County-level societal predictors of COVID-19 cases and deaths changed through time in the United States: A longitudinal ecological study.
People of different racial/ethnic backgrounds, demographics, health, and socioeconomic characteristics have experienced disproportionate rates of infection and death due to COVID-19. This study tests if and how county-level rates of infection and death have changed in relation to societal county cha...
Ausführliche Beschreibung
Autor*in: |
Philip J Bergmann [verfasserIn] Nathan A Ahlgren [verfasserIn] Rosalie A Torres Stone [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Übergeordnetes Werk: |
In: PLOS Global Public Health - Public Library of Science (PLoS), 2022, 2(2022), 11, p e0001282 |
---|---|
Übergeordnetes Werk: |
volume:2 ; year:2022 ; number:11, p e0001282 |
Links: |
---|
DOI / URN: |
10.1371/journal.pgph.0001282 |
---|
Katalog-ID: |
DOAJ087525712 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ087525712 | ||
003 | DE-627 | ||
005 | 20230502155147.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230331s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1371/journal.pgph.0001282 |2 doi | |
035 | |a (DE-627)DOAJ087525712 | ||
035 | |a (DE-599)DOAJf19ab0ec90e146429ebdd4a7dbd37734 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a RA1-1270 | |
100 | 0 | |a Philip J Bergmann |e verfasserin |4 aut | |
245 | 1 | 0 | |a County-level societal predictors of COVID-19 cases and deaths changed through time in the United States: A longitudinal ecological study. |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a People of different racial/ethnic backgrounds, demographics, health, and socioeconomic characteristics have experienced disproportionate rates of infection and death due to COVID-19. This study tests if and how county-level rates of infection and death have changed in relation to societal county characteristics through time as the pandemic progressed. This longitudinal study sampled monthly county-level COVID-19 case and death data per 100,000 residents from April 2020 to March 2022, and studied the relationships of these variables with racial/ethnic, demographic, health, and socioeconomic characteristics for 3125 or 97.0% of U.S. counties, accounting for 96.4% of the U.S. population. The association of all county-level characteristics with COVID-19 case and death rates changed significantly through time, and showed different patterns. For example, counties with higher population proportions of Black, Native American, foreign-born non-citizen, elderly residents, households in poverty, or higher income inequality suffered disproportionately higher COVID-19 case and death rates at the beginning of the pandemic, followed by reversed, attenuated or fluctuating patterns, depending on the variable. Patterns for counties with higher White versus Black population proportions showed somewhat inverse patterns. Counties with higher female population proportions initially had lower case rates but higher death rates, and case and death rates become more coupled and fluctuated later in the pandemic. Counties with higher population densities had fluctuating case and death rates, with peaks coinciding with new variants of COVID-19. Counties with a greater proportion of university-educated residents had lower case and death rates throughout the pandemic, although the strength of this relationship fluctuated through time. This research clearly shows that how different segments of society are affected by a pandemic changes through time. Therefore, targeted policies and interventions that change as a pandemic unfolds are necessary to mitigate its disproportionate effects on vulnerable populations, particularly during the first six months of a pandemic. | ||
653 | 0 | |a Public aspects of medicine | |
700 | 0 | |a Nathan A Ahlgren |e verfasserin |4 aut | |
700 | 0 | |a Rosalie A Torres Stone |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t PLOS Global Public Health |d Public Library of Science (PLoS), 2022 |g 2(2022), 11, p e0001282 |w (DE-627)177799649X |w (DE-600)3101394-6 |x 27673375 |7 nnns |
773 | 1 | 8 | |g volume:2 |g year:2022 |g number:11, p e0001282 |
856 | 4 | 0 | |u https://doi.org/10.1371/journal.pgph.0001282 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/f19ab0ec90e146429ebdd4a7dbd37734 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1371/journal.pgph.0001282 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2767-3375 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 2 |j 2022 |e 11, p e0001282 |
author_variant |
p j b pjb n a a naa r a t s rats |
---|---|
matchkey_str |
article:27673375:2022----::onyeesceapeitrocvd9aeadetshnetruhienhuiesa |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
RA |
publishDate |
2022 |
allfields |
10.1371/journal.pgph.0001282 doi (DE-627)DOAJ087525712 (DE-599)DOAJf19ab0ec90e146429ebdd4a7dbd37734 DE-627 ger DE-627 rakwb eng RA1-1270 Philip J Bergmann verfasserin aut County-level societal predictors of COVID-19 cases and deaths changed through time in the United States: A longitudinal ecological study. 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier People of different racial/ethnic backgrounds, demographics, health, and socioeconomic characteristics have experienced disproportionate rates of infection and death due to COVID-19. This study tests if and how county-level rates of infection and death have changed in relation to societal county characteristics through time as the pandemic progressed. This longitudinal study sampled monthly county-level COVID-19 case and death data per 100,000 residents from April 2020 to March 2022, and studied the relationships of these variables with racial/ethnic, demographic, health, and socioeconomic characteristics for 3125 or 97.0% of U.S. counties, accounting for 96.4% of the U.S. population. The association of all county-level characteristics with COVID-19 case and death rates changed significantly through time, and showed different patterns. For example, counties with higher population proportions of Black, Native American, foreign-born non-citizen, elderly residents, households in poverty, or higher income inequality suffered disproportionately higher COVID-19 case and death rates at the beginning of the pandemic, followed by reversed, attenuated or fluctuating patterns, depending on the variable. Patterns for counties with higher White versus Black population proportions showed somewhat inverse patterns. Counties with higher female population proportions initially had lower case rates but higher death rates, and case and death rates become more coupled and fluctuated later in the pandemic. Counties with higher population densities had fluctuating case and death rates, with peaks coinciding with new variants of COVID-19. Counties with a greater proportion of university-educated residents had lower case and death rates throughout the pandemic, although the strength of this relationship fluctuated through time. This research clearly shows that how different segments of society are affected by a pandemic changes through time. Therefore, targeted policies and interventions that change as a pandemic unfolds are necessary to mitigate its disproportionate effects on vulnerable populations, particularly during the first six months of a pandemic. Public aspects of medicine Nathan A Ahlgren verfasserin aut Rosalie A Torres Stone verfasserin aut In PLOS Global Public Health Public Library of Science (PLoS), 2022 2(2022), 11, p e0001282 (DE-627)177799649X (DE-600)3101394-6 27673375 nnns volume:2 year:2022 number:11, p e0001282 https://doi.org/10.1371/journal.pgph.0001282 kostenfrei https://doaj.org/article/f19ab0ec90e146429ebdd4a7dbd37734 kostenfrei https://doi.org/10.1371/journal.pgph.0001282 kostenfrei https://doaj.org/toc/2767-3375 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2022 11, p e0001282 |
spelling |
10.1371/journal.pgph.0001282 doi (DE-627)DOAJ087525712 (DE-599)DOAJf19ab0ec90e146429ebdd4a7dbd37734 DE-627 ger DE-627 rakwb eng RA1-1270 Philip J Bergmann verfasserin aut County-level societal predictors of COVID-19 cases and deaths changed through time in the United States: A longitudinal ecological study. 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier People of different racial/ethnic backgrounds, demographics, health, and socioeconomic characteristics have experienced disproportionate rates of infection and death due to COVID-19. This study tests if and how county-level rates of infection and death have changed in relation to societal county characteristics through time as the pandemic progressed. This longitudinal study sampled monthly county-level COVID-19 case and death data per 100,000 residents from April 2020 to March 2022, and studied the relationships of these variables with racial/ethnic, demographic, health, and socioeconomic characteristics for 3125 or 97.0% of U.S. counties, accounting for 96.4% of the U.S. population. The association of all county-level characteristics with COVID-19 case and death rates changed significantly through time, and showed different patterns. For example, counties with higher population proportions of Black, Native American, foreign-born non-citizen, elderly residents, households in poverty, or higher income inequality suffered disproportionately higher COVID-19 case and death rates at the beginning of the pandemic, followed by reversed, attenuated or fluctuating patterns, depending on the variable. Patterns for counties with higher White versus Black population proportions showed somewhat inverse patterns. Counties with higher female population proportions initially had lower case rates but higher death rates, and case and death rates become more coupled and fluctuated later in the pandemic. Counties with higher population densities had fluctuating case and death rates, with peaks coinciding with new variants of COVID-19. Counties with a greater proportion of university-educated residents had lower case and death rates throughout the pandemic, although the strength of this relationship fluctuated through time. This research clearly shows that how different segments of society are affected by a pandemic changes through time. Therefore, targeted policies and interventions that change as a pandemic unfolds are necessary to mitigate its disproportionate effects on vulnerable populations, particularly during the first six months of a pandemic. Public aspects of medicine Nathan A Ahlgren verfasserin aut Rosalie A Torres Stone verfasserin aut In PLOS Global Public Health Public Library of Science (PLoS), 2022 2(2022), 11, p e0001282 (DE-627)177799649X (DE-600)3101394-6 27673375 nnns volume:2 year:2022 number:11, p e0001282 https://doi.org/10.1371/journal.pgph.0001282 kostenfrei https://doaj.org/article/f19ab0ec90e146429ebdd4a7dbd37734 kostenfrei https://doi.org/10.1371/journal.pgph.0001282 kostenfrei https://doaj.org/toc/2767-3375 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2022 11, p e0001282 |
allfields_unstemmed |
10.1371/journal.pgph.0001282 doi (DE-627)DOAJ087525712 (DE-599)DOAJf19ab0ec90e146429ebdd4a7dbd37734 DE-627 ger DE-627 rakwb eng RA1-1270 Philip J Bergmann verfasserin aut County-level societal predictors of COVID-19 cases and deaths changed through time in the United States: A longitudinal ecological study. 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier People of different racial/ethnic backgrounds, demographics, health, and socioeconomic characteristics have experienced disproportionate rates of infection and death due to COVID-19. This study tests if and how county-level rates of infection and death have changed in relation to societal county characteristics through time as the pandemic progressed. This longitudinal study sampled monthly county-level COVID-19 case and death data per 100,000 residents from April 2020 to March 2022, and studied the relationships of these variables with racial/ethnic, demographic, health, and socioeconomic characteristics for 3125 or 97.0% of U.S. counties, accounting for 96.4% of the U.S. population. The association of all county-level characteristics with COVID-19 case and death rates changed significantly through time, and showed different patterns. For example, counties with higher population proportions of Black, Native American, foreign-born non-citizen, elderly residents, households in poverty, or higher income inequality suffered disproportionately higher COVID-19 case and death rates at the beginning of the pandemic, followed by reversed, attenuated or fluctuating patterns, depending on the variable. Patterns for counties with higher White versus Black population proportions showed somewhat inverse patterns. Counties with higher female population proportions initially had lower case rates but higher death rates, and case and death rates become more coupled and fluctuated later in the pandemic. Counties with higher population densities had fluctuating case and death rates, with peaks coinciding with new variants of COVID-19. Counties with a greater proportion of university-educated residents had lower case and death rates throughout the pandemic, although the strength of this relationship fluctuated through time. This research clearly shows that how different segments of society are affected by a pandemic changes through time. Therefore, targeted policies and interventions that change as a pandemic unfolds are necessary to mitigate its disproportionate effects on vulnerable populations, particularly during the first six months of a pandemic. Public aspects of medicine Nathan A Ahlgren verfasserin aut Rosalie A Torres Stone verfasserin aut In PLOS Global Public Health Public Library of Science (PLoS), 2022 2(2022), 11, p e0001282 (DE-627)177799649X (DE-600)3101394-6 27673375 nnns volume:2 year:2022 number:11, p e0001282 https://doi.org/10.1371/journal.pgph.0001282 kostenfrei https://doaj.org/article/f19ab0ec90e146429ebdd4a7dbd37734 kostenfrei https://doi.org/10.1371/journal.pgph.0001282 kostenfrei https://doaj.org/toc/2767-3375 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2022 11, p e0001282 |
allfieldsGer |
10.1371/journal.pgph.0001282 doi (DE-627)DOAJ087525712 (DE-599)DOAJf19ab0ec90e146429ebdd4a7dbd37734 DE-627 ger DE-627 rakwb eng RA1-1270 Philip J Bergmann verfasserin aut County-level societal predictors of COVID-19 cases and deaths changed through time in the United States: A longitudinal ecological study. 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier People of different racial/ethnic backgrounds, demographics, health, and socioeconomic characteristics have experienced disproportionate rates of infection and death due to COVID-19. This study tests if and how county-level rates of infection and death have changed in relation to societal county characteristics through time as the pandemic progressed. This longitudinal study sampled monthly county-level COVID-19 case and death data per 100,000 residents from April 2020 to March 2022, and studied the relationships of these variables with racial/ethnic, demographic, health, and socioeconomic characteristics for 3125 or 97.0% of U.S. counties, accounting for 96.4% of the U.S. population. The association of all county-level characteristics with COVID-19 case and death rates changed significantly through time, and showed different patterns. For example, counties with higher population proportions of Black, Native American, foreign-born non-citizen, elderly residents, households in poverty, or higher income inequality suffered disproportionately higher COVID-19 case and death rates at the beginning of the pandemic, followed by reversed, attenuated or fluctuating patterns, depending on the variable. Patterns for counties with higher White versus Black population proportions showed somewhat inverse patterns. Counties with higher female population proportions initially had lower case rates but higher death rates, and case and death rates become more coupled and fluctuated later in the pandemic. Counties with higher population densities had fluctuating case and death rates, with peaks coinciding with new variants of COVID-19. Counties with a greater proportion of university-educated residents had lower case and death rates throughout the pandemic, although the strength of this relationship fluctuated through time. This research clearly shows that how different segments of society are affected by a pandemic changes through time. Therefore, targeted policies and interventions that change as a pandemic unfolds are necessary to mitigate its disproportionate effects on vulnerable populations, particularly during the first six months of a pandemic. Public aspects of medicine Nathan A Ahlgren verfasserin aut Rosalie A Torres Stone verfasserin aut In PLOS Global Public Health Public Library of Science (PLoS), 2022 2(2022), 11, p e0001282 (DE-627)177799649X (DE-600)3101394-6 27673375 nnns volume:2 year:2022 number:11, p e0001282 https://doi.org/10.1371/journal.pgph.0001282 kostenfrei https://doaj.org/article/f19ab0ec90e146429ebdd4a7dbd37734 kostenfrei https://doi.org/10.1371/journal.pgph.0001282 kostenfrei https://doaj.org/toc/2767-3375 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2022 11, p e0001282 |
allfieldsSound |
10.1371/journal.pgph.0001282 doi (DE-627)DOAJ087525712 (DE-599)DOAJf19ab0ec90e146429ebdd4a7dbd37734 DE-627 ger DE-627 rakwb eng RA1-1270 Philip J Bergmann verfasserin aut County-level societal predictors of COVID-19 cases and deaths changed through time in the United States: A longitudinal ecological study. 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier People of different racial/ethnic backgrounds, demographics, health, and socioeconomic characteristics have experienced disproportionate rates of infection and death due to COVID-19. This study tests if and how county-level rates of infection and death have changed in relation to societal county characteristics through time as the pandemic progressed. This longitudinal study sampled monthly county-level COVID-19 case and death data per 100,000 residents from April 2020 to March 2022, and studied the relationships of these variables with racial/ethnic, demographic, health, and socioeconomic characteristics for 3125 or 97.0% of U.S. counties, accounting for 96.4% of the U.S. population. The association of all county-level characteristics with COVID-19 case and death rates changed significantly through time, and showed different patterns. For example, counties with higher population proportions of Black, Native American, foreign-born non-citizen, elderly residents, households in poverty, or higher income inequality suffered disproportionately higher COVID-19 case and death rates at the beginning of the pandemic, followed by reversed, attenuated or fluctuating patterns, depending on the variable. Patterns for counties with higher White versus Black population proportions showed somewhat inverse patterns. Counties with higher female population proportions initially had lower case rates but higher death rates, and case and death rates become more coupled and fluctuated later in the pandemic. Counties with higher population densities had fluctuating case and death rates, with peaks coinciding with new variants of COVID-19. Counties with a greater proportion of university-educated residents had lower case and death rates throughout the pandemic, although the strength of this relationship fluctuated through time. This research clearly shows that how different segments of society are affected by a pandemic changes through time. Therefore, targeted policies and interventions that change as a pandemic unfolds are necessary to mitigate its disproportionate effects on vulnerable populations, particularly during the first six months of a pandemic. Public aspects of medicine Nathan A Ahlgren verfasserin aut Rosalie A Torres Stone verfasserin aut In PLOS Global Public Health Public Library of Science (PLoS), 2022 2(2022), 11, p e0001282 (DE-627)177799649X (DE-600)3101394-6 27673375 nnns volume:2 year:2022 number:11, p e0001282 https://doi.org/10.1371/journal.pgph.0001282 kostenfrei https://doaj.org/article/f19ab0ec90e146429ebdd4a7dbd37734 kostenfrei https://doi.org/10.1371/journal.pgph.0001282 kostenfrei https://doaj.org/toc/2767-3375 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2022 11, p e0001282 |
language |
English |
source |
In PLOS Global Public Health 2(2022), 11, p e0001282 volume:2 year:2022 number:11, p e0001282 |
sourceStr |
In PLOS Global Public Health 2(2022), 11, p e0001282 volume:2 year:2022 number:11, p e0001282 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Public aspects of medicine |
isfreeaccess_bool |
true |
container_title |
PLOS Global Public Health |
authorswithroles_txt_mv |
Philip J Bergmann @@aut@@ Nathan A Ahlgren @@aut@@ Rosalie A Torres Stone @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
177799649X |
id |
DOAJ087525712 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ087525712</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502155147.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230331s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1371/journal.pgph.0001282</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ087525712</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJf19ab0ec90e146429ebdd4a7dbd37734</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RA1-1270</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Philip J Bergmann</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">County-level societal predictors of COVID-19 cases and deaths changed through time in the United States: A longitudinal ecological study.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">People of different racial/ethnic backgrounds, demographics, health, and socioeconomic characteristics have experienced disproportionate rates of infection and death due to COVID-19. This study tests if and how county-level rates of infection and death have changed in relation to societal county characteristics through time as the pandemic progressed. This longitudinal study sampled monthly county-level COVID-19 case and death data per 100,000 residents from April 2020 to March 2022, and studied the relationships of these variables with racial/ethnic, demographic, health, and socioeconomic characteristics for 3125 or 97.0% of U.S. counties, accounting for 96.4% of the U.S. population. The association of all county-level characteristics with COVID-19 case and death rates changed significantly through time, and showed different patterns. For example, counties with higher population proportions of Black, Native American, foreign-born non-citizen, elderly residents, households in poverty, or higher income inequality suffered disproportionately higher COVID-19 case and death rates at the beginning of the pandemic, followed by reversed, attenuated or fluctuating patterns, depending on the variable. Patterns for counties with higher White versus Black population proportions showed somewhat inverse patterns. Counties with higher female population proportions initially had lower case rates but higher death rates, and case and death rates become more coupled and fluctuated later in the pandemic. Counties with higher population densities had fluctuating case and death rates, with peaks coinciding with new variants of COVID-19. Counties with a greater proportion of university-educated residents had lower case and death rates throughout the pandemic, although the strength of this relationship fluctuated through time. This research clearly shows that how different segments of society are affected by a pandemic changes through time. Therefore, targeted policies and interventions that change as a pandemic unfolds are necessary to mitigate its disproportionate effects on vulnerable populations, particularly during the first six months of a pandemic.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Public aspects of medicine</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nathan A Ahlgren</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rosalie A Torres Stone</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">PLOS Global Public Health</subfield><subfield code="d">Public Library of Science (PLoS), 2022</subfield><subfield code="g">2(2022), 11, p e0001282</subfield><subfield code="w">(DE-627)177799649X</subfield><subfield code="w">(DE-600)3101394-6</subfield><subfield code="x">27673375</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:11, p e0001282</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1371/journal.pgph.0001282</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/f19ab0ec90e146429ebdd4a7dbd37734</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1371/journal.pgph.0001282</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2767-3375</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2</subfield><subfield code="j">2022</subfield><subfield code="e">11, p e0001282</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Philip J Bergmann |
spellingShingle |
Philip J Bergmann misc RA1-1270 misc Public aspects of medicine County-level societal predictors of COVID-19 cases and deaths changed through time in the United States: A longitudinal ecological study. |
authorStr |
Philip J Bergmann |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)177799649X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
RA1-1270 |
illustrated |
Not Illustrated |
issn |
27673375 |
topic_title |
RA1-1270 County-level societal predictors of COVID-19 cases and deaths changed through time in the United States: A longitudinal ecological study |
topic |
misc RA1-1270 misc Public aspects of medicine |
topic_unstemmed |
misc RA1-1270 misc Public aspects of medicine |
topic_browse |
misc RA1-1270 misc Public aspects of medicine |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
PLOS Global Public Health |
hierarchy_parent_id |
177799649X |
hierarchy_top_title |
PLOS Global Public Health |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)177799649X (DE-600)3101394-6 |
title |
County-level societal predictors of COVID-19 cases and deaths changed through time in the United States: A longitudinal ecological study. |
ctrlnum |
(DE-627)DOAJ087525712 (DE-599)DOAJf19ab0ec90e146429ebdd4a7dbd37734 |
title_full |
County-level societal predictors of COVID-19 cases and deaths changed through time in the United States: A longitudinal ecological study |
author_sort |
Philip J Bergmann |
journal |
PLOS Global Public Health |
journalStr |
PLOS Global Public Health |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Philip J Bergmann Nathan A Ahlgren Rosalie A Torres Stone |
container_volume |
2 |
class |
RA1-1270 |
format_se |
Elektronische Aufsätze |
author-letter |
Philip J Bergmann |
doi_str_mv |
10.1371/journal.pgph.0001282 |
author2-role |
verfasserin |
title_sort |
county-level societal predictors of covid-19 cases and deaths changed through time in the united states: a longitudinal ecological study |
callnumber |
RA1-1270 |
title_auth |
County-level societal predictors of COVID-19 cases and deaths changed through time in the United States: A longitudinal ecological study. |
abstract |
People of different racial/ethnic backgrounds, demographics, health, and socioeconomic characteristics have experienced disproportionate rates of infection and death due to COVID-19. This study tests if and how county-level rates of infection and death have changed in relation to societal county characteristics through time as the pandemic progressed. This longitudinal study sampled monthly county-level COVID-19 case and death data per 100,000 residents from April 2020 to March 2022, and studied the relationships of these variables with racial/ethnic, demographic, health, and socioeconomic characteristics for 3125 or 97.0% of U.S. counties, accounting for 96.4% of the U.S. population. The association of all county-level characteristics with COVID-19 case and death rates changed significantly through time, and showed different patterns. For example, counties with higher population proportions of Black, Native American, foreign-born non-citizen, elderly residents, households in poverty, or higher income inequality suffered disproportionately higher COVID-19 case and death rates at the beginning of the pandemic, followed by reversed, attenuated or fluctuating patterns, depending on the variable. Patterns for counties with higher White versus Black population proportions showed somewhat inverse patterns. Counties with higher female population proportions initially had lower case rates but higher death rates, and case and death rates become more coupled and fluctuated later in the pandemic. Counties with higher population densities had fluctuating case and death rates, with peaks coinciding with new variants of COVID-19. Counties with a greater proportion of university-educated residents had lower case and death rates throughout the pandemic, although the strength of this relationship fluctuated through time. This research clearly shows that how different segments of society are affected by a pandemic changes through time. Therefore, targeted policies and interventions that change as a pandemic unfolds are necessary to mitigate its disproportionate effects on vulnerable populations, particularly during the first six months of a pandemic. |
abstractGer |
People of different racial/ethnic backgrounds, demographics, health, and socioeconomic characteristics have experienced disproportionate rates of infection and death due to COVID-19. This study tests if and how county-level rates of infection and death have changed in relation to societal county characteristics through time as the pandemic progressed. This longitudinal study sampled monthly county-level COVID-19 case and death data per 100,000 residents from April 2020 to March 2022, and studied the relationships of these variables with racial/ethnic, demographic, health, and socioeconomic characteristics for 3125 or 97.0% of U.S. counties, accounting for 96.4% of the U.S. population. The association of all county-level characteristics with COVID-19 case and death rates changed significantly through time, and showed different patterns. For example, counties with higher population proportions of Black, Native American, foreign-born non-citizen, elderly residents, households in poverty, or higher income inequality suffered disproportionately higher COVID-19 case and death rates at the beginning of the pandemic, followed by reversed, attenuated or fluctuating patterns, depending on the variable. Patterns for counties with higher White versus Black population proportions showed somewhat inverse patterns. Counties with higher female population proportions initially had lower case rates but higher death rates, and case and death rates become more coupled and fluctuated later in the pandemic. Counties with higher population densities had fluctuating case and death rates, with peaks coinciding with new variants of COVID-19. Counties with a greater proportion of university-educated residents had lower case and death rates throughout the pandemic, although the strength of this relationship fluctuated through time. This research clearly shows that how different segments of society are affected by a pandemic changes through time. Therefore, targeted policies and interventions that change as a pandemic unfolds are necessary to mitigate its disproportionate effects on vulnerable populations, particularly during the first six months of a pandemic. |
abstract_unstemmed |
People of different racial/ethnic backgrounds, demographics, health, and socioeconomic characteristics have experienced disproportionate rates of infection and death due to COVID-19. This study tests if and how county-level rates of infection and death have changed in relation to societal county characteristics through time as the pandemic progressed. This longitudinal study sampled monthly county-level COVID-19 case and death data per 100,000 residents from April 2020 to March 2022, and studied the relationships of these variables with racial/ethnic, demographic, health, and socioeconomic characteristics for 3125 or 97.0% of U.S. counties, accounting for 96.4% of the U.S. population. The association of all county-level characteristics with COVID-19 case and death rates changed significantly through time, and showed different patterns. For example, counties with higher population proportions of Black, Native American, foreign-born non-citizen, elderly residents, households in poverty, or higher income inequality suffered disproportionately higher COVID-19 case and death rates at the beginning of the pandemic, followed by reversed, attenuated or fluctuating patterns, depending on the variable. Patterns for counties with higher White versus Black population proportions showed somewhat inverse patterns. Counties with higher female population proportions initially had lower case rates but higher death rates, and case and death rates become more coupled and fluctuated later in the pandemic. Counties with higher population densities had fluctuating case and death rates, with peaks coinciding with new variants of COVID-19. Counties with a greater proportion of university-educated residents had lower case and death rates throughout the pandemic, although the strength of this relationship fluctuated through time. This research clearly shows that how different segments of society are affected by a pandemic changes through time. Therefore, targeted policies and interventions that change as a pandemic unfolds are necessary to mitigate its disproportionate effects on vulnerable populations, particularly during the first six months of a pandemic. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
11, p e0001282 |
title_short |
County-level societal predictors of COVID-19 cases and deaths changed through time in the United States: A longitudinal ecological study. |
url |
https://doi.org/10.1371/journal.pgph.0001282 https://doaj.org/article/f19ab0ec90e146429ebdd4a7dbd37734 https://doaj.org/toc/2767-3375 |
remote_bool |
true |
author2 |
Nathan A Ahlgren Rosalie A Torres Stone |
author2Str |
Nathan A Ahlgren Rosalie A Torres Stone |
ppnlink |
177799649X |
callnumber-subject |
RA - Public Medicine |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1371/journal.pgph.0001282 |
callnumber-a |
RA1-1270 |
up_date |
2024-07-04T02:02:47.431Z |
_version_ |
1803612132405673984 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ087525712</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502155147.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230331s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1371/journal.pgph.0001282</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ087525712</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJf19ab0ec90e146429ebdd4a7dbd37734</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RA1-1270</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Philip J Bergmann</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">County-level societal predictors of COVID-19 cases and deaths changed through time in the United States: A longitudinal ecological study.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">People of different racial/ethnic backgrounds, demographics, health, and socioeconomic characteristics have experienced disproportionate rates of infection and death due to COVID-19. This study tests if and how county-level rates of infection and death have changed in relation to societal county characteristics through time as the pandemic progressed. This longitudinal study sampled monthly county-level COVID-19 case and death data per 100,000 residents from April 2020 to March 2022, and studied the relationships of these variables with racial/ethnic, demographic, health, and socioeconomic characteristics for 3125 or 97.0% of U.S. counties, accounting for 96.4% of the U.S. population. The association of all county-level characteristics with COVID-19 case and death rates changed significantly through time, and showed different patterns. For example, counties with higher population proportions of Black, Native American, foreign-born non-citizen, elderly residents, households in poverty, or higher income inequality suffered disproportionately higher COVID-19 case and death rates at the beginning of the pandemic, followed by reversed, attenuated or fluctuating patterns, depending on the variable. Patterns for counties with higher White versus Black population proportions showed somewhat inverse patterns. Counties with higher female population proportions initially had lower case rates but higher death rates, and case and death rates become more coupled and fluctuated later in the pandemic. Counties with higher population densities had fluctuating case and death rates, with peaks coinciding with new variants of COVID-19. Counties with a greater proportion of university-educated residents had lower case and death rates throughout the pandemic, although the strength of this relationship fluctuated through time. This research clearly shows that how different segments of society are affected by a pandemic changes through time. Therefore, targeted policies and interventions that change as a pandemic unfolds are necessary to mitigate its disproportionate effects on vulnerable populations, particularly during the first six months of a pandemic.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Public aspects of medicine</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nathan A Ahlgren</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rosalie A Torres Stone</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">PLOS Global Public Health</subfield><subfield code="d">Public Library of Science (PLoS), 2022</subfield><subfield code="g">2(2022), 11, p e0001282</subfield><subfield code="w">(DE-627)177799649X</subfield><subfield code="w">(DE-600)3101394-6</subfield><subfield code="x">27673375</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:11, p e0001282</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1371/journal.pgph.0001282</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/f19ab0ec90e146429ebdd4a7dbd37734</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1371/journal.pgph.0001282</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2767-3375</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2</subfield><subfield code="j">2022</subfield><subfield code="e">11, p e0001282</subfield></datafield></record></collection>
|
score |
7.4005327 |