strength and negatively correlated to the amount of carbon sequestration. In the case in which the best carbon sequestration effects is achieved, a single filling of the working face end can store ∼3929.31 kg of CO2; in the most economical condition, it can store ∼3642.79 kg of CO2. The conducted research provides new ideas for the low-carbon and green development of coal and electricity integration. Foam concrete Carbon sequestration Coal and electricity integration Mine filling Mining engineering. Metallurgy Zhijun Wan verfasserin aut Yuan Zhang verfasserin aut Shubing Qin verfasserin aut Jiale Zhou verfasserin aut In Journal of Materials Research and Technology Elsevier, 2015 23(2023), Seite 6014-6022 (DE-627)768093163 (DE-600)2732709-7 22140697 nnns volume:23 year:2023 pages:6014-6022 https://doi.org/10.1016/j.jmrt.2023.02.178 kostenfrei https://doaj.org/article/9393185c6c914d9faafc68213c7c1719 kostenfrei http://www.sciencedirect.com/science/article/pii/S223878542300412X kostenfrei https://doaj.org/toc/2238-7854 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 23 2023 6014-6022 |
spelling |
10.1016/j.jmrt.2023.02.178 doi (DE-627)DOAJ087475944 (DE-599)DOAJ9393185c6c914d9faafc68213c7c1719 DE-627 ger DE-627 rakwb eng TN1-997 Xupeng Ta verfasserin aut Effect of carbonation and foam content on CO2 foamed concrete behavior 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Coal and electricity integration plays an important role in ensuring national energy security, but it still faces the challenge of carbon emission reduction. The development of in-situ CO2 sequestration and utilization technology for pithead power plants is an effective way to achieve low-carbon and efficient utilization of coal power. The preparation of foam concrete for mining using CO2 is a type of carbon capture, utilization, and storage technology featuring in-situ CO2 sequestration and utilization in pithead power plants and mine filling and sequestration. The purpose of this study is to evaluate the basic performance and carbon sequestration potential of Portland cement-based CO2 foam concrete (PC-CFC) as a mining material. In this study, PC-CFC was prepared through physical foaming and the carbonation pretreatment cement process. The influence of carbonation pretreatment time and CO2 foam content on density, strength, and carbon sequestration of PC-CFC was investigated. The experimental results showed that carbonation pretreatment could enhance the stability of CO2 foam in Portland cement and improve the CO2 foaming performance. With the extension of carbonation pretreatment time, the extend of dry density reduction decreases from 16.6% to 0.8%. A 60 min–90 min of carbonation pretreatment can achieve the best treatment performance. Carbonation pretreatment and CO2 foam can promote the degree of cement hydration, optimize the PC-CFC pore structure, and improve the compressive strength of PC-CFC. However, the PC-CFC material strength owing to the extended carbonation treatment time, which leads to well-developed vesicle distribution, has an overall decreasing trend. In addition, the 7 day (d) compressive strength of PC-CFC can reach more than 60% of the 28 d compressive strength, which has evident early strength characteristics. Extending the carbonation pretreatment time and CO2 foam content increased the PC-CFC carbon sequestration that ranged from 61.0 kg/ton to 85.7 kg/ton. The dry density of the PC-CFC material was significantly and positively correlated to the 28 d compressive strength and negatively correlated to the amount of carbon sequestration. In the case in which the best carbon sequestration effects is achieved, a single filling of the working face end can store ∼3929.31 kg of CO2; in the most economical condition, it can store ∼3642.79 kg of CO2. The conducted research provides new ideas for the low-carbon and green development of coal and electricity integration. Foam concrete Carbon sequestration Coal and electricity integration Mine filling Mining engineering. Metallurgy Zhijun Wan verfasserin aut Yuan Zhang verfasserin aut Shubing Qin verfasserin aut Jiale Zhou verfasserin aut In Journal of Materials Research and Technology Elsevier, 2015 23(2023), Seite 6014-6022 (DE-627)768093163 (DE-600)2732709-7 22140697 nnns volume:23 year:2023 pages:6014-6022 https://doi.org/10.1016/j.jmrt.2023.02.178 kostenfrei https://doaj.org/article/9393185c6c914d9faafc68213c7c1719 kostenfrei http://www.sciencedirect.com/science/article/pii/S223878542300412X kostenfrei https://doaj.org/toc/2238-7854 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 23 2023 6014-6022 |
allfields_unstemmed |
10.1016/j.jmrt.2023.02.178 doi (DE-627)DOAJ087475944 (DE-599)DOAJ9393185c6c914d9faafc68213c7c1719 DE-627 ger DE-627 rakwb eng TN1-997 Xupeng Ta verfasserin aut Effect of carbonation and foam content on CO2 foamed concrete behavior 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Coal and electricity integration plays an important role in ensuring national energy security, but it still faces the challenge of carbon emission reduction. The development of in-situ CO2 sequestration and utilization technology for pithead power plants is an effective way to achieve low-carbon and efficient utilization of coal power. The preparation of foam concrete for mining using CO2 is a type of carbon capture, utilization, and storage technology featuring in-situ CO2 sequestration and utilization in pithead power plants and mine filling and sequestration. The purpose of this study is to evaluate the basic performance and carbon sequestration potential of Portland cement-based CO2 foam concrete (PC-CFC) as a mining material. In this study, PC-CFC was prepared through physical foaming and the carbonation pretreatment cement process. The influence of carbonation pretreatment time and CO2 foam content on density, strength, and carbon sequestration of PC-CFC was investigated. The experimental results showed that carbonation pretreatment could enhance the stability of CO2 foam in Portland cement and improve the CO2 foaming performance. With the extension of carbonation pretreatment time, the extend of dry density reduction decreases from 16.6% to 0.8%. A 60 min–90 min of carbonation pretreatment can achieve the best treatment performance. Carbonation pretreatment and CO2 foam can promote the degree of cement hydration, optimize the PC-CFC pore structure, and improve the compressive strength of PC-CFC. However, the PC-CFC material strength owing to the extended carbonation treatment time, which leads to well-developed vesicle distribution, has an overall decreasing trend. In addition, the 7 day (d) compressive strength of PC-CFC can reach more than 60% of the 28 d compressive strength, which has evident early strength characteristics. Extending the carbonation pretreatment time and CO2 foam content increased the PC-CFC carbon sequestration that ranged from 61.0 kg/ton to 85.7 kg/ton. The dry density of the PC-CFC material was significantly and positively correlated to the 28 d compressive strength and negatively correlated to the amount of carbon sequestration. In the case in which the best carbon sequestration effects is achieved, a single filling of the working face end can store ∼3929.31 kg of CO2; in the most economical condition, it can store ∼3642.79 kg of CO2. The conducted research provides new ideas for the low-carbon and green development of coal and electricity integration. Foam concrete Carbon sequestration Coal and electricity integration Mine filling Mining engineering. Metallurgy Zhijun Wan verfasserin aut Yuan Zhang verfasserin aut Shubing Qin verfasserin aut Jiale Zhou verfasserin aut In Journal of Materials Research and Technology Elsevier, 2015 23(2023), Seite 6014-6022 (DE-627)768093163 (DE-600)2732709-7 22140697 nnns volume:23 year:2023 pages:6014-6022 https://doi.org/10.1016/j.jmrt.2023.02.178 kostenfrei https://doaj.org/article/9393185c6c914d9faafc68213c7c1719 kostenfrei http://www.sciencedirect.com/science/article/pii/S223878542300412X kostenfrei https://doaj.org/toc/2238-7854 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 23 2023 6014-6022 |
allfieldsGer |
10.1016/j.jmrt.2023.02.178 doi (DE-627)DOAJ087475944 (DE-599)DOAJ9393185c6c914d9faafc68213c7c1719 DE-627 ger DE-627 rakwb eng TN1-997 Xupeng Ta verfasserin aut Effect of carbonation and foam content on CO2 foamed concrete behavior 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Coal and electricity integration plays an important role in ensuring national energy security, but it still faces the challenge of carbon emission reduction. The development of in-situ CO2 sequestration and utilization technology for pithead power plants is an effective way to achieve low-carbon and efficient utilization of coal power. The preparation of foam concrete for mining using CO2 is a type of carbon capture, utilization, and storage technology featuring in-situ CO2 sequestration and utilization in pithead power plants and mine filling and sequestration. The purpose of this study is to evaluate the basic performance and carbon sequestration potential of Portland cement-based CO2 foam concrete (PC-CFC) as a mining material. In this study, PC-CFC was prepared through physical foaming and the carbonation pretreatment cement process. The influence of carbonation pretreatment time and CO2 foam content on density, strength, and carbon sequestration of PC-CFC was investigated. The experimental results showed that carbonation pretreatment could enhance the stability of CO2 foam in Portland cement and improve the CO2 foaming performance. With the extension of carbonation pretreatment time, the extend of dry density reduction decreases from 16.6% to 0.8%. A 60 min–90 min of carbonation pretreatment can achieve the best treatment performance. Carbonation pretreatment and CO2 foam can promote the degree of cement hydration, optimize the PC-CFC pore structure, and improve the compressive strength of PC-CFC. However, the PC-CFC material strength owing to the extended carbonation treatment time, which leads to well-developed vesicle distribution, has an overall decreasing trend. In addition, the 7 day (d) compressive strength of PC-CFC can reach more than 60% of the 28 d compressive strength, which has evident early strength characteristics. Extending the carbonation pretreatment time and CO2 foam content increased the PC-CFC carbon sequestration that ranged from 61.0 kg/ton to 85.7 kg/ton. The dry density of the PC-CFC material was significantly and positively correlated to the 28 d compressive strength and negatively correlated to the amount of carbon sequestration. In the case in which the best carbon sequestration effects is achieved, a single filling of the working face end can store ∼3929.31 kg of CO2; in the most economical condition, it can store ∼3642.79 kg of CO2. The conducted research provides new ideas for the low-carbon and green development of coal and electricity integration. Foam concrete Carbon sequestration Coal and electricity integration Mine filling Mining engineering. Metallurgy Zhijun Wan verfasserin aut Yuan Zhang verfasserin aut Shubing Qin verfasserin aut Jiale Zhou verfasserin aut In Journal of Materials Research and Technology Elsevier, 2015 23(2023), Seite 6014-6022 (DE-627)768093163 (DE-600)2732709-7 22140697 nnns volume:23 year:2023 pages:6014-6022 https://doi.org/10.1016/j.jmrt.2023.02.178 kostenfrei https://doaj.org/article/9393185c6c914d9faafc68213c7c1719 kostenfrei http://www.sciencedirect.com/science/article/pii/S223878542300412X kostenfrei https://doaj.org/toc/2238-7854 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 23 2023 6014-6022 |
allfieldsSound |
10.1016/j.jmrt.2023.02.178 doi (DE-627)DOAJ087475944 (DE-599)DOAJ9393185c6c914d9faafc68213c7c1719 DE-627 ger DE-627 rakwb eng TN1-997 Xupeng Ta verfasserin aut Effect of carbonation and foam content on CO2 foamed concrete behavior 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Coal and electricity integration plays an important role in ensuring national energy security, but it still faces the challenge of carbon emission reduction. The development of in-situ CO2 sequestration and utilization technology for pithead power plants is an effective way to achieve low-carbon and efficient utilization of coal power. The preparation of foam concrete for mining using CO2 is a type of carbon capture, utilization, and storage technology featuring in-situ CO2 sequestration and utilization in pithead power plants and mine filling and sequestration. The purpose of this study is to evaluate the basic performance and carbon sequestration potential of Portland cement-based CO2 foam concrete (PC-CFC) as a mining material. In this study, PC-CFC was prepared through physical foaming and the carbonation pretreatment cement process. The influence of carbonation pretreatment time and CO2 foam content on density, strength, and carbon sequestration of PC-CFC was investigated. The experimental results showed that carbonation pretreatment could enhance the stability of CO2 foam in Portland cement and improve the CO2 foaming performance. With the extension of carbonation pretreatment time, the extend of dry density reduction decreases from 16.6% to 0.8%. A 60 min–90 min of carbonation pretreatment can achieve the best treatment performance. Carbonation pretreatment and CO2 foam can promote the degree of cement hydration, optimize the PC-CFC pore structure, and improve the compressive strength of PC-CFC. However, the PC-CFC material strength owing to the extended carbonation treatment time, which leads to well-developed vesicle distribution, has an overall decreasing trend. In addition, the 7 day (d) compressive strength of PC-CFC can reach more than 60% of the 28 d compressive strength, which has evident early strength characteristics. Extending the carbonation pretreatment time and CO2 foam content increased the PC-CFC carbon sequestration that ranged from 61.0 kg/ton to 85.7 kg/ton. The dry density of the PC-CFC material was significantly and positively correlated to the 28 d compressive strength and negatively correlated to the amount of carbon sequestration. In the case in which the best carbon sequestration effects is achieved, a single filling of the working face end can store ∼3929.31 kg of CO2; in the most economical condition, it can store ∼3642.79 kg of CO2. The conducted research provides new ideas for the low-carbon and green development of coal and electricity integration. Foam concrete Carbon sequestration Coal and electricity integration Mine filling Mining engineering. Metallurgy Zhijun Wan verfasserin aut Yuan Zhang verfasserin aut Shubing Qin verfasserin aut Jiale Zhou verfasserin aut In Journal of Materials Research and Technology Elsevier, 2015 23(2023), Seite 6014-6022 (DE-627)768093163 (DE-600)2732709-7 22140697 nnns volume:23 year:2023 pages:6014-6022 https://doi.org/10.1016/j.jmrt.2023.02.178 kostenfrei https://doaj.org/article/9393185c6c914d9faafc68213c7c1719 kostenfrei http://www.sciencedirect.com/science/article/pii/S223878542300412X kostenfrei https://doaj.org/toc/2238-7854 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 23 2023 6014-6022 |
language |
English |
source |
In Journal of Materials Research and Technology 23(2023), Seite 6014-6022 volume:23 year:2023 pages:6014-6022 |
sourceStr |
In Journal of Materials Research and Technology 23(2023), Seite 6014-6022 volume:23 year:2023 pages:6014-6022 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Foam concrete Carbon sequestration Coal and electricity integration Mine filling Mining engineering. Metallurgy |
isfreeaccess_bool |
true |
container_title |
Journal of Materials Research and Technology |
authorswithroles_txt_mv |
Xupeng Ta @@aut@@ Zhijun Wan @@aut@@ Yuan Zhang @@aut@@ Shubing Qin @@aut@@ Jiale Zhou @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
768093163 |
id |
DOAJ087475944 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ087475944</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503013233.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230331s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jmrt.2023.02.178</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ087475944</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ9393185c6c914d9faafc68213c7c1719</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TN1-997</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xupeng Ta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Effect of carbonation and foam content on CO2 foamed concrete behavior</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Coal and electricity integration plays an important role in ensuring national energy security, but it still faces the challenge of carbon emission reduction. The development of in-situ CO2 sequestration and utilization technology for pithead power plants is an effective way to achieve low-carbon and efficient utilization of coal power. The preparation of foam concrete for mining using CO2 is a type of carbon capture, utilization, and storage technology featuring in-situ CO2 sequestration and utilization in pithead power plants and mine filling and sequestration. The purpose of this study is to evaluate the basic performance and carbon sequestration potential of Portland cement-based CO2 foam concrete (PC-CFC) as a mining material. In this study, PC-CFC was prepared through physical foaming and the carbonation pretreatment cement process. The influence of carbonation pretreatment time and CO2 foam content on density, strength, and carbon sequestration of PC-CFC was investigated. The experimental results showed that carbonation pretreatment could enhance the stability of CO2 foam in Portland cement and improve the CO2 foaming performance. With the extension of carbonation pretreatment time, the extend of dry density reduction decreases from 16.6% to 0.8%. A 60 min–90 min of carbonation pretreatment can achieve the best treatment performance. Carbonation pretreatment and CO2 foam can promote the degree of cement hydration, optimize the PC-CFC pore structure, and improve the compressive strength of PC-CFC. However, the PC-CFC material strength owing to the extended carbonation treatment time, which leads to well-developed vesicle distribution, has an overall decreasing trend. In addition, the 7 day (d) compressive strength of PC-CFC can reach more than 60% of the 28 d compressive strength, which has evident early strength characteristics. Extending the carbonation pretreatment time and CO2 foam content increased the PC-CFC carbon sequestration that ranged from 61.0 kg/ton to 85.7 kg/ton. The dry density of the PC-CFC material was significantly and positively correlated to the 28 d compressive strength and negatively correlated to the amount of carbon sequestration. In the case in which the best carbon sequestration effects is achieved, a single filling of the working face end can store ∼3929.31 kg of CO2; in the most economical condition, it can store ∼3642.79 kg of CO2. The conducted research provides new ideas for the low-carbon and green development of coal and electricity integration.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Foam concrete</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon sequestration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coal and electricity integration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mine filling</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mining engineering. Metallurgy</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhijun Wan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuan Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shubing Qin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiale Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Materials Research and Technology</subfield><subfield code="d">Elsevier, 2015</subfield><subfield code="g">23(2023), Seite 6014-6022</subfield><subfield code="w">(DE-627)768093163</subfield><subfield code="w">(DE-600)2732709-7</subfield><subfield code="x">22140697</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2023</subfield><subfield code="g">pages:6014-6022</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jmrt.2023.02.178</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/9393185c6c914d9faafc68213c7c1719</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S223878542300412X</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2238-7854</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2023</subfield><subfield code="h">6014-6022</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Xupeng Ta |
spellingShingle |
Xupeng Ta misc TN1-997 misc Foam concrete misc Carbon sequestration misc Coal and electricity integration misc Mine filling misc Mining engineering. Metallurgy Effect of carbonation and foam content on CO2 foamed concrete behavior |
authorStr |
Xupeng Ta |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)768093163 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TN1-997 |
illustrated |
Not Illustrated |
issn |
22140697 |
topic_title |
TN1-997 Effect of carbonation and foam content on CO2 foamed concrete behavior Foam concrete Carbon sequestration Coal and electricity integration Mine filling |
topic |
misc TN1-997 misc Foam concrete misc Carbon sequestration misc Coal and electricity integration misc Mine filling misc Mining engineering. Metallurgy |
topic_unstemmed |
misc TN1-997 misc Foam concrete misc Carbon sequestration misc Coal and electricity integration misc Mine filling misc Mining engineering. Metallurgy |
topic_browse |
misc TN1-997 misc Foam concrete misc Carbon sequestration misc Coal and electricity integration misc Mine filling misc Mining engineering. Metallurgy |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of Materials Research and Technology |
hierarchy_parent_id |
768093163 |
hierarchy_top_title |
Journal of Materials Research and Technology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)768093163 (DE-600)2732709-7 |
title |
Effect of carbonation and foam content on CO2 foamed concrete behavior |
ctrlnum |
(DE-627)DOAJ087475944 (DE-599)DOAJ9393185c6c914d9faafc68213c7c1719 |
title_full |
Effect of carbonation and foam content on CO2 foamed concrete behavior |
author_sort |
Xupeng Ta |
journal |
Journal of Materials Research and Technology |
journalStr |
Journal of Materials Research and Technology |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
6014 |
author_browse |
Xupeng Ta Zhijun Wan Yuan Zhang Shubing Qin Jiale Zhou |
container_volume |
23 |
class |
TN1-997 |
format_se |
Elektronische Aufsätze |
author-letter |
Xupeng Ta |
doi_str_mv |
10.1016/j.jmrt.2023.02.178 |
author2-role |
verfasserin |
title_sort |
effect of carbonation and foam content on co2 foamed concrete behavior |
callnumber |
TN1-997 |
title_auth |
Effect of carbonation and foam content on CO2 foamed concrete behavior |
abstract |
Coal and electricity integration plays an important role in ensuring national energy security, but it still faces the challenge of carbon emission reduction. The development of in-situ CO2 sequestration and utilization technology for pithead power plants is an effective way to achieve low-carbon and efficient utilization of coal power. The preparation of foam concrete for mining using CO2 is a type of carbon capture, utilization, and storage technology featuring in-situ CO2 sequestration and utilization in pithead power plants and mine filling and sequestration. The purpose of this study is to evaluate the basic performance and carbon sequestration potential of Portland cement-based CO2 foam concrete (PC-CFC) as a mining material. In this study, PC-CFC was prepared through physical foaming and the carbonation pretreatment cement process. The influence of carbonation pretreatment time and CO2 foam content on density, strength, and carbon sequestration of PC-CFC was investigated. The experimental results showed that carbonation pretreatment could enhance the stability of CO2 foam in Portland cement and improve the CO2 foaming performance. With the extension of carbonation pretreatment time, the extend of dry density reduction decreases from 16.6% to 0.8%. A 60 min–90 min of carbonation pretreatment can achieve the best treatment performance. Carbonation pretreatment and CO2 foam can promote the degree of cement hydration, optimize the PC-CFC pore structure, and improve the compressive strength of PC-CFC. However, the PC-CFC material strength owing to the extended carbonation treatment time, which leads to well-developed vesicle distribution, has an overall decreasing trend. In addition, the 7 day (d) compressive strength of PC-CFC can reach more than 60% of the 28 d compressive strength, which has evident early strength characteristics. Extending the carbonation pretreatment time and CO2 foam content increased the PC-CFC carbon sequestration that ranged from 61.0 kg/ton to 85.7 kg/ton. The dry density of the PC-CFC material was significantly and positively correlated to the 28 d compressive strength and negatively correlated to the amount of carbon sequestration. In the case in which the best carbon sequestration effects is achieved, a single filling of the working face end can store ∼3929.31 kg of CO2; in the most economical condition, it can store ∼3642.79 kg of CO2. The conducted research provides new ideas for the low-carbon and green development of coal and electricity integration. |
abstractGer |
Coal and electricity integration plays an important role in ensuring national energy security, but it still faces the challenge of carbon emission reduction. The development of in-situ CO2 sequestration and utilization technology for pithead power plants is an effective way to achieve low-carbon and efficient utilization of coal power. The preparation of foam concrete for mining using CO2 is a type of carbon capture, utilization, and storage technology featuring in-situ CO2 sequestration and utilization in pithead power plants and mine filling and sequestration. The purpose of this study is to evaluate the basic performance and carbon sequestration potential of Portland cement-based CO2 foam concrete (PC-CFC) as a mining material. In this study, PC-CFC was prepared through physical foaming and the carbonation pretreatment cement process. The influence of carbonation pretreatment time and CO2 foam content on density, strength, and carbon sequestration of PC-CFC was investigated. The experimental results showed that carbonation pretreatment could enhance the stability of CO2 foam in Portland cement and improve the CO2 foaming performance. With the extension of carbonation pretreatment time, the extend of dry density reduction decreases from 16.6% to 0.8%. A 60 min–90 min of carbonation pretreatment can achieve the best treatment performance. Carbonation pretreatment and CO2 foam can promote the degree of cement hydration, optimize the PC-CFC pore structure, and improve the compressive strength of PC-CFC. However, the PC-CFC material strength owing to the extended carbonation treatment time, which leads to well-developed vesicle distribution, has an overall decreasing trend. In addition, the 7 day (d) compressive strength of PC-CFC can reach more than 60% of the 28 d compressive strength, which has evident early strength characteristics. Extending the carbonation pretreatment time and CO2 foam content increased the PC-CFC carbon sequestration that ranged from 61.0 kg/ton to 85.7 kg/ton. The dry density of the PC-CFC material was significantly and positively correlated to the 28 d compressive strength and negatively correlated to the amount of carbon sequestration. In the case in which the best carbon sequestration effects is achieved, a single filling of the working face end can store ∼3929.31 kg of CO2; in the most economical condition, it can store ∼3642.79 kg of CO2. The conducted research provides new ideas for the low-carbon and green development of coal and electricity integration. |
abstract_unstemmed |
Coal and electricity integration plays an important role in ensuring national energy security, but it still faces the challenge of carbon emission reduction. The development of in-situ CO2 sequestration and utilization technology for pithead power plants is an effective way to achieve low-carbon and efficient utilization of coal power. The preparation of foam concrete for mining using CO2 is a type of carbon capture, utilization, and storage technology featuring in-situ CO2 sequestration and utilization in pithead power plants and mine filling and sequestration. The purpose of this study is to evaluate the basic performance and carbon sequestration potential of Portland cement-based CO2 foam concrete (PC-CFC) as a mining material. In this study, PC-CFC was prepared through physical foaming and the carbonation pretreatment cement process. The influence of carbonation pretreatment time and CO2 foam content on density, strength, and carbon sequestration of PC-CFC was investigated. The experimental results showed that carbonation pretreatment could enhance the stability of CO2 foam in Portland cement and improve the CO2 foaming performance. With the extension of carbonation pretreatment time, the extend of dry density reduction decreases from 16.6% to 0.8%. A 60 min–90 min of carbonation pretreatment can achieve the best treatment performance. Carbonation pretreatment and CO2 foam can promote the degree of cement hydration, optimize the PC-CFC pore structure, and improve the compressive strength of PC-CFC. However, the PC-CFC material strength owing to the extended carbonation treatment time, which leads to well-developed vesicle distribution, has an overall decreasing trend. In addition, the 7 day (d) compressive strength of PC-CFC can reach more than 60% of the 28 d compressive strength, which has evident early strength characteristics. Extending the carbonation pretreatment time and CO2 foam content increased the PC-CFC carbon sequestration that ranged from 61.0 kg/ton to 85.7 kg/ton. The dry density of the PC-CFC material was significantly and positively correlated to the 28 d compressive strength and negatively correlated to the amount of carbon sequestration. In the case in which the best carbon sequestration effects is achieved, a single filling of the working face end can store ∼3929.31 kg of CO2; in the most economical condition, it can store ∼3642.79 kg of CO2. The conducted research provides new ideas for the low-carbon and green development of coal and electricity integration. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Effect of carbonation and foam content on CO2 foamed concrete behavior |
url |
https://doi.org/10.1016/j.jmrt.2023.02.178 https://doaj.org/article/9393185c6c914d9faafc68213c7c1719 http://www.sciencedirect.com/science/article/pii/S223878542300412X https://doaj.org/toc/2238-7854 |
remote_bool |
true |
author2 |
Zhijun Wan Yuan Zhang Shubing Qin Jiale Zhou |
author2Str |
Zhijun Wan Yuan Zhang Shubing Qin Jiale Zhou |
ppnlink |
768093163 |
callnumber-subject |
TN - Mining Engineering and Metallurgy |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.jmrt.2023.02.178 |
callnumber-a |
TN1-997 |
up_date |
2024-07-04T01:51:11.568Z |
_version_ |
1803611402741481472 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ087475944</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503013233.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230331s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jmrt.2023.02.178</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ087475944</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ9393185c6c914d9faafc68213c7c1719</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TN1-997</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xupeng Ta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Effect of carbonation and foam content on CO2 foamed concrete behavior</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Coal and electricity integration plays an important role in ensuring national energy security, but it still faces the challenge of carbon emission reduction. The development of in-situ CO2 sequestration and utilization technology for pithead power plants is an effective way to achieve low-carbon and efficient utilization of coal power. The preparation of foam concrete for mining using CO2 is a type of carbon capture, utilization, and storage technology featuring in-situ CO2 sequestration and utilization in pithead power plants and mine filling and sequestration. The purpose of this study is to evaluate the basic performance and carbon sequestration potential of Portland cement-based CO2 foam concrete (PC-CFC) as a mining material. In this study, PC-CFC was prepared through physical foaming and the carbonation pretreatment cement process. The influence of carbonation pretreatment time and CO2 foam content on density, strength, and carbon sequestration of PC-CFC was investigated. The experimental results showed that carbonation pretreatment could enhance the stability of CO2 foam in Portland cement and improve the CO2 foaming performance. With the extension of carbonation pretreatment time, the extend of dry density reduction decreases from 16.6% to 0.8%. A 60 min–90 min of carbonation pretreatment can achieve the best treatment performance. Carbonation pretreatment and CO2 foam can promote the degree of cement hydration, optimize the PC-CFC pore structure, and improve the compressive strength of PC-CFC. However, the PC-CFC material strength owing to the extended carbonation treatment time, which leads to well-developed vesicle distribution, has an overall decreasing trend. In addition, the 7 day (d) compressive strength of PC-CFC can reach more than 60% of the 28 d compressive strength, which has evident early strength characteristics. Extending the carbonation pretreatment time and CO2 foam content increased the PC-CFC carbon sequestration that ranged from 61.0 kg/ton to 85.7 kg/ton. The dry density of the PC-CFC material was significantly and positively correlated to the 28 d compressive strength and negatively correlated to the amount of carbon sequestration. In the case in which the best carbon sequestration effects is achieved, a single filling of the working face end can store ∼3929.31 kg of CO2; in the most economical condition, it can store ∼3642.79 kg of CO2. The conducted research provides new ideas for the low-carbon and green development of coal and electricity integration.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Foam concrete</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon sequestration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coal and electricity integration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mine filling</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mining engineering. Metallurgy</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhijun Wan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuan Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shubing Qin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiale Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Materials Research and Technology</subfield><subfield code="d">Elsevier, 2015</subfield><subfield code="g">23(2023), Seite 6014-6022</subfield><subfield code="w">(DE-627)768093163</subfield><subfield code="w">(DE-600)2732709-7</subfield><subfield code="x">22140697</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2023</subfield><subfield code="g">pages:6014-6022</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jmrt.2023.02.178</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/9393185c6c914d9faafc68213c7c1719</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S223878542300412X</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2238-7854</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2023</subfield><subfield code="h">6014-6022</subfield></datafield></record></collection>
|
score |
7.401394 |